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Abstract: The characteristic absorption spectra of three positional isomers of hydroxybenzoic acid
are measured using a terahertz time-domain spectroscopy system (THz-TDS) in the 0.6–2.0 THz
region at room temperature. Significant differences in their terahertz spectra are discovered, which
indicates that THz-TDS is an effective means to identify positional isomers. In order to simulate
their spectra, the seven molecular clusters of 2-, 3-, and 4-hydroxybenzoic acid (2-, 3-, and 4-HA) are
calculated using the DFT-D3 method. Additionally, the potential energy distribution (PED) method
is used to analyze their vibration modes. The analysis indicates that the vibration modes of 2-HA
are mainly out-of-plane angle bending and bond angle bend in plane. The vibration modes of 3-HA
are mainly bond length stretch and dihedral angle torsion. The vibration modes of 4-HA are mainly
bond angle bend in plane and dihedral angle torsion. Interaction region indicator (IRI) analysis is
used to visualize the location and type of intermolecular interactions in 2-, 3-, and 4-HA crystals.
The results show that the weak interaction type of 2-, 3-, and 4-HA is dominated by van der Waals
(vdW) interaction. Therefore, we can confirm that terahertz spectroscopy detection technology can be
used as an effective means to identify structural isomers and detect the intermolecular interactions in
these crystals. In addition, it can explain the absorption mechanism of terahertz waves interacting
with matter.

Keywords: terahertz spectrum; isomer; density functional theory; vibrational mode; interaction
region indicator

1. Introduction

When exploring the synthesis and decomposition of organic substances, the covalent
bond between atoms is the focus of our attention, but there are not only covalent bonds
in the organic molecular system, but also non-covalent bonds that are usually easily over-
looked due to their weak interactions. These weak interactions, including intermolecular
and intramolecular weak interactions, play an extremely important role in organic molecu-
lar systems and chemical synthesis. These weak interactions contain important physical
and chemical information, which is of great significance for analyzing the internal struc-
ture of organic molecular systems and the subtle differences between molecules. 2-HA (a
fat-soluble organic acid), which exists in natural willow bark, white bead leaves, and sweet
birch trees, is an important fine chemical raw material and can be used for the preparation
of aspirin and other drugs [1], chemical reaction fluorescent indicator Agent [2], complexing
agent for electroplating or electroless plating [3], and a trace amount of preservative used
in food [4]. 3-HA is a positional isomer of 2-HA, which can be used as a preservative
for industrial products [5], ion exchangers for chemical synthesis [6], intermediates for
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the preparation of pharmaceuticals [7], and azo dyes [8]. 4-HA is also a positional iso-
mer of 2-HA and mainly used as a preservative in medicines and cosmetics [9,10]. Many
researchers have done a lot of research on 2-, 3-, and 4-HA. Boczar M [11] proposed a
theoretical model of the infrared spectra of the 2-HA hydrogen bond stretching zone, and
theoretically calculated the infrared spectra of the O-H stretching zone of 2-HA; the results
showed that the experimental spectra were in good agreement with the theoretical spectra.
However, in the detection of organic molecules via infrared spectroscopy, the quantitative
analysis error is large, the sensitivity is low, and the spectrum analysis mainly depends on
experience. On the other hand, the THz wave is an electromagnetic wave in the transition
band between millimeter wave and infrared. The wave number range is 3.33–333 cm−1,
and the frequency range is 0.1–10 THz [12,13]. Although the THz wave is the least known
and developed wave so far, it has the unique advantages of low energy, strong penetrability,
and good transient and high resolution in optical detection. Ding L [14] reported the two
THz spectrum absorption characteristics of 2-HA and the three THz spectrum absorption
characteristics of sodium salicylate. It has been shown that 2-HA and sodium salicylate can
easily be distinguished using spectroscopy based on their unique THz, which may be due
to the differences in their intramolecular and intermolecular structures. It indicates that the
THz spectrum can be used to detect organic molecules.

