
Citation: Capela, R.; Félix, R.;

Clariano, M.; Nunes, D.; Perry, M.d.J.;

Lopes, F. Target Identification in

Anti-Tuberculosis Drug Discovery.

Int. J. Mol. Sci. 2023, 24, 10482.

https://doi.org/10.3390/

ijms241310482

Academic Editor: George

Mihai Nitulescu

Received: 31 May 2023

Revised: 17 June 2023

Accepted: 20 June 2023

Published: 22 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Target Identification in Anti-Tuberculosis Drug Discovery
Rita Capela , Rita Félix , Marta Clariano , Diogo Nunes , Maria de Jesus Perry and Francisca Lopes *

Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa,
Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; ritacapela@ff.ulisboa.pt (R.C.); ritafelix@ff.ulisboa.pt (R.F.);
martaclariano@campus.ul.pt (M.C.); dmnunes@edu.ulisboa.pt (D.N.); mjprocha@ff.ulisboa.pt (M.d.J.P.)
* Correspondence: fclopes@ff.ulisboa.pt

Abstract: Mycobacterium tuberculosis (Mtb) is the etiological agent of tuberculosis (TB), a disease that,
although preventable and curable, remains a global epidemic due to the emergence of resistance and
a latent form responsible for a long period of treatment. Drug discovery in TB is a challenging task
due to the heterogeneity of the disease, the emergence of resistance, and uncomplete knowledge of
the pathophysiology of the disease. The limited permeability of the cell wall and the presence of
multiple efflux pumps remain a major barrier to achieve effective intracellular drug accumulation.
While the complete genome sequence of Mtb has been determined and several potential protein
targets have been validated, the lack of adequate models for in vitro and in vivo studies is a limiting
factor in TB drug discovery programs. In current therapeutic regimens, less than 0.5% of bacterial
proteins are targeted during the biosynthesis of the cell wall and the energetic metabolism of two of
the most important processes exploited for TB chemotherapeutics. This review provides an overview
on the current challenges in TB drug discovery and emerging Mtb druggable proteins, and explains
how chemical probes for protein profiling enabled the identification of new targets and biomarkers,
paving the way to disruptive therapeutic regimens and diagnostic tools.

Keywords: Mycobacterium tuberculosis; target identification; activity-based probes; affinity-based probes

1. Introduction

Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis (TB), is an obli-
gate human pathogen spread by aerial transmission. One of the key mechanisms associated
with Mtb virulence is the ability to subvert the host immune response, and to effectively
avoid complete elimination via the host immune system [1–3]. In addition, the bacilli can
co-exist within the host in a latent non-replicative form that is metabolically and physio-
logically different from the replicative state. Patients infected with latent Mtb bacilli are
asymptomatic, and in low TB prevalence settings, most new active tuberculosis cases result
from the reactivation of these pathogen forms [2–4].

Although TB is curable and preventable, with a treatment success of around 85%,
the disease remains a global epidemic, estimated to be the second leading caused by a
single infectious agent in 2021, only after COVID-19. Additionally, recent World Health
Organization (WHO) data showed that the COVID-19 pandemic resulted into a rise in TB
incidence, with a predicted observed maximum in 2022. Furthermore, around 25% of the
world’s population is estimated to be infected, with 5 to 10% of those expected to develop
active TB during their lifetime [5].

Most TB patients can be treated with currently approved drug regimens with reason-
able efficiency, and in recent years, some novel drugs have been approved for the treatment
of the more clinically challenging drug-resistant-TB (DR-TB), namely bedaquiline, dela-
manid, and linezolid. Nevertheless, there are still issues in anti-TB therapy that are yet to be
addressed, though they should be in order to achieve TB control [5–7]. Most anti-TB drugs
have limited efficiency against the latent bacilli, and therefore current therapeutic regimens
require long durations to eliminate all forms of bacilli, usually leading to high adverse
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effects [8–10], poor compliance, and the emergence of drug resistance which consequently
hampers TB control. Thus, there is an urgent unmet need for the development of anti-TB
drugs that target latent bacilli and resistant strains [11].

A lack of knowledge about Mtb biology still limits the development of new diagnosis
techniques and the conversion of new hit compounds into clinical candidates. Thus, there
is a need to better understand the Mtb pathophysiology and find suitable biomarkers
that allow the prediction of treatment responses and relapse risk, guarantee a cure, and
accelerate drug development [6,7]. Currently, a diverse array of strategies are used to
develop new anti-TB therapies. The most common include genetic approaches for the
identification of new molecular targets, large-scale cell-based screening trials using Mtb,
virtual screening, structural biology approaches, and the optimization of existent drugs
through molecular modifications. Combinations between approaches based on validated
targets and cell-based screening trials have gained attention in recent years and seem a
promising strategy in discovering new active drugs [12–14].

After several decades without any novel anti-TB drugs being approved, major break-
throughs have been achieved in the last decade in the search for new therapeutic tools
and regimens. Herein, we review the current challenges in TB drug discovery, discuss the
emerging molecular targets that can leverage the discovery of new drugs, and address the
development of chemical probes as a strategy to identify and validate novel targets in Mtb.

2. Challenges in TB Drug Discovery

TB drug discovery remains a challenging task due to the nature of its etiological agent,
the heterogeneity of the disease, the emergence of resistance, and the lack of knowledge
regarding the disease’s pathophysiology. One of the crucial requirements to achieve
efficient treatment is the ability of a drug to enter into the target cell [15]. Compared
to other bacteria, the Mtb cell wall is significantly less permeable to chemotherapeutical
agents. Small hydrophobic molecules move quickly through the mycobacterial cell wall,
while the movement of hydrophilic molecules is mediated by water-filled channels [16].
Moreover, when the bacteria are found intracellularly, a second permeability barrier exists,
which further reduces the movement of drugs into the bacilli [17]. Additionally, the Mtb
cell envelope also includes an array of efflux pumps which have an essential role in the
physiology, metabolism, and cell signalling processes. These efflux pumps assist the
expulsion of drugs from the mycobacteria and cause a natural high innate resistance to
many anti-TB drugs [18].

