Activation/Inhibition of Cholinesterases by Excess Substrate: Interpretation of the Phenomenological b Factor in Steady-State Rate Equation
Abstract
:1. Introduction
2. Results
2.1. Steady-State Kinetics of AChE and BChE with ATMA
2.2. Steady-State Hydrolysis of BzCh and BzTC by Human AChE
2.3. Competing Substrate Kinetics of AChE
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Enzymes
4.3. Steady-State Kinetic Analysis
4.3.1. Rationale
4.3.2. Steady-State Kinetics of Substrate Hydrolysis
4.3.3. Possible Inhibition of AChE-Catalyzed BzCh Hydrolysis by Reaction Products
- Steady-state kinetics
- Time-course of competing substrate kinetics
4.4. 1H-NMR of BzCh Solutions
4.5. Tensiometry of BzCh Solutions
4.6. Dynamic Light Scattering
4.7. UV Spectrophotometry and Dye Solubilization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Pezzementi, L.; Chatonnet, A. Evolution of Cholinesterases in the Animal Kingdom. Chem. Biol. Interact. 2010, 187, 27–33. [Google Scholar] [CrossRef]
- Silman, I. The Multiple Biological Roles of the Cholinesterases. Prog. Biophys. Mol. Biol. 2021, 162, 41–56. [Google Scholar] [CrossRef]
- Mesulam, M.-M.; Guillozet, A.; Shaw, P.; Levey, A.; Duysen, E.G.; Lockridge, O. Acetylcholinesterase Knockouts Establish Central Cholinergic Pathways and Can Use Butyrylcholinesterase to Hydrolyze Acetylcholine. Neuroscience 2002, 110, 627–639. [Google Scholar] [CrossRef]
- Zhao, Y.; Schuhmacher, L.-N.; Roberts, M.; Kakugawa, S.; Bineva-Todd, G.; Howell, S.; O’Reilly, N.; Perret, C.; Snijders, A.P.; Vincent, J.-P.; et al. Notum Deacylates Octanoylated Ghrelin. Mol. Metab. 2021, 49, 101201. [Google Scholar] [CrossRef] [PubMed]
- Kinchen, J.M.; Mohney, R.P.; Pappan, K.L. Long-Chain Acylcholines Link Butyrylcholinesterase to Regulation of Non-Neuronal Cholinergic Signaling. J. Proteome Res. 2022, 21, 599–611. [Google Scholar] [CrossRef] [PubMed]
- Masson, P.; Froment, M.T.; Fortier, P.L.; Visicchio, J.E.; Bartels, C.F.; Lockridge, O. Butyrylcholinesterase-Catalysed Hydrolysis of Aspirin, a Negatively Charged Ester, and Aspirin-Related Neutral Esters. Biochim. Biophys. Acta 1998, 1387, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Masson, P.; Legrand, P.; Bartels, C.F.; Froment, M.-T.; Schopfer, L.M.; Lockridge, O. Role of Aspartate 70 and Tryptophan 82 in Binding of Succinyldithiocholine to Human Butyrylcholinesterase. Biochemistry 1997, 36, 2266–2277. [Google Scholar] [CrossRef] [PubMed]
- Lockridge, O. Review of Human Butyrylcholinesterase Structure, Function, Genetic Variants, History of Use in the Clinic, and Potential Therapeutic Uses. Pharmacol. Ther. 2015, 148, 34–46. [Google Scholar] [CrossRef]
- Quinn, D.M. Acetylcholinesterase: Enzyme Structure, Reaction Dynamics, and Virtual Transition States. Chem. Rev. 1987, 87, 955–979. [Google Scholar] [CrossRef]
- Masson, P.; Froment, M.-T.; Gillon, E.; Nachon, F.; Darvesh, S.; Schopfer, L.M. Kinetic Analysis of Butyrylcholinesterase-Catalyzed Hydrolysis of Acetanilides. Biochim. Biophys. Acta 2007, 1774, 1139–1147. [Google Scholar] [CrossRef]