In recent years, more and more researchers have simulated the spectral properties
of positional isomers through density functional theory, which shows that the absorption
characteristics of 2-HA are mainly derived from intermolecular interactions, and the ab-
sorption of sodium salicylate is mainly derived from intramolecular vibrations. Evangelisti
L [15] used free jet millimeter-wave absorption spectroscopy to study the rotational spectra
of 2-HA and three kinds of deuterides, and the results showed that the presence of OH
groups in the adjacent position of benzoic acid did not affect the structure and stability
of adjacent carboxyl groups. Vulpius D [16] used ultrashort laser pulse time-resolved
laser-induced fluorescence spectroscopy to study the excited state proton transfer of 3-HA
and 4-HA and discovered that new species only exist in excited states, which are caused by
the temporary reversible annihilation of the aromatic bond system. Wang Q [17] tested the
vibrational spectra of pyrazinamide (PZA), 3-HA, and their co-crystals using THz-TDS and
Raman vibrational spectroscopy techniques, and the characteristic absorption peaks of the
co-crystals were at 0.81, 1.47, and 1.61 THz, respectively. Additionally, through comparing
the results of the simulated DFT frequency with the experimental vibration spectrum, the
vibration mode of the eutectic is determined. Lepodise [18] studied benzoic acid and its
derivatives 2-HA and 3-HA in the 6.06–15.15 THz spectral range, and the spectrum showed
obvious absorption characteristics. The absorption curves of the experiment and the nu-
merical simulation are basically in agreement. Choi Y [19] confirmed the coordination
effect of 4-HA in polyethylene oxide via Fourier transform infrared spectroscopy. And
further thermogravimetric analysis confirmed that 4-HA has strong stability in the polymer
matrix. Brandan [20] measured the infrared and Raman spectra of 4-HA, then used the DFT
(B3LYP) method to optimize the geometric structure of the monomer and dimer of 4-HA
under the 6-31G*, D95**, and 6-311++G** base sets, respectively. The recorded vibration
spectrum and theoretical calculation results show that 4-HA dimer has a stable conforma-
tion. Additionally, the formation of hydrogen bonds was studied from the perspective of
charge density using the AIM program and NBO calculation.

The research mentioned above confirms that THz spectroscopy technology is fea-
sible for detection and has a relatively obvious absorption on 2-, 3-, and 4-HA [21]. In
addition, THz waves have been proved to be universally feasible for the identification
and classification of organics [22–24]. In the paper, the PED method was used to analyze
the vibration modes of these three isomers, and the absorption peaks of the experimental
spectra were identified. Moreover, a new method, which is a visual model based on IRI,
is proposed to analyze the weak intramolecular and intermolecular interactions of 2-, 3-,
and 4-HA. Through the visual analysis of IRI, the weakly interacting regions, composition,
and strength of 2-, 3-, and 4-HA clusters can be intuitively captured. The results show that
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THz spectroscopy technology combined with stoichiometric simulation will help us further
explore the internal structure and interaction characteristics of more organic isomers and
metal organic framework structures (MOFs).

2. Results and Discussion
2.1. The Simulated THz Spectra of 2-, 3-, and 4-HA

Assuming that the thermal effects on the samples could be ignored, the calculated
spectra are shown in Figure 1. Obviously, differences in the experimentally obtained
and calculated spectra are apparent in the spectra presented. The differences could be
attributed to the dynamic simulation carried out with the 2-, 3-, and 4-HA molecules at the
default temperature of 0 K, while the experiments were performed at the temperature of
295 K [25]. Furthermore, due to fluctuations in power, changes in the vibrational state of
the environment, and changes in the air pressure, experimental results are often influenced
by the system (or instrument) error and environmental noise.
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Figure 1 shows the THz-TDS-obtained and B3LYP-D3-simulated spectra of 2-, 3-
, and 4-HA. Evidently, the calculated peaks at 1.03 THz and 1.33 THz correspond to
the measured peaks at 1.12 THz and 1.41 THz in 2-HA, while 0.85 THz, 1.52 THz, and
1.85 THz of calculated peaks correspond with the measured peaks at 0.81 THz, 1.48 THz,
and 1.81 THz, respectively, in 3-HA. Similarly, in 4-HA, 0.84 THz, 1.26 THz, and 1.76 THz
correspond with 0.83 THz, 1.22 THz, and 1.83 THz of the measured peaks, respectively.