Progression from latent infection to active TB constitutes a major source of active
disease in developed nations, and it is becoming clear that tools to effectively address
latency are needed to control the TB epidemy [4]. The Mtb latent state is characterized
by a distinctive reduced metabolism, where ribosomal functions and aerobic respiration
decrease and where lipid metabolism increases, with decreased permeability for hydrophilic
molecules due to the thickened cell wall [19]. Thus, latent Mtb bacteria have an antibiotic
tolerance, achieved by a combination of reduced antibiotic uptake and a lack of druggable
targets as a result of the metabolic reconfiguration. Since anti-TB drugs specific and effective
to latent bacteria are in short supply, current TB treatment is based on the prolonged
administration of traditional anti-TB drugs. With the emergence of resistance and the
pressure to shorten TB treatments, the ability to directly address latent subpopulations
has become a priority in TB drug discovery, and the desire for agents that are capable of
targeting all Mtb subpopulations has been emphasized [17]. Furthermore, the emergence
of resistance has already led to the development of disease forms that are not treatable
by any currently available therapeutical tool, such as total-drug-resistant TB (TDR-TB),
which remains programmatically incurable [7,20]. Consequently, there is a pressing need to
develop drugs that are active in unexplored targets and pathways and are not predisposed
to resistance.

While historically effective, high-throughput screenings encounter several challenges
in TB drug discovery. Despite the fact that they have general high hit rates, many com-
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pounds have undesirable physicochemical attributes, low selectivity, and mammalian
cytotoxicity [17,21]. With the evolution of genomic tools, target-based screenings on vali-
dated drug targets, presumed to be indispensable for the survival of Mtb and pathogenicity,
have gained some attention. A combination of ligand-based and structure-based chemoge-
nomic approaches, followed by biophysical and biochemical validation, have also been
used to identify targets for Mtb phenotypic hits [22]. However, this technique has several
challenges as hits identified through target-based screenings may not translate to a whole
cell system due to metabolic, permeability, and drug efflux issues. Since the publication of
the entire Mtb genome sequence, and although several potential TB drug targets have been
validated for use in target-based screening, no single clinically effective anti-TB agent has
been discovered by this strategy [23,24].

Furthermore, the lack of predictive models for heterogeneous bacterial subpopulations
is a limiting factor in TB drug discovery. To reproduce the environmental conditions of
Mtb subpopulations, several in vitro models have been developed, such as hypoxia [25,26],
nutrient starvation [27], low pH [28], multi-stress [29,30], and biofilm models [31], all with
some limitations. Moreover, while very useful in early drug discovery stages, in vitro
models cannot reproduce all host–pathogen interactions. Currently, the challenge of an
adequate in vivo TB model remains, since existing animal TB models do not replicate
important features of human disease [17,32]. An increased understanding of the microenvi-
ronments relevant to infection is difficult to achieve, but is urgently required to identify
and validate new pharmacological targets and suitable biomarkers, and to consequently
develop diagnostic techniques and improve therapy through several mechanisms such as
the development of new pharmacological agents, the optimization of treatment durations,
and the triage of high-risk patients to preventive treatment [33,34].

3. Emerging Mtb Drug Targets

The success of TB drug discovery requires the identification of compounds targeting
proteins that are essential for the growth and survival of Mtb. Ideally, these molecular
targets should also display low probability in order to undergo mutations and to prevent
or delay the emergence of drug resistance [35]. While whole-genome sequencing has
expanded our knowledge on Mtb cellular machinery, less than 0.5% of bacterial proteins
are targeted in current therapeutic regimens [36]. Due to the development and spread of
resistance to current drugs and the high toxicity associated with therapeutic regimens used
in drug-resistant TB, there is an urgent need to discover new and safer drugs with novel
mechanisms of action. The biosynthesis of the cell wall and the energetic metabolism of
Mtb are critical cellular processes that are being exploited for TB chemotherapeutics.

3.1. Cell Wall

The cell wall of Mtb is the primary host–pathogen interaction spot, and is a major
determinant of bacillus durability and robustness. The complex and dynamic structure of
the cell wall (Figure 1) is essential for maintaining cellular integrity, enabling the adaptation
of the bacilli to host conditions, and plays a crucial role in long-term infection and virulence.
It comprises three essential substructures: a peptidoglycan (PG) inner layer, a mycolic acid
(MA) outer layer, and an arabinogalactan polysaccharide (AGP) middle layer. The inhibition
of key enzymes that are responsible for the biosynthesis of these substructures are excellent
targets for novel drug development due to the absence of homologous characteristics in
the host [37].

Peptidoglycan layer. The peptidoglycan is composed of N-acetylglucosamine (Glc-
NAc) and N-acetylmuramic acid (MurNAc) which are cross-linked with short peptides.
The biosynthesis of peptidoglycan is a complex sequence of reactions, starting with the
synthesis of lipid II, in which a hydrophobic polyisoprene tail embedded in the membrane
is connected to a monomer of cell wall peptidoglycan through a pyrophosphate linker. This
step is followed by the translocation of lipid II bound to the membrane formation, lipid
II polymerization, and cross-linking with penicillin-binding proteins (PBPs) (including
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L,D-transpeptidases) [38]. Lipid II is targeted by the antibiotics ramoplanin and teixobactin,
inhibiting the transglycosylation process and affecting peptidoglycan formation.
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2B), a first-line agent used for treating TB. The mode of action of other small molecules, 
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Subsequent cycles of fatty acid elongation are carried out with β-ketoacyl synthase 
KasA, which completes chain elongation via the condensation of FAS-I-derived acyl-CoAs 
with malonyl-ACP (acyl carrier protein). KasA is the only essential member of three β-
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isting KasA inhibitor DG167 [43,44] to afford indazole JSF-3285 (Figure 2B) with a 30-fold 
increase in mouse plasma exposure. Biochemical, genetic, and X-ray studies further con-
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Mtb also produces β-lactamase, an enzyme that catalyses the hydrolysis of β-lactam
antibiotics, which explains why the use of these antibiotics is not included in TB treatment.
However, carbapenems (Figure 2A) are resistant to inactivation with β-lactamases, and
thus they are included in the treatment of multidrug-resistant TB, since they target the
biosynthesis of peptidoglycan by inhibiting L,D-transpeptidases.

Mycolic acid layer. Mycolic acids are very long chain (C60-90) α-alkyl β-hydroxy
fatty acids that contribute to the hydrophobic, impermeable, and rigid structure of the
outer membrane [39,40]. Mycolic acids are synthesised from acetyl-CoA by at least two
elongation systems, the type I and type II fatty acid synthases, also known as FAS-I and
FAS-II. The FAS-II system can only be found in bacteria, turning this system into a potential
selective antibacterial target. The NADH-dependent enzyme 2-trans-enoyl-acyl carrier
protein reductase, InhA, is involved in the FAS-II system and is targeted by isoniazid
(Figure 2B), a first-line agent used for treating TB. The mode of action of other small
molecules, including ethionamide (Figure 2B), which is structurally related to isoniazid
and triclosan, is related to InhA inhibition.

