Brk/PTK6 and Involucrin Expression May Predict Breast Cancer Cell Responses to Vitamin D3
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Vitamin D Treatment
4.3. Breast Carcinoma Samples
4.4. RNA Extraction
4.5. Reverse Transcription
4.6. TaqMan Real-Time PCR
4.7. Western Blotting
4.8. Flow Cytometry
4.9. Suspension Culture
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harvey, A.J.; Burmi, R.S. Future therapeutic strategies: Implications for Brk targeting. In Breast Cancer—Current and Alternative Therapeutic Modalities, 1st ed.; Gunduz, E., Gundez, M., Eds.; InTech: Rijeka, Croatia, 2011; pp. 413–434. [Google Scholar]
- Kamalati, T.; Jolin, H.E.; Mitchell, P.J.; Barker, K.T.; Jackson, L.E.; Dean, C.J.; Page, M.J.; Gusterson, B.A.; Crompton, M.R. Brk, a Breast Tumor-derived Non-receptor Protein-tyrosine Kinase, Sensitizes Mammary Epithelial Cells to Epidermal Growth Factor. J. Biol. Chem. 1996, 271, 30956–30963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.I.; Lee, S.-T. An Intramolecular Interaction between SH2-Kinase Linker and Kinase Domain Is Essential for the Catalytic Activity of Protein-tyrosine Kinase-6. J. Biol. Chem. 2005, 280, 28973–28980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, A.J.; Pennington, C.J.; Porter, S.; Burmi, R.S.; Edwards, D.R.; Court, W.; Eccles, S.A.; Crompton, M.R. Brk Protects Breast Cancer Cells from Autophagic Cell Death Induced by Loss of Anchorage. Am. J. Pathol. 2009, 175, 1226–1234. [Google Scholar] [CrossRef] [PubMed]
- Irie, H.Y.; Shrestha, Y.; Selfors, L.; Frye, F.; Iida, N.; Wang, Z.; Zou, L.; Yao, J.; Lu, Y.; Epstein, C.B.; et al. PTK6 Regulates IGF-1-Induced Anchorage-Independent Survival. PLoS ONE 2010, 5, e11729. [Google Scholar] [CrossRef]
- Harvey, A.J.; Crompton, M.R. Use of RNA interference to validate Brk as a novel therapeutic target in breast cancer: Brk promotes breast carcinoma cell proliferation. Oncogene 2003, 22, 5006–5010. [Google Scholar] [CrossRef] [Green Version]
- Barker, K.T.; Jackson, L.E.; Crompton, M.R. BRK tyrosine kinase expression in a high proportion of human breast carcinomas. Oncogene 1997, 15, 799–805. [Google Scholar] [CrossRef] [Green Version]
- Zhao CYasui, K.; Lee, C.J.; Kurioka, H.; Hosokawa, Y.; Oka, T.; Inazawa, J. Elevated Expression Levels of NCOA3, TOP1, and TFAP2C in Breast Tumors as Predictors of Poor Prognosis. Cancer 2003, 98, 18–23. [Google Scholar] [CrossRef]
- Born, M.; Quintanilla-Fend, L.; Braselmann, H.; Reich, U.; Richter, M.; Hutzler, P.; Aubele, M. Simultaneous over-expression of the Her2/neu and PTK6 tyrosine kinases in archival invasive ductal breast carcinomas. J. Pathol. 2005, 205, 592–596. [Google Scholar] [CrossRef]
- Llor, X.; Serfas, M.S.; Bie, W.; Vasioukhin, V.; Polonskaia, M.; Derry, J.; Abbott, C.; Tyner, A. BRK/Sik expression in the gastrointestinal tract and in colon tumors. Clin. Cancer Res. 1999, 5, 1767–1777. [Google Scholar]
- Vasioukhin, V.; Serfas, M.S.; Siyanova, E.Y.; Polonskaia, M.; Costigan, V.J.; Liu, B.; Thomason, A.; Tyner, A. A novel intracellular epithelial cell tyrosine kinase is expressed in the skin and gastrointestinal tract. Oncogene 1995, 10, 349–357. [Google Scholar]
- Haegebarth, A.; Perekatt, A.O.; Bie, W.; Gierut, J.J.; Tyner, A.L. Induction of Protein Tyrosine Kinase 6 in Mouse Intestinal Crypt Epithelial Cells Promotes DNA Damage–Induced Apoptosis. Gastroenterology 2009, 137, 945–954. [Google Scholar] [CrossRef] [Green Version]
- Derry, J.J.; Prins, G.S.; Ray, V.; Tyner, A.L. Altered localization and activity of the intracellular tyrosine kinase Brk/sik in prostate tumour cells. Oncogene 2003, 22, 4212–4220. [Google Scholar] [CrossRef] [Green Version]