2.2. Analysis of the Vibrational Modes

In order to further study the relationship between THz absorption peaks and the
vibration modes of 2-, 3-, and 4-HA molecules, simulation data analysis is performed
via PED [26], and the results of the corresponding relationship between each absorption
peak and the vibration mode are shown in Table 1. The atomic number indexes of the
optimized geometries of 2-HA, 3-HA, and 4-HA are shown in Figure 2a–c, in that order.
The experimental absorption peak of 2-HA at 1.12 THz corresponds to the simulated
absorption peak at 1.03 THz, where the absorption peak is composed of O(1)-H(16) and
C(25)-C(21)-H(16). The vibration modes caused by two H-bond interactions are all classified
as out-of-plane angle bending. The experimental absorption peak at 1.41 THz corresponds
to the simulated absorption peak at 1.33 THz, where the absorption peak is composed of
H(48)-C(53)-C(57) and C(10)-C(103)-O(98)-H(87) caused by two H-bond interactions; the vibra-
tion modes are respectively attributed to bond angle bend in plane and dihedral angle
torsion. The experimental absorption peak at 1.97 THz has no corresponding simulated
peak, and the simulated absorption peak at 1.78 THz has no corresponding experimen-
tal peak. The absorption peaks at these two places are both classified as intermolecular
interaction. The experimental absorption peak of 3-HA at 1.48 THz corresponds to the
simulated absorption peak at 1.52, where the absorption peak is caused by an H-bond
interaction of H(16)-O(13)-C(7)-C(3). Its vibration mode belongs to dihedral angle torsion. The
simulated absorption peak of 1.27 THz is caused by an H-bond interaction of C(55)-H(95),
and its vibration mode is attributed to bond length stretch. The remaining peak points
are attributed to intermolecular interaction. The experimental absorption peak of 4-HA at
0.83 THz corresponds to the simulated absorption peak at 0.84 THz, where the absorp-
tion peak is caused by the weak interaction between C(1)-C(6)-O(78)-C(73). Its vibration
mode belongs to dihedral angle torsion. The experimental absorption peak at 1.22 THz
corresponds to the simulated absorption peak at 1.26 THz, where the absorption peak
is caused by an H-bond interaction of H(96)-O(60)-C(54), and its vibration mode is at-
tributed to dihedral angle torsion. The simulated absorption peak at 1.49 THz is caused
by the weak interaction between C(3)-C(1)-C(6)-O(78), and its vibration mode is attributed
to bond angle bend in plane. The experimental absorption peak at 1.83 THz corresponds
to the simulated absorption peak at 1.76 THz, where the absorption peak is caused by
intermolecular interaction.

2.3. Identifying Weak Interactions with IRI

Figure 3 shows the IRI versus the electron density multiplied by the sign of the second
Hessian Eigen value (λ2) for 2-, 3-, and 4-HA. The sign(λ2)ρ function can be mapped
on IRI isosurfaces with different colors to vividly show nature of the interaction regions
revealed by means of IRI. The sign(λ2) function denotes the sign of the second largest
eigenvalue of the Hessian of ρ, which has certain ability to distinguish attractive and
repulsive interactions. From the mapped colors of sign(λ2)ρ, one can easily identify the
nature of interactions revealed by means of IRI isosurfaces. This coloring method will be
employed for all figures given later. The density of the green dots in the scatter diagram is
obviously greater than that of the blue dots and the red dots, which shows that the main
weak interaction types of 2-, 3-, and 4-HA are vdW interactions, while H-bond and steric
effect interactions account for a small proportion of the total weak molecular interactions.
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Table 1. Vibrational modes description assigned to each absorption peak of the hydroxybenzoic acids.

Samples Experimentally
Obtained/THz Calculated/THz Vibrational Modes

2-HA

1.12 1.03 O: O(1)H(16) and C(25)C(21)H(16)

1.41 1.33 B: H(48)C(53)C(57); T: C(10)C(103)O(98)H(87)

– 1.78 Intermolecular interaction

1.97 – Intermolecular interaction

3-HA

0.81 0.85 Intermolecular interaction

1.12 – Intermolecular interaction

– 1.27 S: C(55)H(95)

1.48 1.52 T: H(16)O(13)C(7)C(3)

1.81 1.85 Intermolecular interaction

4-HA

0.83 0.84 T: C(1)C(6)O(78)C(73)

1.22 1.26 B: H(96)O(60)C(54)

– 1.49 T: C(3)C(1)C(6)O(78)

1.83 1.76 Intermolecular interaction
Notes: Analysis software output parameter with bond angle bend in plane (B), dihedral angle torsion (T), bond
length stretch (S), and out-of-plane angle bending (O) vibrational modes are abbreviated.
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The spikes that this paper is interested in lie in the low-density, low gradient region,
indicative of H-bond interactions in the system. The IRI isosurface for the 2-HA cluster
of seven molecules is shown in Figure 4; multiple spikes are found in the region between
−0.05 and −0.02 in Figure 3a. Combined with Table 2, the spikes can be divided into two
points, i.e., −0.043 and −0.035, according to the corresponding values of sign(λ2)ρ. In
addition, multiple spikes are found in the region between −0.02 and 0 which, belonging to
vdW interactions, are located in −0.014, −0.009, −0.007, and −0.005; two spikes are found
in the region between 0 and +0.05 which, belonging to steric effects, are located in +0.007
and +0.022.