Subsequent cycles of fatty acid elongation are carried out with β-ketoacyl synthase
KasA, which completes chain elongation via the condensation of FAS-I-derived acyl-CoAs
with malonyl-ACP (acyl carrier protein). KasA is the only essential member of three β-
ketoacyl synthases encoded in the Mtb genome [41], and has been reported as a validated
target for the treatment of TB [42]. A structure-based approach was used to optimize
existing KasA inhibitor DG167 [43,44] to afford indazole JSF-3285 (Figure 2B) with a 30-
fold increase in mouse plasma exposure. Biochemical, genetic, and X-ray studies further
confirmed that JSF-3285 targets KasA.

Mycolic acids are transported to the outer membrane due to bacterial membrane
proteins called mycobacterial membrane protein large (MmpL), which are part of the
resistance, nodulation, and cell division (RND) family. The primary role of RND proteins is
to translocate a broad range of compounds across the plasma membrane to the periplasmic
space, including virulence-associated envelope lipids and siderophores. The Mtb genome
encodes 13 MmpL proteins, of which MmpL3 has been reported in the biosynthesis of the
mycobacterial outer membrane. The ethylenediamine derivative SQ109 (Figure 2B) is a
MmpL3 inhibitor and has completed phase IIb-III clinical trials. SQ109 also accumulates in
the lungs, the site of infection, increasing the drug efficacy [6]. Other promising MmpL3
inhibitors include indolocarboxamides and adamantylureas. As part of a drug scaffold
repurposing program, the cannabinoid receptor modulator rimonabant (Figure 2B) and its
diaryl pyrazole analogs were reported to display potent anti-TB activity [45,46].
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Arabinogalactan polysaccharide layer. The branched-chain arabinogalactan (AG) is the
major cell wall polysaccharide, representing ca 35% of the cell wall, composed of arabinose
and galactose residues, both in the furanose configuration. This middle layer is covalently
attached to peptidoglycan and mycolic acid layers which require several enzymes that are
potential targets for the design of novel inhibitors to block the formation of arabinogalactan
polysaccharide [47–50], e.g., arabinosyltransferase enzymes (EmbA, EmbB, and EmbC),
which are known targets for the drug ethambutol [51]. Another target used to block the
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arabinogalactan polysaccharide formation is the enzyme arabinofuranosyltransferase (Aft),
responsible for the polymerization of arabinofuranyl residues in decaprenylphosphoryl-D-
arabinose (DPA), the lipid donor of D-arabinofuranosyl residues of AG. The DPA synthetic
pathway is a potential drug target, and several arabinosyltransferases are essential in the
growth of Mtb, such as AftA, AftB, AftC, and AftD. While AftA and AftB are responsible for
the transference of arabinofuranosyl residue, AftC and AftD introduce the α-1,3-branching
in the segments of α-1,5-linked D-Araf residues [47,52].

The attachment of the arabinogalactan to the peptidoglycan structure is performed
via an essential linker, the disaccharide L-rhamnose-D-N-acetylglucosamine. The enzyme
N-acetylglucosamine-1-phosphate transferase, GlcNAc-1-P transferase (WecA), catalyses
the first step of this linker biosynthesis. For this reason, WecA inhibitors, such as CPZEN-45
(Figure 2C), a caprazamycin derivative, prevent the growth of Mtb [53,54].

The enzymes decaprenylphosphoryl-β-D-ribose 2′-oxidase (DprE1) and
decaprenylphosphoryl-D-2-keto erythropentose reductase (DprE2) are involved in the two-
step epimerization of decaprenylphosphoryl-β-D-ribofuranose (DPR) into
decaprenylphosphoryl-β-D-arabinofuranose [55]. Diverse chemical scaffolds such as azain-
doles, aminoquinolones, benzothiazinones, benzothiazoles, dinitrobenzamides, nitrobenza-
mides, pyrazolopyridines, quinoxalines, triazoles, and thiadiazoles, demonstrated DprE1
inhibition. The benzothiazinone derivatives BTZ-043 and PBTZ169 (Figure 2C) are cur-
rently in phase II clinical trials and demonstrated high efficacy against M. tuberculosis.
Additionally, the non-covalent inhibitors, azaindole TBA-7371 and OPC-167832, currently
in phase II and phases I/II clinical trials, respectively, have shown promising results [56].

3.2. Energy Metabolism

Mtb operates its energetic metabolism in a modular and compartmentalized mode to
support distinct and key cellular functions [2,19].

Electron Transport Chain. Mtb relies on oxidative phosphorylation (OxPhos) via the
electron transport chain (ETC) to produce energy for growth and division purposes. During
the OxPhos process, electrons are transferred from electron donors produced in the central
metabolic pathways to molecular oxygen through the ETC. The energy released in this
process is conserved by proton-pumping transmembrane proteins that establish a proton
gradient and thus generate an electrochemical gradient, called proton motive force (PMF).
This bioenergetic pathway generates ATP from the phosphorylation of ADP [57,58].

The Mtb ETC is a highly conserved collection of membrane-bound and membrane-
associated enzymes and co-factors. It is comprised by five main primary dehydrogenases,
which fuel the ETC as electron donors; two main terminal oxidoreductases, which catalyse
the transfer of electrons to terminal electron acceptor; and an ATPsynthase, which produces
ATP through the dissipation of the PMF. A schematic representation of the Mtb ETC is
presented in Figure 3 [59–61].
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The respiratory flexibility of Mtb, which allows the bacilli to vary the ETC enzyme
composition in response to environmental conditions, as well as the existence of human ho-
mologs to most ETC enzymes, hampered the development of selective inhibitors. However,
the discovery of bedaquiline, an ATPsynthase inhibitor, leads to an increase in research
focused on targeting OxPhos. Currently, more than 30% of all new antimycobacterial drugs
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in clinical trials target the OxPhos, and more than 65% of phase III trial regimens include a
OxPhos inhibitor [59].

Cytochrome bc1-aa3. The Mtb Cyt bc1-aa3 supercomplex comprises two tightly associ-
ated protein complexes: a menaquinol–cytochrome c oxidoreductase (or cyt bc1) and an
aa3 oxidase (or cyt aa3). This supercomplex acts as the primary terminal oxidase under
normoxia, and, during exponential growth, its inhibition results in growth arrest. However,
cyt bc1-aa3 is not essential for cell survival and as long as the alternate cyt bd is expressed,
bc1-aa3 inhibitors do not induce bactericidal effects. The central role of the bc1-aa3 com-
plex in the ETC and the significant differences to the mammalian counterpart make the
supercomplex a good therapeutical target [58–66].