- Eddleston, M. Novel Clinical Toxicology and Pharmacology of Organophosphorus Insecticide Self-Poisoning. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 341–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masson, P.; Lockridge, O. Butyrylcholinesterase for Protection from Organophosphorus Poisons: Catalytic Complexities and Hysteretic Behavior. Arch. Biochem. Biophys. 2010, 494, 107–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masson, P.; Lushchekina, S. Catalytic Bioscavengers: The New Generation of Bioscavenger-Based Medical Countermeasures. In Handbook of Toxicology of Chemical Warfare Agents, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1199–1229. [Google Scholar]
- Saxena, A.; Myers, T.M.; Sipos, M.L. Conjugates of Human Serum Butyrylcholinesterase and Nerve Agents Are Behaviorally Safe in Rhesus Macaques. Chem. Biol. Interact. 2021, 344, 109499. [Google Scholar] [CrossRef] [PubMed]
- Cerasoli, D.M.; Armstrong, S.J.; Reeves, T.E.; Hodgins, S.M.; Kasten, S.A.; Lee-Stubbs, R.B.; Cadieux, C.L.; Otto, T.C.; Capacio, B.R.; Lenz, D.E. Butyrylcholinesterase, a Stereospecific in Vivo Bioscavenger against Nerve Agent Intoxication. Biochem. Pharmacol. 2020, 171, 113670. [Google Scholar] [CrossRef]
- Zhou, S.; Huang, G. The Biological Activities of Butyrylcholinesterase Inhibitors. Biomed. Pharmacother. 2022, 146, 112556. [Google Scholar] [CrossRef]
- Xing, S.; Li, Q.; Xiong, B.; Chen, Y.; Feng, F.; Liu, W.; Sun, H. Structure and Therapeutic Uses of Butyrylcholinesterase: Application in Detoxification, Alzheimer’s Disease, and Fat Metabolism. Med. Res. Rev. 2021, 41, 858–901. [Google Scholar] [CrossRef]
- Nicolet, Y.; Lockridge, O.; Masson, P.; Fontecilla-Camps, J.C.; Nachon, F. Crystal Structure of Human Butyrylcholinesterase and of Its Complexes with Substrate and Products. J. Biol. Chem. 2003, 278, 41141–41147. [Google Scholar] [CrossRef] [Green Version]
- Cheung, J.; Rudolph, M.J.; Burshteyn, F.; Cassidy, M.S.; Gary, E.N.; Love, J.; Franklin, M.C.; Height, J.J. Structures of Human Acetylcholinesterase in Complex with Pharmacologically Important Ligands. J. Med. Chem. 2012, 55, 10282–10286. [Google Scholar] [CrossRef]
- Leung, M.R.; van Bezouwen, L.S.; Schopfer, L.M.; Sussman, J.L.; Silman, I.; Lockridge, O.; Zeev-Ben-Mordehai, T. Cryo-EM Structure of the Native Butyrylcholinesterase Tetramer Reveals a Dimer of Dimers Stabilized by a Superhelical Assembly. Proc. Natl. Acad. Sci. USA 2018, 115, 13270–13275. [Google Scholar] [CrossRef] [Green Version]
- Boyko, K.M.; Baymukhametov, T.N.; Chesnokov, Y.M.; Hons, M.; Lushchekina, S.V.; Konarev, P.V.; Lipkin, A.V.; Vasiliev, A.L.; Masson, P.; Popov, V.O.; et al. 3D Structure of the Natural Tetrameric Form of Human Butyrylcholinesterase as Revealed by CryoEM, SAXS and MD. Biochimie 2019, 156, 196–205. [Google Scholar] [CrossRef]
- Leung, M.R.; Zeev-Ben-Mordehai, T. Cryo-Electron Microscopy of Cholinesterases, Present and Future. J. Neurochem. 2021, 158, 1236–1243. [Google Scholar] [CrossRef]
- Wang, J.; Lai, S.; Kong, Y.; Yao, W.; Chen, X.; Liu, J. The Protonation State of Glu202 in Acetylcholinesterase. Proteins 2022, 90, 485–492. [Google Scholar] [CrossRef]