The IRI isosurface for the 3-HA cluster of seven molecules is shown in Figure 5.
Belonging to H-bond interactions, multiple spikes are found in the region between −0.05
and −0.02 in Figure 3b. Associated with Table 2, these spikes can be divided into three
points according to the corresponding values of sign(λ2)ρ, which are located in −0.043,
−0.036, and −0.024. Moreover, two spikes are found in the region between −0.02 and
0, which, belonging to vdW interactions, are located in −0.012 and −0.006, and spikes
belonging to steric effects are located in +0.004 and +0.021.
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Table 2. Intermolecular and intramolecular weak interaction description of 2-, 3-, and 4-HA clusters.

Samples Spikes/a.u. Isosurfaces Weak Interaction Categories

2-HA

sign(λ2)ρ = −0.043
sign(λ2)ρ = −0.035 blue H-bonds

sign(λ2)ρ = −0.014
sign(λ2)ρ = −0.009
sign(λ2)ρ = −0.007
sign(λ2)ρ = −0.005

green vdW interactions

sign(λ2)ρ = +0.007
sign(λ2)ρ = +0.022

brown
steric effects

red

3-HA

sign(λ2)ρ = −0.044
sign(λ2)ρ = −0.036
sign(λ2)ρ = −0.024

blue H-bonds

sign(λ2)ρ = −0.012
sign(λ2)ρ = −0.006 green vdW interactions

sign(λ2)ρ = +0.004
sign(λ2)ρ = +0.021

brown
red steric effects

4-HA

sign(λ2)ρ = −0.03 blue H-bonds

sign(λ2)ρ = −0.014
sign(λ2)ρ = −0.006 green vdW interaction

sign(λ2)ρ = +0.006
sign(λ2)ρ = +0.013
sign(λ2)ρ = +0.022

brown
steric effects

red

Notes: Spikes belong to the scatter plots (Figure 3). Isosurfaces belong to the isosurface map (Figures 4–6).
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The IRI isosurface for the 4-HA cluster of seven molecules is shown in Figure 6.
Belonging to H-bond interactions, one spike is found in the region between −0.05 and
−0.02 in Figure 3c. The spike can be divided into one point according to the corresponding
values of sign(λ2)ρ, located in −0.003 as seen in Table 2. In addition, two spikes are found
in the region between −0.02 and 0, which belong to vdW interactions and are located in
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−0.014 and −0.006, and spikes belonging to steric effects are located in +0.006, +0.013,
and +0.022.

Recalling the color scale bars mentioned in Figure 3, a conclusion could be made as fol-
lows: the highly green isosurfaces in Figures 4–6 show that the intermolecular interactions
of 2-, 3-, and 4-HA are dominated by the vdW interaction, respectively. At the same time,
in the graphs, we also found some blue isosurfaces with a small area, which are regarded
as weak H-bond interactions. In addition, we also found some red isosurfaces, as well
as green and brown isosurfaces, all of which can be regarded as steric effects. In order to
understand the results of the IRI method, Table 2 shows the relationship between weak
interactions, isosurfaces, and peaks in the scatter plots.

Based on the above analysis, in general, the IRI method can display various types of
intermolecular and intramolecular interactions at the same time and can be easily used
alone to study weak intermolecular interactions. Because of the absorption of 2-, 3-, and
4-HA clusters in the THz band, it is the weak interaction between molecules that plays the
leading role. From the results of IRI analysis, we observe that the isosurface is smooth and
has no obvious defect, which effectively avoids unsightly jagged edges on the isosurface.
The strength, location, and type of weak interaction can be displayed on the isosurface and
scatter plot filled with BGR color. The results of IRI analysis for the three types of samples
of 2-, 3-, and 4-HA are very similar to the scatter plots. The main weak interaction type of 2-,
3-, 4-HA is vdW interaction, and H-bond and steric interactions account for a small part of
the total weak molecular interactions. It is confirmed that IRI analysis can provide valuable
information for a deeper understanding of the structure and properties of molecules.