Imidazopyridine derivatives are examples of inhibitors that have shown to be par-
ticularly potent, the most prominent example being Q203, which is currently in phase II
clinical trials and is capable of inhibiting multidrug-resistant (MDR) TB and extensively
drug resistant (XDR) Mtb strains [59,67–69]. Structurally similar to Q203, TB-47 has been
reported in pre-clinical studies and is active against drug-sensitive (DS) and drug-resistant
(DR) Mtb strains, including both active and latent bacilli [70,71]. Lansoprazole, a gastric
proton pump inhibitor, was found to be a potent hit compound in the screening of FDA-
approved drugs. Lansoprazole acts as prodrug and is converted in vivo into lansoprazole
sulphide, which was identified to be a cyt bc1-aa3 inhibitor on a distinct site from the one
targeted by imidazopyridines (Figure 4A) [61,66,72].

Cytochrome bd. Cytochrome bd-type menaquinol (MKH2) oxidase, or cyt bd, is a
non-proton pumping, and is a less energetically efficient terminal oxidase that transfers
electrons from MKH2 to molecular oxygen. Cyt bd is exclusive to the prokaryotic ETC, and,
unlike cyt bc1-aa3, the enzyme is more versatile, with multiple functions reported. The
terminal oxidase is capable of detoxifying ROS and antibacterials, and protects the bacilli
against hypoxia, and is capable of compensating the inactivation of cyt bc1-aa3. Cyt bd
may also play a role into the Mtb’s natural drug tolerance, namely to drugs that directly
target the ETC [59,60,73,74]. Thus, this cytochrome contributes to Mtb virulence, and since
the enzyme is not encoded in animal genomes, it can serve as an attractive promising
therapeutical target for new selective anti-TB drugs [67,72,75].

The inhibition of cyt bd alone does not have any antimycobacterial effects. However,
cyt bd inhibitors have synergetic effects with isoniazid, quicken the bactericidal activity
of ATPsynthase inhibitors, and turn bc1-aa3 inhibitors bactericidal [59–61]. Thus, cyt bd
inhibitors appear to be particularly attractive in combination therapy, namely in combina-
tion with cyt bc1-aa3 inhibitors, as the simultaneous inhibition of both terminal oxidases
is highly bactericidal in a short period of time and is successful at killing both active and
latent bacilli. The non-essentiality of cyt bd represents a challenge in order to identify its
inhibitors, and thus not many cyt bd inhibitors are known. To this date, only a few were
identified and only one, aurachin D (Figure 4B), is characterized. Aurachins are isoprenoid
quinoline alkaloids, originally extracted from myxobacteria. The further development of
aurachin D is complicated by its toxicity and a lack of selectivity, but optimized derivatives
of aurachin D have great potential as anti-TB drugs [67,72,74–76].

Delamanid (DLM) and pretomanid (PTM) (Figure 4B) are two structurally related
nitroimidazoles that were recently approved for the treatment of MDR-TB and were found
to inhibit the biosynthesis of mycolic acid. However, the observation that these drugs were
bactericidal against both active and latent bacilli suggested an alternative mechanism of
action, as mycolic acid biosynthesis is downregulated in latency. Both DLM and PTM are
pro-drugs that require activation with an F420 nitro-reductase, an enzyme which produces
des-nitro metabolites with the release of NO. The putative additional mechanism of action is
that the intracellular release of NO poisons the cytochrome oxidases, resulting in respiration
arrest and consequent cell death. DLM and PTM treatment results in a quick decrease in
intracellular ATP levels, an increased menaquinol–menaquinone (MKH2/MK) ratio, and
the upregulation of cyt bd and nitrate reductase, which further support the concept of
terminal oxidases being used as targets of these nitroimidazoles [59,60,69].
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ATPsynthase. Bedaquiline (BDQ, Figure 4C), an inhibitor of the ATPsynthase ap-
proved by the FDA in 2012, was the first drug specifically approved for TB in more than
40 years. BDQ is a potent bactericidal efficacious against MDR and latent bacilli, and
currently is conditionally administrated for MDR-TB treatment [59,68,77]. The proposed
mode of action is to bind to two subunits on the ATPsynthase, thus inhibiting ATP syn-
thesis and leading to a depletion of intracellular ATP levels. Additionally, bedaquiline is
capable of acting as a protonophore, leading to the uncoupling of the ETC via the collapse
of the PMF. Inhibition with BDQ depletes intracellular ATP levels; activates respiration;



Int. J. Mol. Sci. 2023, 24, 10482 9 of 27

and induces a metabolic remodelling that upregulates ATPsynthase, NDH-2, and cyt bd.
Interestingly, the bacterial activity of BDQ is delayed, i.e., it does not occur immediately
upon the ATP depletion, as explained by the metabolic remodelling Mtb experiences upon
BDQ exposure [57,59,67,77].

The toxicity associated with drugs and the emergence of bedaquiline-resistant Mtb
strains restrain its use to MDR- and XDR-TB patients. Thus, in order to address its short-
comings, a medicinal chemistry approach was conducted to study the chemical space of
diarylquinolines to find next-generation equivalents with superior safety profiles. In this
context, two 3,5-diakoxy-4-pyridyl derivatives, TBAJ-587 and TBAJ-876 (Figure 4C), were
found to be particularly interesting and are currently in phase I clinical trials [58,61,68,77].

A number of recent studies have identified new ATPsynthase inhibitors with novel
mechanisms of action. A family of squaramide derivatives was found to be particularly
interesting, with its lead compound (Figure 4C) currently being evaluated in pre-clinical
trials. These compounds target ATP synthase through a different binding site, meaning
that they do not show cross-resistance to BDQ, and have shown to be active against BDQ-
resistant strains [57,59,67].

Other targets on the ETC. The PMF consists of an electrical potential due to charge
separation across the membrane and the chemical potential of protons. The generation
and maintenance of a PMF is essential for Mtb energy production and consequent bac-
terial growth and survival in every metabolic state. PMF uncouplers generally act as
protonophores and uncouple OxPhos from the ETC, thus inhibiting ATP synthesis, leading
to cell death [78]. Generally, this kind of compounds is not sufficiently selective to be
used as antimycobacterial agents, and thus the development of specific PMF uncouplers
remains an area of interest. However, there are some examples of anti-TB drugs in clini-
cal use that act as PMF uncouplers in addition to an alternative mode of action, such as
bedaquiline (Figure 4C), pyrazinamide (PZA), nitazoxanide (NTZ) (Figure 5), and SQ109
(Figure 2B) [57,78].
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Although the mechanism of action of PZA is not still fully understood, current knowl-
edge indicates that it acts as a multitarget drug that dissipates the PMF, inhibits ATP
synthesis, inhibits membrane transport, and reduces the activity of other proteins (such
as aspartate decarboxylase, a protein involved in the coenzyme A biosynthetic pathway).
Evidence of PZA’s uncoupling activity first arose with its ability to target latent bacilli. Ad-
ditionally, PZA showed to synergize with other PMF uncouplers to deplete ATP depletion
and enhance mycobacterial killing, implying that its anti-TB activity substantially relies on
its uncoupling activity [57,61].