- Petro, B.; Tan, R.; Tyner, A.; Lingen, M.; Watanabe, K. Differential expression of the non-receptor tyrosine kinase BRK in oral squamous cell carcinoma and normal oral epithelium. Oral Oncol. 2004, 40, 1040–1047. [Google Scholar] [CrossRef]
- Peng, X.; Hawthorne, M.; Vaishnav, A.; St-Arnaud, R.; Mehta, R.G. 25-hydroxyvitamin D3 is a natural chemopreventative agent against carcinogen induced precancerous lesions in mouse mammary gland organ culture. Breast Cancer Res. Treat. 2009, 3, 1351–1360. [Google Scholar]
- Wang, T.; Jee, S.; Tsai, T.; Huang, Y.; Tsai, W.; Chen, R. Role of breast tumour kinase in the in vitro differentiation of HaCaT cells. Br. J. Dermatol. 2005, 153, 282–289. [Google Scholar] [CrossRef]
- Tupper, J.; Crompton, M.R.; Harvey, A.J. Breast tumor kinase (Brk/PTK6) plays a role in the differentiation of primary keratinocytes. Arch. Dermatol. Res. 2011, 303, 293–297. [Google Scholar] [CrossRef] [Green Version]
- Vasioukhin, V.; Tyner, A.L. A role for the epithelial-cell-specific tyrosine kinase Sik during keratinocyte differentiation. Proc. Natl. Acad. Sci. USA 1997, 94, 14477–14482. [Google Scholar] [CrossRef] [Green Version]
- Mikkola, M.L.; Miller, S.E. The Mammary Bud as a Skin Appendage: Unique and Shared Aspects of Development. J. Mammary Gland Biol. Neoplasia 2006, 11, 187–203. [Google Scholar] [CrossRef]
- Sakakura, T. Mammary embryogenesis. In The Mammary Gland: Development, Regulation, and Function; Neville, C.W., Daniel, M.C., Eds.; Plenum Press: New York, NY, USA, 1987; pp. 37–66. [Google Scholar]
- Rice, R.H.; Green, H. Presence in human epithelial cells of a soluble protein precursor of the cross-linked envelope: Activation of the cross linking by calcium ions. Cell 1979, 18, 681–694. [Google Scholar] [CrossRef]
- Watt, F.M.; Green, H. Involucrin synthesis is correlated with cell size in human epidermal cultures. J. Cell Biol. 1981, 90, 738–742. [Google Scholar] [CrossRef]
- Schmid, C.; Zatloukal, K.; Beham, A.; Denk, H. Involucrin expression in breast carcinomas: An immunohistochemical study. Virchows Arch. 1993, 423, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, H.; Sakamaki, C.; Fukutomi, T.; Hirohashi, S. Squamoid features and expression of involucrin in primary breast carcinoma associated with high histological grade, tumour cell necrosis and recurrence sites. Br. J. Cancer 1997, 75, 1519–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, T.-T.; Green, H. Differentiation of the epidermal keratinocyte in cell culture: Formation of the cornified envelope. Cell 1976, 9, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Watt, F.M. Keratinocyte Methods; Leigh, M., Watt, F.M., Eds.; Cambridge University Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Takahashi, H.; Ibe, M.; Kinouchi, M.; Ishida-Yamamoto, A.; Hashimoto, Y.; Iizuka, H. Similarly potent action of 1,25-dihydroxyvitamin D3 and its analogues, tacalcitol, calcipotriol, and maxacalcitol on normal human keratinocyte proliferation and differentiation. J. Dermatol. Sci. 2003, 31, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.C.; Papavasiliou, V.; Rhim, J.S.; Horst, R.L.; Kremer, R. Targeted disruption of the 25-hydroxyvitamin D3 1alpha-hydroxylase gene in ras-transformed keratinocytes demonstrates that locally produced 1alpha,25-dihydroxyvitamin D3 suppresses growth and induces differentiation in an autocrine fashion. Mol. Cancer Res. 2002, 1, 56–67. [Google Scholar]
