Investigation of the Role of a Zinc Uptake Regulator (Zur) in the Virulence of Pectobacterium odoriferum
Abstract
:1. Introduction
2. Results
2.1. Zur Plays A Negative Role in the Virulence of P. odoriferum BCS7
2.2. Zur does not Affect the Growth of P. odoriferum BCS7
2.3. Comparative Transcriptome Analysis of Po (Zur) vs. Po (EV) and ΔZur vs. Po WT
2.4. Zur Overexpression Negatively Affects the Flagellum and Cell Motility in P. odoriferum
2.5. Zur Depletion Affects Metal-Ion Transport Rather Than the Flagellum and Cell Motility in P. odoriferum
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains, Plasmids, and Culture Conditions
4.2. Construction of the P. odoriferum Mutant and the Zur-overexpressing Strain
4.3. Pathogenicity Assessment of P. odoriferum with Zur Depletion or Overexpression
4.4. Transcriptome Sequencing and Analysis
4.5. Validation of mRNA-Seq by Quantitative Real-time PCR (qPCR)
4.6. Phenotypic Assays
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murdoch, C.C.; Skaar, E.P. Nutritional immunity: The battle for nutrient metals at the host–pathogen interface. Nat. Rev. Microbiol. 2022, 20, 657–670. [Google Scholar] [CrossRef]
- Chandrangsu, P.; Rensing, C.; Helmann, J.D. Metal homeostasis and resistance in bacteria. Nat. Rev. Microbiol. 2017, 15, 338–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhury, R.; Srivastava, S. Zinc resistance mechanisms in bacteria. Curr. Sci. 2001, 81, 768–775. [Google Scholar]
- Foster, A.W.; Osman, D.; Robinson, N.J. Metal preferences and metallation. J. Biol. Chem. 2014, 289, 28095–28103. [Google Scholar] [CrossRef] [Green Version]
- Ducret, V.; Gonzalez, D.; Perron, K. Zinc homeostasis in Pseudomonas. Biometals, 2022; Epub ahead of print. [Google Scholar] [CrossRef]
- Kandari, D.; Gopalani, M.; Gupta, M.; Joshi, H.; Bhatnagar, S.; Bhatnagar, R. Identification, functional characterization, and regulon prediction of the zinc uptake regulator (zur) of Bacillus anthracis—An insight into the zinc homeostasis of the pathogen. Front. Microbiol. 2019, 9, 3314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huynh, U.; Zastrow, M.L. Metallobiology of Lactobacillaceae in the gut microbiome. J. Inorgan. Biochem. 2022, 238, 112023. [Google Scholar] [CrossRef]
- Lilay, G.H.; Persson, D.P.; Castro, P.H.; Liao, F.; Alexander, R.D.; Aarts, M.G.M.; Assunção, A.G.L. Arabidopsis bZIP19 and bZIP23 act as zinc sensors to control plant zinc status. Nat. Plants 2021, 7, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Patzer, S.I.; Hantke, K. The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol. Microbiol. 1998, 28, 1199–1210. [Google Scholar] [CrossRef]
- Gaballa, A.; Helmann, J.D. Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis. J. Bacteriol. 1998, 180, 5815–5821. [Google Scholar] [CrossRef] [Green Version]
- Prestel, E.; Noirot, P.; Auger, S. Genome-wide identification of Bacillus subtilis Zur-binding sites associated with a Zur box expands its known regulatory network. BMC Microbiol. 2015, 15, 13. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.; Helmann, J.D. Molecular logic of the Zur-regulated zinc deprivation response in Bacillus subtilis. Nat. Commun. 2016, 7, 12612. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Li, M.; Zhang, H.; Zheng, B.; Han, H.; Wang, C.; Yan, J.; Tang, J.; Gao, G.F. Functional definition and global regulation of Zur, a zinc uptake regulator in a Streptococcus suis serotype 2 strain causing streptococcal toxic shock syndrome. J. Bacteriol. 2008, 190, 7567–7578. [Google Scholar] [CrossRef] [Green Version]