Initially, SQ109 was reported to interfere with the assembly of mycolic acids in the
mycobacterial cell wall through the inhibition of membrane transporter MmpL3, but
recently, it was demonstrated that SQ109 interferes with respiration due to their ability to
act as a protonophore and dissipate the PMF [59,68].

Nitazoxanide is an FDA-approved repurposed drug with broad-spectrum antiparasitic
and antiviral activity. NTZ is proposed to promote Mtb killing by enhancing autophagy
through the inhibition of human mTORC1 and disrupt the PMF by acting as a protonophore.
NTZ potently inhibits both active and latent Mtb, bacilli but has poor pharmacokinetic and
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pharmacodynamic proprieties. Thus, there is some interest in the development of NTZ
derivatives with improved bioavailability [59,79,80].

3.3. Other Targets
3.3.1. Iron Uptake

Iron is fundamental in Mtb survival, and, for this reason, all the systems involved
in iron uptake are promising drug targets [81]. When in unfavourable iron-deficient
environments, Mtb increases the uptake of iron through the synthesis of high-affinity iron
chelators, called siderophores. Targeting the biosynthesis of mycobactin siderophores from
mycobacteria has been exploited as an approach to inhibit the growth of Mtb. The Mg2+-
dependent salicylate synthase (MtbI) enzyme is a validated target since it is responsible
for salicylate synthesis from chorismate in the first step of the mycobactin biosynthesis
pathway. Furthermore, MtbI offers the potential to enable the discovery of highly selective
inhibitors, as it is absent in the host. Using a receptor-based virtual screening procedure,
several furan-based compounds (Figure 6) were identified as potent MtbI inhibitors [82,83].
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Another approach to block iron uptake in Mtb is to inhibit the iron-dependent tran-
scription factor, IdeR, which controls siderophore synthesis. This regulator is a DNA-
binding protein of the DtxR family that is responsible for the activation or deactivation of
storage proteins, according to the excess or lack of iron, respectively. A screening against
IdeR revealed benzothiazole benzene sulfonic (Figure 6) as a promising scaffold to develop
IdeR inhibitors [6,84,85].

3.3.2. DNA-Related Enzymes

DNA gyrase. This enzyme is a validated target for anti-tubercular drug discovery. It is
an ATP-dependent enzyme that is essential for efficient DNA replication, transcription, and
recombination in bacteria [86]. Moreover, its absence in the mammalian organism makes
this enzyme a suitable target for the development of antibacterial drugs with selective
toxicity. Fluoroquinolones are effective inhibitors of this enzyme (Figure 7A). As with other
antitubercular drugs, side effects and emerging bacterial resistance have fuelled intensive
research for new chemical entities, from natural or synthetic origin, possessing DNA gyrase
inhibiting properties that would be effective against MDR-TB, and could also be effective
against fluoroquinolone-resistant Mtb [87].

DNA Topoisomerase I. Imipramine and norclomipramine (Figure 7B) showed the
growth inhibition of both Mycobacterium smegmatis and Mtb cells. They target DNA topoiso-
merase I, an essential mycobacterial enzyme in the maintenance of topological homeostasis
within the cell, during a variety of DNA transaction processes such as replication, transcrip-
tion, and chromosome segregation. It was suggested that they bind near the metal-binding
site of the enzyme, so targeting metal coordination in topoisomerases may be a general
strategy used to develop new lead molecules [88].

DNA ligases. Vital enzymes in replication and repair, DNA ligase catalyses the
formation of a phosphodiester linkage between adjacent termini in double-stranded DNA
through similar mechanisms. The DNA ligases either utilize ATP or NAD+ as cofactors.
Those utilizing NAD+ are attractive drug targets because of the unique cofactor requirement
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for ligase activity and are exclusively found in eubacteria and some viruses. Gene knockout
and other studies have shown NAD+-dependent DNA ligases to be indispensable in several
bacteria (including Mtb). Compounds belonging to arylamino and pyridochromanone
classes (Figure 7C) have been identified as specific inhibitors of NAD+-dependent DNA
ligases and can potentially be used to develop novel antibacterial therapies [89,90].
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Thymidine kinase. Thymidine monophosphate kinase (TMPK) catalyses the
γ-phosphate transfer from ATP to thymidine monophosphate (dTMP) in the presence
of Mg2+, yielding thymidine diphosphate (dTDP) and ADP. Because TMPK is essential for
thymidine triphosphate (dTTP) synthesis, and in the view of its low sequence identity (22%)
with the human isozyme (TMPKh) and its unique catalytic mechanism, it represents an
attractive target for selectively inhibiting mycobacterial DNA synthesis [91]. Both industrial
and academic efforts have afforded several potent Mtb TMPK inhibitors in the last two
decades, including thymidine-like and non-nucleoside inhibitors (Figure 7D) [91].
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4. Chemical Probes for Target Identification in Mycobacteria

The search for new biomarkers and potential drug targets in Mtb has led to the de-
velopment of chemical probes as tools for protein profiling proteomic methodologies.
Activity-based protein profiling (ABPP) is a proteomic technique that enables the quantifi-
cation and functional analysis of enzymes using activity-based probes (ABPs). Typically,
ABPs react covalently with the active form of an enzyme or mechanistically related classes
of enzymes. ABPs include (i) a reactive group (or warhead) that reacts with the catalytic
amino acid residue of the enzyme, (ii) a reporter tag (e.g., a biotin for protein pulldown or
a fluorophore for cell imaging), and (iii) a linker bridging the warhead and the tag.

In contrast to ABPP, profiling non-catalytic proteins relies on the use of photoaffinity-
based probes (Af ABPs) that incorporate a photo-activable moiety to enable the covalent
crosslinking between the probe and the target protein upon irradiation [92]. Concerning the
reporter tag, a biorthogonal handle can be used instead of the biotin or the fluorophore. In
this strategy, after the linkage of the probe to the target, a copper alkyne-azide cyclization
is performed in the living cell or in cell lysates to incorporate the tag for analysis (Figure 8).
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4.1. Activity-Based Protein Profiling (ABPP)

ABPP studies have been used to explain biological pathways in Mycobacterium tubercu-
losis, find new therapeutic targets, or identify new biomarkers.