- Sussman, J.L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.; Toker, L.; Silman, I. Atomic Structure of Acetylcholinesterase from Torpedo Californica: A Prototypic Acetylcholine-Binding Protein. Science 1991, 253, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Reiner, E.; Simeon-Rudolf, V. Cholinesterase: Substrate Inhibition and Substrate Activation. Pflug. Arch. 2000, 440 (Suppl. S1), R118–R120. [Google Scholar] [CrossRef] [PubMed]
- Radic, Z.; Pickering, N.A.; Vellom, D.C.; Camp, S.; Taylor, P. Three Distinct Domains in the Cholinesterase Molecule Confer Selectivity for Acetyl- and Butyrylcholinesterase Inhibitors. Biochemistry 1993, 32, 12074–12084. [Google Scholar] [CrossRef] [PubMed]
- Hosea, N.A.; Berman, H.A.; Taylor, P. Specificity and Orientation of Trigonal Carboxyl Esters and Tetrahedral Alkylphosphonyl Esters in Cholinesterases. Biochemistry 1995, 34, 11528–11536. [Google Scholar] [CrossRef]
- Radić, Z. Shifts in Backbone Conformation of Acetylcholinesterases upon Binding of Covalent Inhibitors, Reversible Ligands and Substrates. Crystals 2021, 11, 1557. [Google Scholar] [CrossRef]
- Radić, Z. Connectivity between Surface and Interior in Catalytic Subunits of Acetylcholinesterases Inferred from Their X-ray Structures. J. Neurochem. 2023, in press. [Google Scholar] [CrossRef]
- Froede, H.C.; Wilson, I.B. Direct Determination of Acetyl-Enzyme Intermediate in the Acetylcholinesterase-Catalyzed Hydrolysis of Acetylcholine and Acetylthiocholine. J. Biol. Chem. 1984, 259, 11010–11013. [Google Scholar] [CrossRef]
- Masson, P.; Froment, M.-T.; Gillon, E.; Nachon, F.; Lockridge, O.; Schopfer, L.M. Hydrolysis of Oxo- and Thio-Esters by Human Butyrylcholinesterase. Biochim. Biophys. Acta BBA-Proteins Proteom. 2007, 1774, 16–34. [Google Scholar] [CrossRef]
- Johnson, J.L.; Cusack, B.; Davies, M.P.; Fauq, A.; Rosenberry, T.L. Unmasking Tandem Site Interaction in Human Acetylcholinesterase. Substrate Activation with a Cationic Acetanilide Substrate. Biochemistry 2003, 42, 5438–5452. [Google Scholar] [CrossRef] [PubMed]
- Mukhametgalieva, A.R.; Aglyamova, A.R.; Lushchekina, S.V.; Goličnik, M.; Masson, P. Time-Course of Human Cholinesterases-Catalyzed Competing Substrate Kinetics. Chem.-Biol. Interact. 2019, 310, 108702. [Google Scholar] [CrossRef] [PubMed]
- Boeck, A.T.; Schopfer, L.M.; Lockridge, O. DNA Sequence of Butyrylcholinesterase from the Rat: Expression of the Protein and Characterization of the Properties of Rat Butyrylcholinesterase. Biochem. Pharmacol. 2002, 63, 2101–2110. [Google Scholar] [CrossRef]
- Masson’, P.; Lushchekina, S. Conformational Stability and Denaturation Processes of Proteins Investigated by Electrophoresis under Extreme Conditions. Molecules 2022, 27, 6861. [Google Scholar] [CrossRef] [PubMed]
- Hrabovská, A.; Debouzy, J.-C.; Froment, M.-T.; Devínsky, F.; Pauliková, I.; Masson, P. Rat Butyrylcholinesterase-Catalysed Hydrolysis of N-Alkyl Homologues of Benzoylcholine. FEBS J. 2006, 273, 1185–1197. [Google Scholar] [CrossRef]