- Dalet, K.; Gouin, E.; Cenatiempo, Y.; Cossart, P.; Héchard, Y. Characterisation of a new operon encoding a Zur-like protein and an associated ABC zinc permease in Listeria monocytogenes. FEMS Microbiol. Lett. 1999, 174, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, J.A.; Foster, S.J. zur: A Zn2+-responsive regulatory element of Staphylococcus aureus. Microbiology 2001, 147, 1259–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campoy, S.; Jara, M.; Busquets, N.; De Rozas, A.M.P.; Badiola, I.; Barbé, J. Role of the high-affinity zinc uptake znuABC system in Salmonella enterica serovar typhimurium virulence. Infect. Immun. 2002, 70, 4721–4725. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Qiu, Y.; Gao, H.; Guo, Z.; Han, Y.; Song, Y.; Du, Z.; Wang, X.; Zhou, D.; Yang, R. Characterization of Zur-dependent genes and direct Zur targets in Yersinia pestis. BMC Microbiol. 2009, 9, 128. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.H.; Oh, S.Y.; Kim, S.J.; Roe, J.H. The zinc-responsive regulator zur controls a zinc uptake system and some ribosomal proteins in Streptomyces coelicolor A3(2). J. Bacteriol. 2007, 189, 4070–4077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latorre, M.; Low, M.; Gárate, E.; Reyes-Jara, A.; Murray, B.E.; Cambiazo, V.; González, M. Interplay between copper and zinc homeostasis through the transcriptional regulator Zur in Enterococcus faecalis. Metallomics 2015, 7, 1137–1145. [Google Scholar] [CrossRef]
- Tang, D.J.; Li, X.J.; He, Y.Q.; Feng, J.X.; Chen, B.; Tang, J.L. The zinc uptake regulator Zur is essential for the full virulence of Xanthomonas campestris pv. campestris. Mol. Plant Microbe Interact. 2005, 18, 652–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maciag, A.; Dainese, E.; Rodriguez, G.M.; Milano, A.; Provvedi, R.; Pasca, M.R.; Smith, I.; Palù, G.; Riccardi, G.; Manganelli, R. Global analysis of the Mycobacterium tuberculosis Zur (FurB) regulon. J. Bacteriol. 2007, 189, 730–740. [Google Scholar] [CrossRef] [Green Version]
- Ellison, M.L.; Farrow, J.M., 3rd; Parrish, W.; Danell, A.S.; Pesci, E.C. The transcriptional regulator Np20 is the zinc uptake regulator in Pseudomonas aeruginosa. PLoS ONE 2013, 8, e75389. [Google Scholar] [CrossRef]
- Yang, W.; Liu, Y.; Chen, L.; Gao, T.; Hu, B.; Zhang, D.; Liu, F. Zinc uptake regulator (zur) gene involved in zinc homeostasis and virulence of Xanthomonas oryzae pv. oryzae in Rice. Curr. Microbiol. 2007, 54, 307–314. [Google Scholar] [CrossRef]
- Huang, D.L.; Tang, D.J.; Liao, Q.; Li, H.C.; Chen, Q.; He, Y.Q.; Feng, J.X.; Jiang, B.L.; Lu, G.T.; Chen, B.; et al. The Zur of Xanthomonas campestris functions as a repressor and an activator of putative zinc homeostasis genes via recognizing two distinct sequences within its target promoters. Nucleic Acids Res. 2008, 36, 4295–4309. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.L.; Tang, D.J.; Liao, Q.; Li, X.Q.; He, Y.Q.; Feng, J.X.; Jiang, B.L.; Lu, G.T.; Tang, J.L. The Zur of Xanthomonas campestris is involved in hypersensitive response and positively regulates the expression of the hrp cluster via hrpX but not hrpG. Mol. Plant Microbe Interact. 2009, 22, 321–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowd, G.C.; Casey, P.G.; Begley, M.; Hill, C.; Gahan, C.G. Investigation of the role of ZurR in the physiology and pathogenesis of Listeria monocytogenes. FEMS Microbiol. Lett. 2012, 327, 118–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glasner, J.D.; Marquez-Villavicencio, M.; Kim, H.S.; Jahn, C.E.; Ma, B.; Biehl, B.S.; Rissman, A.I.; Mole, B.; Yi, X.; Yang, C.H.; et al. Niche-specificity and the variable fraction of the Pectobacterium pan-genome. Mol. Plant Microbe Interact. 2008, 21, 1549–1560. [Google Scholar] [PubMed] [Green Version]