4.1.1. Cytosolic Serine Hydrolases

Several serine hydrolases have been reported as putative targets in bacterial infec-
tions [93,94], and, in the case of Mtb, represent 1.2% of all proteomes [95]. Ortega et al.
reported an extensive ABPP study in replicating and non-replicating Mtb in order to
identify serine hydrolases that remain active in non-replicating persistent states. Using
a pan-serine hydrolase fluorophosphonate probe, FP-ABP (Figure 9), 78 hydrolases of a
total of 208 proteins were identified. The activity of these 78 hydrolases was analysed in
normoxia and hypoxia and only 3 were active in hypoxic conditions, while 41 were active
in aerated cultures and 34 were active in both conditions. Overall, these data provided ex-
perimental validation for previously annotated Mtb enzymes and identified 37 FP-labelled
proteins that were found to be active in non-replicating Mtb that could be used as new
drug targets for persistent Mtb. Specifically, mycobacterial acid resistance protease (MarP)
activity was shown to remain unchanged between both phenotypes, suggesting a role in
maintaining persistence. The ClpP2 subunit, included in the Mtb ClpP protease complex,
was shown to be the only one detected in non-replicating Mtb [96,97].
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Figure 9. Fluorophosphonate (FP) activity-based probe.

Lentz et al. designed activity-based probes (ABPs) to selectively target Mtb “Hydrolase
important to pathogenesis” (Hip 1). This is a cell-envelope-associated serine protease
whose proteolytic activity is required for the immunomodulation of host inflammatory
responses and has weak homology to other host proteases. From a library of serine-reactive
electrophiles, a series of 7-amino-4-chloro-3-(2-bromoethoxy)isocoumarins were identified
as potent time-dependent inhibitors of Hip1, and were used to synthesise the fluorescence
probe (Figure 10A). While this ABP displayed high potency but low selectivity, optimizing
the isocoumarin scaffold led to the isocoumarin (Figure 10B), an inhibitor with nanomolar
activity against Hip1 and improved selectivity [98].
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Isocoumarins were also identified as inhibitors of Mtb growth in a screening of a
library containing electrophiles that react with serine hydrolases. In particular, the seven-
urea chloroisocoumarin JCP276 was active against Mtb and Mycobacterium kansasii, but had
no effect against other non-tuberculous mycobacteria. A competitive gel-based ABPP assay
with fluorophosphonate-tetramethylrhodamine (FP-TMR) and JCP276 showed that the hit
compound was able to interact with several proteins. The proteomic ABPP study using the
BMB034 probe allowed seven major targets to be identified, mostly between lipases and
esterases (Figure 11). However, the inhibition of these targets individually did not affect
cell growth, which suggests that the potency of JCP276 may arise from the inhibition of
multiple targets [99].
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tetramethylrhodamine ABP.

In another study, by combining the usual tools of ABPP with a competitive approach,
Li et al. screened a 1,2,3-triazole urea library of ca. 200 molecules with the aim of identifying
the serine hydrolase that are implicated in the Mtb growth. First, using a fluorophosphonate
biotin probe, FP-biotin (Figure 12), several serine hydrolase targets were revealed, and the
selected targets were then tested for the two most active 1,2,3-triazole ureas. The results
showed that the antimycobacterial activity displayed by these compounds is related to the
inhibition of several key serine hydrolases that are essential in lipid metabolism and cell
wall biosynthesis. The competitive ABPP study with FP-TMR showed the multiple target
inhibition that led to cell wall disruption and lipid metabolism [100].
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4.1.2. Membrane Serine and Cysteine Hydrolases

ABPP also proved to be instrumental in revealing the key role of serine hydrolases in
mycobacterial cell wall biosynthesis, leading to the identification of potential inhibitors of
these enzymes. β-Lactam antibiotics interferes with the final phase of the biosynthesis of
peptidoglycan by inhibiting irreversible D,D-transpeptidase serine hydrolases, known as
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penicillin-binding proteins (PBPs), thus preventing the formation of bonds between peptide
chains of peptidoglycan (“cross-linking”). However, in Mtb, the peptidoglycan layer con-
tains different peptide crosslinks which mostly require catalysis with L,D-transpeptidases,
i.e., cysteine hydrolases [101,102].

The presence of β-lactamase in TB bacilli raises the question of whether this group
of antibiotics can be used against Mtb. However, the combination of certain β-lactams,
carbapenem, and meropenem, along with a β-lactamase inhibitor used as clavulanic acid,
revealed an antitubercular activity improvement, which reiterates the importance of β-
lactams in TB treatment.

Quezada et al. screened a library of β-lactams against Mtb under replicating and
non-replicating conditions and found two cephalosporins, exclusively active against non-
replicating Mtb. To explore the possibility of an alternative and less known pathway
beyond the action of transpeptidases, chemical probes were designed to perform ABPP
studies (Figure 13) [103].
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With a specific focus on the relevance of L,D-transpeptidases for cell wall biosynthesis,
Munnick et al. developed an assay based on the use of cysteine-selective fluorogenic probes
for testing the reactivity with L,D-transpeptidases, which appears to be of special impor-
tance for Mt virulence. In this assay, two fluorogenic probes based on benzoxadiazole and
fluorescein were tested in the presence of competitive inhibitors for L,D-transpeptidases,
as well as several β-lactams antibiotics (Figure 14). This study revealed penems and
carbapenems to be potent inhibitors of L,D-transpeptidases [104].
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Similar to other bacterial infections, penicillin and cephalosporin β-lactam antibiotics
fail in TB therapeutics due to inactivation using β-lactamases. However, based on the ob-
servation that carbapenems can reduce the activity of this enzyme, Levine et al. developed
activity-based probes based on a carbapenem derivative meropenem, Mero-Cy5 (Figure 15),
with the aim of finding a class of enzymes and the mechanism of action of meropenem.
This probe inhibited L,D-transpeptidases as it binds to an active-site cysteine residue, but
also binds to other transpeptidases and carboxypeptidases, as well as to β-lactamase. The
probe designed by Levine et al. proved to be a powerful tool for target identification and
highlights the potential of carbapenem β-lactam antibiotics to treat TB [105].
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Figure 15. Meropenem-based ABP.

Serine hydrolases play a crucial role in catalysing essential transacylation reactions,
namely in binding mycolates as β–keto or hydroxyesters. The similarity between the
β-lactone pattern and mycolates enables the covalent acylation of catalytic serine residues
with β-lactones. Based on this, Lehmann et al. developed β-lactones that could covalently
inhibit these enzymes, preventing the formation of a mycobacterium membrane. A β-
lactone developed by this group exhibited good activity and selectivity for mycobacteria
and they synthesised an alkyne probe, EZ120P, to identify the molecular targets (Figure 16).
Through standard ABPP procedures, the serine proteases Pks13 and Ag85, essential proteins
in the biosynthesis of the mycobacterial cell wall, were identified as possible targets [106].
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Figure 16. β-lactone-based ABP.