3. Materials and Methods
3.1. Experimental Apparatus

The experimental setup consisted of a Z-3 THz system (repetition rate 82 MHz, pulse
width: 100 fs, central wavelength: 780 nm, frequency resolution: <5 GHz(post fast Fourier
transform (FFT)), signal-to-noise ratio: >70 dB; Zomega Terahertz Corp., New York, NY,
USA). The schematic diagram of the system is shown in Figure 7. The apparatus is
kept enclosed in a closed box that is purged with dry air (humidity: <2%, temperature:
295 K) to minimize the effect of water vapor present in the atmosphere [27]. The effective
spectral range (Z-3 THz system) for obtaining stable spectral data was determined to be
0.6–2.0 THz.
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Figure 7. Schematic diagram of the Z-3 THz system [22].

3.2. Sample Preparation

The samples (2-, 3-, and 4-HA) in the paper were purchased from Shanghai Aladdin
Biochemical Technology Co., Ltd., Shanghai, China. The molecular formulae of the hy-
droxybenzoic acids are shown in Figure 8. The purity of 2-HA was 99.5%, that of 3-HA
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was 98.0%, and that of 4-HA was 99.0%. Three highly pure compounds were used for the
experiment without further purification. The samples were not ground as they were in
powdered form. The samples were screened through a 180-mesh sieve, and then were
compressed with approximately 10 MPa pressure. Subsequently, the samples were dried
at a temperature of 50 ◦C for approximately 2 h. After completing these steps, samples
with diameters of approximately 13 mm and thicknesses of approximately 1 mm were
obtained. Among the samples, crack-less samples with smooth surfaces were selected as
the test samples to record the spectra [28].
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Figure 8. The molecular and cluster model of 2-, 3-, and 4-HA. Atomic elements in brown, peach,
and red represent carbon, hydrogen, and oxygen atoms, respectively. These molecular structures are
displayed using VESTA software. (a) Molecular of 2-HA; (b) molecular of 3-HA; (c) molecular of
4-HA; (d) cluster model of 2-HA; (e) cluster model of 3-HA; (f) cluster model of 4-HA.

3.3. Computational Details

The 2-, 3-, and 4-HA samples were analyzed using the Z-3 THz system. The absorption
spectra of the three samples were recorded as the experimental comparison objects for the
identification of the characteristic peaks. Specifically, the time domain signals measured
using the Z-3 THz system were transformed using the FFT algorithm to obtain the frequency
domain spectrum; we then calculated the absorbance with the following formula [29]:

Absorbance = −lg
[

E2
trans(ω)

E20(ω)

]
, (1)

where E0(ω) is the THz amplitude of the reference, Etrsns(ω) is the THz amplitude of the
sample, andω is the circular frequency.

The Thomas–Fermi model, based on DFT theory, divides the entire system space into
sufficiently small cubes and obtains the corresponding energy and density via solving the
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Schrodinger equation of the particles in the infinite potential well of any cube (without
considering the interaction between electrons) [30]:

ETF = cF

∫
ρ5/3(r)dr− z

∫
ρ(r)

r
dr +

1
2

x ρ1(r)ρ2(r)
|r1 − r2|

dr1dr2, (2)

In Formula (2), only the interactions between nucleus and electron and electron and
electron are considered. cF = 2.871, ρ(r) is the electron density, and ETF is the total kinetic
energy. If ρ0(r) is the electron density distribution of the definite system, then E(ρ0) is the
lowest energy, that is, the ground state energy of the system; then, for a definite electron
system, given the crystal field potential energy ν(r), there exists a functional Eν[(ρ(r))] of
ρ(r) that satisfies the following principles:

Eν[ρ(r)] ≥ E[ρ0(r)] = E0, (3)

The electron density can usually be expressed in the form of an N-problem orbital,
and the expressions of energy and density can be transformed into the following form:

Eν =
∫

[ρ(r)ν(r)]dr +
1
2

∫ 1
|r− r′|ρ(r)ρ(r

′)drdr′ + T(ρ) + Exc(ρ), (4)

In Formula (4), the first term is the interaction energy of the nucleus and the electron,
the second term is the electrostatic repulsion, the third term is the kinetic energy functional,
and the fourth term is the system exchange-correlation functional. The sum of the first term
and the second term is the classical Coulomb action. The focus of this project is on the third
and fourth items.