- Bhat, K.A.; Masood, S.D.; Bhat, N.A.; Bhat, M.A.; Razvi, S.M.; Mir, M.R.; Akhtar, S.; Wani, N.; Habib, M. Current status of post harvest soft rot in vegetables: A review. Asian J. Plant Sci. 2010, 9, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.V.; Machado, M.A.; et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 614–629. [Google Scholar] [CrossRef] [Green Version]
- Portier, P.; Pédron, J.; Taghouti, G.; Dutrieux, C.; Barny, M.A. Updated taxonomy of Pectobacterium genus in the CIRM-CFBP bacterial collection: When newly described species reveal “old” endemic population. Microorganisms 2020, 8, 1441. [Google Scholar] [CrossRef]
- Ben Moussa, H.; Pédron, J.; Bertrand, C.; Hecquet, A.; Barny, M.A. Pectobacterium quasiaquaticum sp. nov., isolated from waterways. Int. J. Syst. Evol. Microbiol. 2021, 71, 005042. [Google Scholar] [CrossRef]
- Davidsson, P.R.; Kariola, T.; Niemi, O.; Palva, E.T. Pathogenicity of and plant immunity to soft rot pectobacteria. Front. Plant Sci. 2013, 4, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.; Ma, L.; Zhao, C.; Yan, J.; Che, S.; Zhou, Z.; Wang, H.; Yang, L.; Hu, B. Transcriptome of Pectobacterium carotovorum subsp. carotovorum PccS1 infected in calla plants in vivo highlights a spatiotemporal expression pattern of genes related to virulence, adaptation, and host response. Mol. Plant Pathol. 2020, 21, 871–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Wang, Y.; Humphris, S.; Nie, W.; Zhang, P.; Wright, F.; Campbell, E.; Hu, B.; Fan, J.; Toth, I. Pectobacterium atrosepticum KDPG aldolase, Eda, participates in the Entner-Doudoroff pathway and independently inhibits expression of virulence determinants. Mol. Plant Pathol. 2021, 22, 271–283. [Google Scholar] [CrossRef]
- Iyoda, S.; Kamidoi, T.; Hirose, K.; Kutsukake, K.; Watanabe, H. A flagellar gene fliZ regulates the expression of invasion genes and virulence phenotype in Salmonella enterica serovar Typhimurium. Microb. Pathog. 2001, 30, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Coplin, D.L.; Cook, D. Molecular genetics of extracellular polysaccharide biosynthesis in vascular phytopathogenic bacteria. Mol. Plant Microbe Interact. 1990, 3, 271–279. [Google Scholar] [CrossRef]
- Kojima, S.; Blair, D.F. The bacterial flagellar motor: Structure and function of a complex molecular machine. Int. Rev. Cytol. 2004, 233, 93–134. [Google Scholar] [CrossRef]
- Minamino, T.; Kinoshita, M.; Namba, K. Directional switching mechanism of the bacterial flagellar motor. Comput. Struct. Biotechnol. J. 2019, 17, 1075–1081. [Google Scholar] [CrossRef]
- Wang, S.; Ju, X.; Heuler, J.; Zhang, K.; Duan, Z.; Warnakulasuriya Patabendige, H.M.L.; Zhao, S.; Sun, X. Recombinant fusion protein vaccine containing Clostridioides difficile FliC and FliD protects mice against C. difficile infection. Infect. Immun. 2023, 91, e0016922. [Google Scholar] [CrossRef]
- Hantke, K. Bacterial zinc uptake and regulators. Curr. Opin. Microbiol. 2005, 8, 196–202. [Google Scholar] [CrossRef]