Tetrahydrolipstatin (THL) is an inhibitor of fatty acid synthetase, an enzyme that
plays an important role in latent tuberculosis, since fatty acids are crucial for the survival
of mycobacterium in this phase. This inhibitor contains a β-lactone group which forms
covalent adducts with serine residues of target enzymes. Ravidran et al. synthesised a THL-
ABP (Figure 17), and, using click chemistry, the fluorescent-tagged THL proteins allowed
their targets in mycobacteria to be determined. From 14 possible targets (α/β-hydrolases,
including many lipid esterases), 2 of them were validated through several experimental
techniques, lipH and tesA, which are fundamental lipolytic enzymes in the dormant state
of mycobacteria [107].
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Figure 17. Tetrahydrolipstatin-based ABP.

Tallman et al. developed probes to identify Mtb esterases in active and dormant
conditions, leading to the discovery of several esterases involved in the different states
of the Mtb. With a red fluorescent TAMRA-FP probe, serine hydrolases were detected in
replicating dormant and reactivation conditions, but their enzymatic activity was reduced
in dormancy. However, using ABPP (desthiobiotin-fluorophosphonate) and fluorogenic
(DCF-AME) probe-based profiling, it was possible to identify esterases present in dormant
conditions (Culp1, LipH, LipM, LipN, and Rv3036c) or in both states (CaeA, Rv0183, and
Rv1683) (Figure 18) [108–110].
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4.1.3. Other Membrane Targets

Acyltrehaloses biosynthesis. Acyltrehaloses are components of the outer membrane of
Mtb and have been identified as antigens, and have drawn interest as diagnostic markers
with the potential to distinguish between tuberculous and nontuberculous mycobacte-
ria [111].

Polyacyltrehalose (PAT) is the predominant acyltrehalose in Mtb, and, together with
diacyltrehalose (DAT), has a structural function in the cell envelope and plays a role
in the Mtb’s ability to replicate and persist in the host by facilitating Mtb intracellular
survival and modulating host immune responses [112]. The enzymes involved in PAT
biosynthesis have not yet been identified. The PAT biosynthetic gene locus is identical
to that of sulfolipid 1, a trehalose glycolipid structurally analogous to PAT, which is also
unique to virulent Mtb. Chp1, a cutinase-like hydrolase protein, was already described as
the terminal acyltransferase in sulfolipid 1 biosynthesis [113]. Chp2 may play a role in the
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biosynthesis of PAT, which is reinforced by the coordinate upregulation of the chp2 gene, a
homologue of chp1 (rv3822). However, the specific role of Chp2 is still not confirmed.

Touchette et al. hypothesized that Chp2 is an acyltransferase responsible for the trans-
formation of DAT in PAT, once the PAT biosynthetic gene cluster includes chp2 (rv1184c).
To confirm the enzymatic activity of Chp2, the authors have resorted to an activity-based
probe FP-TMR, (Figure 11B), consisting in a fluorescent labelling reagent that specifically
modifies the active-site residue of serine hydrolases. Thus, it was verified that Chp2
contains a C-terminal serine hydrolase domain that is inhibited by the lipase inhibitor
tetrahydrolipstatin (THL). Results have also shown that THL inhibits Chp2, leading to
decreased levels of PAT and the accumulation of DAT, suggesting that Chp2 is responsible
for the synthesis of PAT from DAT, and plays an analogous role to the Chp1 in sulfolypid 1
byosynthesis [111].

Fatty acid biosynthesis. Knowing that fatty acids play an important role in mycobacteria,
Ishikawa et al. developed probes with the aim of identifying dehydratase (DH) enzymes
in fatty acid synthases (FASs). These probes contain a specific reactive sulfonyl-3-alkyne
warhead to prevent hydrolysis or non-enzymatic inactivation. The designed probes in
Figure 19 were based on the 3-decynoyl-N-acetylcysteamine [3-decynoyl-NAC] structure, a
known inhibitor of dehydratase FabA and an important enzyme in fatty acid biosynthesis
mechanism. The different experiments performed led to the following conclusions: (i) these
fluorescent probes are selective inhibitors for dehydratase enzymes in FASs, (ii) the sulfonyl
alkyne scaffold is required for stability, (iii) the probes exhibit antibiotic activity, and (iv)
DH-containing enzymes are identified and selectively isolated [114].
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Sulfomucins degradation. Mucins, including sulfomucins, are a type of mucosal fluid
with antimicrobial properties and play a crucial role in protecting the host from the invasion
of pathogens, forming a physical barrier with direct antimicrobial activity. Mucin degrada-
tion with bacteria is often regarded as an initial stage in pathogenesis since it can disturb the
protection of host mucosal surfaces [115,116]. In mycobacteria, sulfatases are responsible
for sulfomucin degradation and thus play a role in the pathogenicity of mycobacteria and
in the hydrolysis of the N-sulfate group in sulfated glycosaminoglycans, thereby mod-
ulating bacterial adhesion [117,118]. To detect sulfatase activity in mycobacteria, Yoon
et al. developed an activity-based probe that forms a N-methyl isoindole compound after
intramolecular cyclization via the action of sulfatase enzyme, responsible for a coloured
precipitate (Figure 20). It was verified in cultures of Mycobacterium avium and Mycobacterium
smegmatis that the probe gave rise to a coloured precipitate after cleavage, indicating that
this probe can be very useful in the detection of sulfatase activity in Mtb, presenting the
advantage of being detected by the naked eye [119].



Int. J. Mol. Sci. 2023, 24, 10482 19 of 27

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 19 of 28 
 

 

Fatty acid biosynthesis. Knowing that fatty acids play an important role in mycobacte-
ria, Ishikawa et al. developed probes with the aim of identifying dehydratase (DH) en-
zymes in fatty acid synthases (FASs). These probes contain a specific reactive sulfonyl-3-
alkyne warhead to prevent hydrolysis or non-enzymatic inactivation. The designed 
probes in Figure 19 were based on the 3-decynoyl-N-acetylcysteamine [3-decynoyl-NAC] 
structure, a known inhibitor of dehydratase FabA and an important enzyme in fatty acid 
biosynthesis mechanism. The different experiments performed led to the following con-
clusions: (i) these fluorescent probes are selective inhibitors for dehydratase enzymes in 
FASs, (ii) the sulfonyl alkyne scaffold is required for stability, (iii) the probes exhibit anti-
biotic activity, and (iv) DH-containing enzymes are identified and selectively isolated 
[114]. 

 
Figure 19. 3-decynoyl-NAC-based ABPs. 