- Bizarri, M.; Cucina, A.; Valente, M.G.; Taglaiferri, F.; Borrelli, V.; Stipa, F.; Cavallaro, A. Melatonin and vitamin D3 increase TGF-beta1 release and induce growth inhibition in breast cancer cell cultures. J. Surg. Res. 2003, 110, 332–337. [Google Scholar] [CrossRef]
- Finlay, I.G.; Stewart, G.J.; Ahkter, J.; Morris, D.L. A phase one study of the hepatic arterial administration of 1,25-dihydroxyvitamin D3 for liver cancers. J. Gastroenterol. Hepatol. 2001, 16, 333–337. [Google Scholar] [CrossRef]
- Dalhoff, K.; Dancey, J.; Astrup, L.; Skovsgaard, T.; Hamberg, K.J.; Lofts, F.J.; Rosmorduc, O.; Erlinger, S.; Hansen, J.B.; Steward, W.P.; et al. A phase II study of the vitamin D analogue Seocalcitol in patients with inoperable hepatocellular carcinoma. Br. J. Cancer 2003, 89, 252–257. [Google Scholar] [CrossRef] [Green Version]
- Haussler, M.R.; Boyce, D.W.; Littledike, E.T.; Rasmussen, H. A rapidly acting metabolite of vitamin D3. Proc. Natl. Acad. Sci. USA 1971, 68, 177–181. [Google Scholar] [CrossRef] [Green Version]
- Costa, J.L.; Eijk, P.P.; van de Weil, M.A.; ten Berge, D.; Schmitt, F.; Narvaez, C.J.; Welsh, J.; Ylstra, B. Anti-proliferative action of vitamin D in MCF7 is still active after siRNA-VDR knock-down. BMC Genom. 2009, 10, 499–509. [Google Scholar] [CrossRef] [Green Version]
- Hussain-Hakimjee, E.A.; Peng, X.; Mehta, R.R.; Mehta, R.G. Growth inhibition of carcinogen-transformed MCF-12F breast epithelial cell and hormone sensitive BT-474 breast cancer cells by 1α-hydroxyvitamin D5. Carcinogenesis 2006, 27, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Yang, W.; Uytingco, M.S.; Christakos, S.; Wieder, R. 1,25-Dihydroxyvitamin D3 and all-trans-retinoic acid sensitize breast cancer cells to chemotherapy-induced cell death. Cancer Res 2000, 60, 2040–2048. [Google Scholar]
- Jensen, S.S.; Madsen, M.W.; Lukas, J.; Binderup, L.; Bartek, J. Inhibitory effects of 1alpha,25-dihydroxyvitamin D3 on the G(1)-S phase-controlling machinery. Mol. Endocrinol. 2001, 15, 1370–1380. [Google Scholar]
- Welsh, J.; Wietzke, J.A.; Zinser, G.M.; Byrne, B.; Smith, K.; Narvaez, C.J. Vitamin D-3 Receptor as a Target for Breast Cancer Prevention. J. Nutr. 2003, 133, 2425S–2433S. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Lee, D.; Sysounthone, V.; Chandraratna, R.A.S.; Christakos, S.; Korah, R.; Wieder, R. 1,25-dihydroxyvitamin D3 and retinoic acid analogues induce differentiation in breast cancer cells with function- and cell-specific additive effects. Br. Cancer Res. 2001, 67, 157–158. [Google Scholar]
- Yang, J.; Ikezoe, T.; Nishioka, C.; Ni, L.; Koeffler, H.P.; Yokoyama, A. Inhibition of mTORC1 by RAD001 (everolimus) potentiates the effects of 1,25-dihydroxyvitamin D3 to induce growth arrest and differentiation of AML cells in vitro and in vivo. Exp. Hematol. 2010, 38, 666–676. [Google Scholar] [CrossRef]
- Kao, J.; Salari, K.; Bocanegra, M.; Choi, Y.-L.; Girard, L.; Ganghi, J.; Kwei, K.A.; Hernandez-boussard, T.; Wang, P.; Gazdar, A.F.; et al. Molecular profiling of breast cancer cell lines defines relevant tumour models and provides a resource of cancer gene discovery. PLoS ONE 2009, 4, e6146. [Google Scholar] [CrossRef]
- Hurst, J.; Maniar, N.; Tombarkiewicz, J.; Lucas, F.; Roberson, C.; Steplewski, Z.; James, W.; Perras, J. A novel model of a metastatic human breast tumour xenograft line. Br. J. Cancer 1993, 68, 274–276. [Google Scholar] [CrossRef] [Green Version]