- Ammendola, S.; Pasquali, P.; Pistoia, C.; Petrucci, P.; Petrarca, P.; Rotilio, G.; Battistoni, A. High-affinity Zn2+ uptake system ZnuABC is required for bacterial zinc homeostasis in intracellular environments and contributes to the virulence of Salmonella enterica. Infect. Immun. 2007, 75, 5867–5876. [Google Scholar] [CrossRef] [Green Version]
- Visconti, S.; Astolfi, M.L.; Battistoni, A.; Ammendola, S. Impairment of the Zn/Cd detoxification systems affects the ability of Salmonella to colonize Arabidopsis thaliana. Front. Microbiol. 2022, 13, 975725. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, Y.; Liu, G.; Deng, Z.; Lin, S.; Zheng, J. Structural basis of Streptomyces transcription activation by zinc uptake regulator. Nucleic Acids Res. 2022, 50, 8363–8376. [Google Scholar] [CrossRef]
- Panina, E.M.; Mironov, A.A.; Gelfand, M.S. Comparative genomics of bacterial zinc regulons: Enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins. Proc. Natl. Acad. Sci. USA 2003, 100, 9912–9917. [Google Scholar] [CrossRef] [Green Version]
- Kandari, D.; Joshi, H.; Bhatnagar, R. Zur: Zinc-sensing transcriptional regulator in a diverse set of bacterial species. Pathogens 2021, 10, 344. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Du, S.; Ma, L.; Liao, Y.; Wang, Y.; Toth, I.; Fan, J. Characterization of Pectobacterium carotovorum proteins differentially expressed during infection of Zantedeschia elliotiana in vivo and in vitro which are essential for virulence. Mol. Plant Pathol. 2018, 19, 35–48. [Google Scholar] [CrossRef]
- Li, X.; Fu, L.; Chen, C.; Sun, W.; Tian, Y.; Xie, H. Characteristics and rapid diagnosis of Pectobacterium carotovorum ssp. associated with bacterial soft rot of vegetables in China. Plant Dis. 2020, 104, 1158–1166. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Wang, L.; Han, Y.; He, Q. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Chen, C.; Yuan, F.; Li, X.; Ma, R.; Xie, H. Jasmonic acid and ethylene signaling pathways participate in the defense response of Chinese cabbage to Pectobacterium carotovorum infection. J. Integr. Agric. 2021, 20, 1314–1326. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using Real-Time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Huang, S.; Jin, J.; Wei, X. Improvement of the silver staining method for bacterial flagella. J. Microbiol. Methods 2022, 198, 106495. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Cui, S.; Guan, J.; Su, Y.; Liang, X.; Tian, Y.; Xie, H. Investigation of the Role of a Zinc Uptake Regulator (Zur) in the Virulence of Pectobacterium odoriferum. Int. J. Mol. Sci. 2023, 24, 9991. https://doi.org/10.3390/ijms24129991
Chen C, Cui S, Guan J, Su Y, Liang X, Tian Y, Xie H. Investigation of the Role of a Zinc Uptake Regulator (Zur) in the Virulence of Pectobacterium odoriferum. International Journal of Molecular Sciences. 2023; 24(12):9991. https://doi.org/10.3390/ijms24129991
Chicago/Turabian StyleChen, Changlong, Shuang Cui, Jiantao Guan, Yanyan Su, Xucong Liang, Yu Tian, and Hua Xie. 2023. "Investigation of the Role of a Zinc Uptake Regulator (Zur) in the Virulence of Pectobacterium odoriferum" International Journal of Molecular Sciences 24, no. 12: 9991. https://doi.org/10.3390/ijms24129991
APA StyleChen, C., Cui, S., Guan, J., Su, Y., Liang, X., Tian, Y., & Xie, H. (2023). Investigation of the Role of a Zinc Uptake Regulator (Zur) in the Virulence of Pectobacterium odoriferum. International Journal of Molecular Sciences, 24(12), 9991. https://doi.org/10.3390/ijms24129991