Sulfomucins degradation. Mucins, including sulfomucins, are a type of mucosal fluid 
with antimicrobial properties and play a crucial role in protecting the host from the inva-
sion of pathogens, forming a physical barrier with direct antimicrobial activity. Mucin 
degradation with bacteria is often regarded as an initial stage in pathogenesis since it can 
disturb the protection of host mucosal surfaces [115,116]. In mycobacteria, sulfatases are 
responsible for sulfomucin degradation and thus play a role in the pathogenicity of my-
cobacteria and in the hydrolysis of the N-sulfate group in sulfated glycosaminoglycans, 
thereby modulating bacterial adhesion [117,118]. To detect sulfatase activity in mycobac-
teria, Yoon et al. developed an activity-based probe that forms a N-methyl isoindole com-
pound after intramolecular cyclization via the action of sulfatase enzyme, responsible for 
a coloured precipitate (Figure 20). It was verified in cultures of Mycobacterium avium and 
Mycobacterium smegmatis that the probe gave rise to a coloured precipitate after cleavage, 
indicating that this probe can be very useful in the detection of sulfatase activity in Mtb, 
presenting the advantage of being detected by the naked eye [119]. 

 
Figure 20. Probe used by Yoon et al. to detect sulfatase activity. Figure 20. Probe used by Yoon et al. to detect sulfatase activity.

Mycobactins biosynthesis. Iron is fundamental for Mtb survival, and, to compensate
the lack of iron, the bacteria developed mycobactins, a type of iron-chelating molecule,
also called siderophores, responsible for shuttle-free extracellular iron ions entering the
cytoplasm of mycobacterial cells.

Since the adenylating enzyme MbtA is crucial in the biosynthesis of mycobactins,
Duckworth’s group developed the probe Sal-AMS ABP based on a potent selective inhibitor
of MbtA (Sal-AMS) (Figure 21), with benzophenone as the photoreactive group and a small
alkyne as the reporter group. The assays performed with this probe demonstrated an
extraordinary specificity for MbtA in crude mixtures with other enzymes and the possibility
of identifying adenylating enzymes in other organisms, such as E. Coli [120].
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4.1.4. ATP-Binding Enzymes

ATP-binding proteome. Wolfe et al. developed a different approach that applies
activity-based chemoproteomic experiments to selectively profile the ATP-binding pro-
teome in normally growing and hypoxic Mbt. The study was carried out in the Mtb H37Rv
strain and used a desthiobiotin-conjugated ATP as a molecular probe (Figure 22), where
the desired enzymes are covalently modified with biotin, and, after a pull-down, the target
proteins can be identified through chemoproteomic experiments. This chemoproteomic
technique may be used to broaden the functional annotations and physiological roles of
many nucleotide-binding proteins and supports the evidence on the potential of antimicro-
bial inhibitors whose mode of action relies on competition within the ATP-binding site of
select proteins. With this approach using an enriched subproteome of desthiobiotin-labelled
ATP-binding proteins (ATPome), 176 proteins were identified in total, of which 122 were
labelled via the molecular probe, and more than half have been reported to be essential for
in vitro survival [121].
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4.2. Affinity-Based Probes (AfBPs)

The biosynthesis of mycolic acid is carried out using two fatty acid synthases, FAS-I
and FAS-II, where FAS-II is responsible for the synthesis of very long acyl chains. The my-
cobacterial FAS-II system works via the interaction between the acyl carrier protein (AcpM),
which binds the growing acyl chain, and its respective enzymes, such as ketosynthases
(KasA/KasB), reductases (MabA), dehydratases (HadAB/HadBC), and enoyl reductase
(InhA), which are responsible for further processing [122,123].

Thioacetazone (TAC) is a bacteriostatic anti-TB drug whose use was restricted due to
severe side effects and the frequent emergence of resistance. TAC’s mechanism of action
was not confirmed, but it was presumed that it interferes with mycolic acid biosynthesis,
based on the isolation of several truncated hydroxy fatty acids, leading to the suggestion
that dehydratases in the FAS-II system could be possible targets. Moreover, there is a
hypothesis that monooxygenase EthA activates TAC that then binds to the dehydratase
complex HadAB through a cysteine residue (Cys61) (Figure 23). Another potential target is
the dehydratase enzyme HadC in the complex HadBC, but there is no evidence of that [124].
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HadA subunit of the dehydratase complex HadAB.

Singh et al. developed a TAC-affinity-based probe (Figure 24) with azidonaphthalim-
ido butanoic acid used as a fluorescent template to establish the target enzymes of the drug.
The results showed the formation of cross-links with the HadAB complex in the presence
or absence of the monooxygenase EthA, indicating that the HadAB complex has an affinity
for TAC itself. Furthermore, it was observed that the HadA component in HadAB and the
HadC component in the HadBC are targets of TAC or its oxidized forms. The selectivity
of this probe towards the dehydratases HadAB and HadBC was also verified since the
other dehydratase present in Mtb was not found to be a primary target. Additionally, this
probe has the advantage of promoting cross-linking with the target protein under white
light exposure, contrasting to UV-activated photo-affinity probes, which can lead to protein
degradation [125].
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Trehalose dimycolates (TDMs) are the most abundant glycolipids in Mtb’s cell wall
and play an important role in Mtb’s pathogenesis regarding protection against severe
environmental conditions. TDMs also have immunomodulatory functions, including the
prevention of phagosome–lysosome fusion, allowing the bacteria to survive inside the host
macrophage. Additionally, TDMs have a crucial role in granuloma formation. However,
despite the importance of TDM, only one receptor is known, the macrophage inducible
C-type lectin (mincle) [126].

Khan et al. synthesised an affinity-based proteome profiling (Af BPP) TDM probe
(Figure 25), formed by a benzophenone group as a photoreactive trap and by an alkyne tag.
The reactive carbohydrate portion is unfunctionalized and has a small and hydrophobic
trap and tag system, making it a good mimic of the original TDM. The authors reported
that this probe was then validated to be used for proteomic studies, since it can activate
macrophages and appears to be a suitable TDM mimic [127].
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5. Conclusions

Tuberculosis remains a global epidemic threat due to the complexity of the disease
and the emergence of drug resistance. New breakthroughs and insights into the devel-
opment of safer and more efficient drugs require a more comprehensive explanation of
Mtb drug targets associated with TB pathophysiology. Many of the emerging targets with
potential to positively impact anti-TB drug discovery are involved in cell wall synthesis,
energy metabolism, iron uptake, and DNA synthesis. The development of activity-based
and photoaffinity-based methodologies, combined with the most recent developments in
proteomic methodologies, provided the TB scientific community with powerful tools to
identify novel molecular targets and shed some light on the understanding of biological
pathways in Mtb. The full integration of classical phenotypic screening and genomic
approaches with proteomic-based protein profiling will be instrumental in identifying
effective targets to develop new safer and efficacious drug candidates that are capable of
addressing the current challenges in TB therapy.
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