- Masson, P.; Goldstein, B.N.; Debouzy, J.-C.; Froment, M.-T.; Lockridge, O.; Schopfer, L.M. Damped Oscillatory Hysteretic Behaviour of Butyrylcholinesterase with Benzoylcholine as Substrate. Eur. J. Biochem. 2004, 271, 220–234. [Google Scholar] [CrossRef] [PubMed]
- Rosenberry, T.L. Strategies to Resolve the Catalytic Mechanism of Acetylcholinesterase. J. Mol. Neurosci. 2010, 40, 32–39. [Google Scholar] [CrossRef]
- Kokkonen, P.; Beier, A.; Mazurenko, S.; Damborsky, J.; Bednar, D.; Prokop, Z. Substrate Inhibition by the Blockage of Product Release and Its Control by Tunnel Engineering. RSC Chem. Biol. 2021, 2, 645–655. [Google Scholar] [CrossRef]
- Goličnik, M.; Masson, P. Time-Course of Enzyme-Catalyzed Competing Substrate Degradation for Michaelian Behavior and for Enzymes Showing Activation/Inhibition by Excess Substrate. Chem.-Biol. Interact. 2019, 309, 108704. [Google Scholar] [CrossRef]
- Vellom, D.C.; Radić, Z.; Li, Y.; Pickering, N.A.; Camp, S.; Taylor, P. Amino Acid Residues Controlling Acetylcholinesterase and Butyrylcholinesterase Specificity. Biochemistry 1993, 32, 12–17. [Google Scholar] [CrossRef]
- Kaplan, D.; Ordentlich, A.; Barak, D.; Ariel, N.; Kronman, C.; Velan, B.; Shafferman, A. Does “Butyrylization” of Acetylcholinesterase through Substitution of the Six Divergent Aromatic Amino Acids in the Active Center Gorge Generate an Enzyme Mimic of Butyrylcholinesterase? Biochemistry 2001, 40, 7433–7445. [Google Scholar] [CrossRef]
- Brochier, L.; Pontié, Y.; Willson, M.; Estrada-Mondaca, S.; Czaplicki, J.; Klaébé, A.; Fournier, D. Involvement of Deacylation in Activation of Substrate Hydrolysis by Drosophila Acetylcholinesterase. J. Biol. Chem. 2001, 276, 18296–18302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friboulet, A.; Rieger, F.; Goudou, D.; Amitai, G.; Taylor, P. Interaction of an Organophosphate with a Peripheral Site on Acetylcholinesterase. Biochemistry 1990, 29, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Radić, Z.; Taylor, P. Peripheral Site Ligands Accelerate Inhibition of Acetylcholinesterase by Neutral Organophosphates. J. Appl. Toxicol. 2001, 21 (Suppl. S1), S13–S14. [Google Scholar] [CrossRef] [PubMed]
- Lushchekina, S.V.; Masson, P. Slow-Binding Inhibitors of Acetylcholinesterase of Medical Interest. Neuropharmacology 2020, 177, 108236. [Google Scholar] [CrossRef]
- Lamba, D.; Pesaresi, A. Kinetic Modeling of Time-Dependent Enzyme Inhibition by Pre-Steady-State Analysis of Progress Curves: The Case Study of the Anti-Alzheimer’s Drug Galantamine. Int. J. Mol. Sci. 2022, 23, 5072. [Google Scholar] [CrossRef]
- Mukhametgalieva, A.R.; Lushchekina, S.V.; Aglyamova, A.R.; Masson, P. Steady-State Kinetic Analysis of Human Cholinesterases over Wide Concentration Ranges of Competing Substrates. Biochim. Biophys. Acta Proteins Proteom. 2022, 1870, 140733. [Google Scholar] [CrossRef]
- Sharma, K. Cholinesterase Inhibitors as Alzheimer’s Therapeutics (Review). Mol. Med. Rep. 2019, 20, 1479–1487. [Google Scholar] [CrossRef] [Green Version]
- Llanes, L.C.; Kuehlewein, I.; de França, I.V.; da Silva, L.V.; da Cruz Junior, J.W. Anticholinesterase Agents For Alzheimer’s Disease Treatment: An Updated Overview. Curr. Med. Chem. 2023, 30, 701–724. [Google Scholar] [CrossRef]