In order to calculate and optimize the cluster structures of hydroxybenzoic acid isomers
using DFT, their optimal cell models need to be constructed. The cell configurations of
2-HA, 3-HA, and 4-HA were obtained from the Cambridge Crystallographic Data Centre
(CCDC), Cambridge, UK [31], and in order to match the three isomeric crystal models with
the actual substances, the model construction principles were based on the hydroxybenzoic
acid molecular cluster [32]. Based on the open-source crystal models of the three isomers,
the GaussView16 software and visual molecular dynamics software were used to extend the
periodically arranged complex crystals, and then keyed to the cluster structure of a single
molecule surrounded by six neighboring molecules. Since the structure of the complex
cell is uniquely determined, the final 7-molecule cluster structure generated is also the
only determined optimal structure. In order to ensure that the results of the theoretical
calculations reach a more desirable accuracy based on the allowed computational cost,
the relatively novel contemporary B3LYP hybridization generalization and 6-311G++(d,
p) basis group levels are used, and D3 dispersion correction is added to better describe
the dispersion effect [33]. The temperature and air pressure settings for the theoretical
calculations are 298.15 K and 1 atm, respectively.

IRI has the same effect in showing weak interactions as well as the reduced density
gradient (RDG). A key advantage of IRI is that under the same isosurface value in the
chemical bond zone, it can show the interactions of different strengths at the same time.
Clearly, it is possible to graphically investigate all types of interactions in the system at
a glance. This advantage is very meaningful when analyzing weak interactions between
molecules. The IRI function is simply defined as [34]:

IRI(r) =
|∇ρ(r)|
[ρ(r)]a

(5)

where ρ(r) is the electron density and a is an adjustable parameter (a = 1.1 is adopted for
standard definition of IRI). IRI is essentially the gradient norm of electron density weighted
by scaled electron density. The graphics of hydrogen bonding interactions were obtained
using VMD1.9.3 software [35].
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In order to analyze the properties of intermolecular interactions in 2-, 3-, and 4-HA
crystals, IRI analysis was carried out with Multiwfn software [36]. Visualization of nonco-
valent interaction regions was performed using the Multiwfn3.8 program. Figure 9 shows
the isosurface map used to determine the type of intermolecular interaction in the IRI
visual analysis. The blue area indicates hydrogen bond (H-bond) interaction, while the
green area is van der Waals (vdW) interaction, and the red area means the steric effect
interaction. If the color of the isosurface is obviously reddish, it means that there is a
positioning hindrance. If it is bright red, it means that the steric hindrance is very strong.
If the color of the isosurface is obviously bluish, it indicates that there is a significant
attraction, such as hydrogen bonds and halogen bonds of general strength. If the isosurface
is completely blue, it means that there is either a relatively strong weak interaction (the
electron density in the action area can reach ≥0.04 a.u.), or a covalent bonding interac-
tion where the electron density in the bonding region is usually significantly larger than
0.04 a.u. [37].
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Furthermore, the sign(λ2)ρ function was defined in the IRI method, which was calcu-
lated using the actual electron density. Hence, when the sign(λ2)ρ function was mapped
on the isosurfaces with a blue–green–red (BGR) color scale, a clear view of the interaction
region and interaction type were obtained.

4. Conclusions

The THz vibrational absorption spectra of the three positional isomers of 2-, 3-, and
4-HA were reported in the range of 0.6–2.0 THz at room temperature through THz-TDS.
At least three significant absorption peaks were obtained at different positions; the peaks
are the “signature fingerprints” of organic molecular isomers. This shows that THz spec-
troscopy technology can be used as a new method to identify subtle differences in material
structure. The vibrational spectra of 2-, 3-, and 4-HA seven-molecular clusters were simu-
lated with DFT-D3 calculations, and the results showed that the simulated spectra were
basically consistent with the experimental spectra. In order to study the absorption mecha-
nism of organic molecules using THz waves, PED analysis was performed on the simulation
data, and the vibration modes corresponding to the absorption peaks of 2-, 3-, and 4-HA
were determined. IRI analysis qualitatively reveals the type of weak interaction between
molecules, and it showed that the weak interaction type of 2-, 3-, and 4-HA is dominated
by vdW interactions. It may have potential scientific value for understanding the structure
of matter and predicting the physical and chemical properties of materials because H-bond
and steric effect interactions are both small. More importantly, this will help promote the
development of biopharmaceuticals and chemical synthesis.
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