- Schopfer, L.M.; David, E.; Hinrichs, S.H.; Lockridge, O. Human Butyrylcholinesterase in Cohn Fraction IV-4 Purified in a Single Chromatography Step on Hupresin. PLoS ONE 2023, 18, e0280380. [Google Scholar] [CrossRef]
- Leuzinger, W. The Number of Catalytic Sites in Acetylcholinesterase. Biochem. J. 1971, 123, 139–141. [Google Scholar] [CrossRef] [Green Version]
- Carletti, E.; Colletier, J.-P.; Dupeux, F.; Trovaslet, M.; Masson, P.; Nachon, F. Structural Evidence That Human Acetylcholinesterase Inhibited by Tabun Ages through O-Dealkylation. J. Med. Chem. 2010, 53, 4002–4008. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Lockridge, O. Genetic Variants of Human Serum Cholinesterase Influence Metabolism of the Muscle Relaxant Succinylcholine. Pharmacol. Ther. 1990, 47, 35–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartfal, T.; Mannervik, B. A Procedure Based on Statistical Criteria for Discrimination between Steady State Kinetic Models. FEBS Lett. 1972, 26, 252–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornish-Bowden, A. Fundamentals of Enzyme Kinetics, 4th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2012. [Google Scholar]
- Gerlits, O.; Blakeley, M.P.; Keen, D.A.; Radić, Z.; Kovalevsky, A. Room Temperature Crystallography of Human Acetylcholinesterase Bound to a Substrate Analogue 4K-TMA: Towards a Neutron Structure. Curr. Res. Struct. Biol. 2021, 3, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Gerlits, O.; Fajer, M.; Cheng, X.; Blumenthal, D.K.; Radić, Z.; Kovalevsky, A. Structural and Dynamic Effects of Paraoxon Binding to Human Acetylcholinesterase by X-Ray Crystallography and Inelastic Neutron Scattering. Structure 2022, 30, 1538–1549.e3. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhametgalieva, A.R.; Nemtarev, A.V.; Sykaev, V.V.; Pashirova, T.N.; Masson, P. Activation/Inhibition of Cholinesterases by Excess Substrate: Interpretation of the Phenomenological b Factor in Steady-State Rate Equation. Int. J. Mol. Sci. 2023, 24, 10472. https://doi.org/10.3390/ijms241310472
Mukhametgalieva AR, Nemtarev AV, Sykaev VV, Pashirova TN, Masson P. Activation/Inhibition of Cholinesterases by Excess Substrate: Interpretation of the Phenomenological b Factor in Steady-State Rate Equation. International Journal of Molecular Sciences. 2023; 24(13):10472. https://doi.org/10.3390/ijms241310472
Chicago/Turabian StyleMukhametgalieva, Aliya R., Andrey V. Nemtarev, Viktor V. Sykaev, Tatiana N. Pashirova, and Patrick Masson. 2023. "Activation/Inhibition of Cholinesterases by Excess Substrate: Interpretation of the Phenomenological b Factor in Steady-State Rate Equation" International Journal of Molecular Sciences 24, no. 13: 10472. https://doi.org/10.3390/ijms241310472
APA StyleMukhametgalieva, A. R., Nemtarev, A. V., Sykaev, V. V., Pashirova, T. N., & Masson, P. (2023). Activation/Inhibition of Cholinesterases by Excess Substrate: Interpretation of the Phenomenological b Factor in Steady-State Rate Equation. International Journal of Molecular Sciences, 24(13), 10472. https://doi.org/10.3390/ijms241310472