- Lopes, N.; Sousa, B.; Martins, D.; Gomes, M.; Vieira, D.; Veronese, L.A.; Milanezi, F.; Paredes, J.; Costa, J.L.; Schmitt, F. Alternations in the vitamin D signalling and metabolic pathways in breast cancer progression: A study of VDR, CYP27B1, CYP24A1 expression in benign and malignant breast lesions Vitamin D pathways unbalanced in breast lesions. BMC Cancer 2010, 10, 483–492. [Google Scholar] [CrossRef] [Green Version]
- Pendás-Franco, N.; González-Sancho, J.M.; Suárez, Y.; Aguilera, O.; Steinmeyer, A.; Gamallo, C.; Berciano, M.T.; Lafarga, M.; Muñoz, A. Vitamin D regulates the phenotype of human breast cancer cells. Differentiation 2007, 75, 193–207. [Google Scholar] [CrossRef]
- Neve, R.M.; Chin, K.; Fridlyand, J.; Yeh, J.; Baehner, F.L.; Fevr, T.; Clark, L.; Bayani, N.; Coppe, J.-P.; Tong, F.; et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006, 10, 515–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, A.J.; Crompton, M.R. The Brk protein tyrosine kinase as a therapeutic target in cancer: Opportunities and challenges. Anti-Cancer Drugs 2004, 15, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Alço, G.; Iğdem, S.; Dincer, M.; Ozmen, V.; Saglam, S.; Selamoglu, D.; Erdoğan, Z.; Ordu, C.; Pilancı, K.N.; Bozdogan, A.; et al. Vitamin D Levels in Patients with Breast Cancer: Importance of Dressing Style. Asian Pac. J. Cancer Prev. 2014, 15, 1357–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beer, T.M.; Ryan, C.W.; Venner, P.M.; Petrylak, D.P.; Chatta, G.S.; Ruether, J.D.; Redfern, C.H.; Fehrenbacher, L.; Saleh, M.N.; Waterhouse, D.M.; et al. Double-Blinded Randomized Study of High-Dose Calcitriol Plus Docetaxel Compared With Placebo Plus Docetaxel in Androgen-Independent Prostate Cancer: A Report From the ASCENT Investigators. J. Clin. Oncol. 2007, 25, 669–674. [Google Scholar] [CrossRef]
- Porter, S.; Scott, S.D.; Sassoon, E.M.; Williams, M.R.; Jones, J.L.; Girling, A.C.; Ball, R.Y.; Edwards, D.R. Dysregulated expression of adamalysin-thrombospondin genes in human breast cancer. Clin. Cancer Res. 2004, 10, 2429–2440. [Google Scholar] [CrossRef] [Green Version]
- Wall, S.J.; Edwards, D.R. Quantitative reverse transcription-polymerase chain reaction (RT-PCR_: A comparison of primer-dropping, competitive, and real-time RT-PCRs. Anal. Biochem. 2002, 300, 269–273. [Google Scholar] [CrossRef]
Tumour ID | Involucrin Expression | Normalised Involucrin Expression Level | Fold Increase in Involucrin Expression | Involucrin Expression Level | Brk Expression | Normalised Brk Expression Level | Fold Increase in Brk Expression | Brk Expression Level |
---|---|---|---|---|---|---|---|---|
915 | N | Y | 1.589 | 10 | HIGH | |||
911 | N | Y | 5.367 | 33 | HIGH | |||
925 | N | Y | 4.112 | 25 | HIGH | |||
917 | N | Y | 0.577 | 4 | MED | |||
905 | N | Y | 2.14 | 13 | HIGH | |||
906 | N | N | ||||||
922 | N | Y | 3.455 | 21 | HIGH | |||
904 | N | N | ||||||
909 | N | Y | 1.162 | 7 | MED | |||
907 | N | Y | 5.829 | 36 | HIGH | |||
910 | Y | 0.029 | 0 | LOW | Y | 15.457 | 94 | HIGH |
834 | Y | 0.046 | 0 | LOW | N | |||
814 | Y | 0.132 | 0 | LOW | Y | 0.701 | 4 | LOW |
836 | Y | 0.174 | 1 | LOW | Y | 0.94 | 6 | LOW |
916 | Y | 0.175 | 1 | LOW | Y | 2.031 | 12 | HIGH |
843 | Y | 0.222 | 1 | LOW | Y | 0.127 | 1 | LOW |
817 | Y | 0.352 | 1 | LOW | Y | 3.462 | 21 | HIGH |
903 | Y | 0.542 | 2 | LOW | Y | 1.621 | 10 | HIGH |
927 | Y | 0.607 | 2 | LOW | Y | 1.79 | 11 | HIGH |
841 | Y | 0.631 | 2 | LOW | N | |||
901 | Y | 0.855 | 3 | LOW | Y | 2.074 | 13 | HIGH |
805 | Y | 0.984 | 3 | LOW | Y | 3.987 | 24 | HIGH |
919 | Y | 1.126 | 4 | LOW | Y | 8.411 | 51 | HIGH |
920 | Y | 1.361 | 5 | MED | Y | 9.865 | 60 | HIGH |
827 | Y | 1.447 | 5 | MED | Y | 4.078 | 25 | HIGH |
844 | Y | 1.475 | 5 | MED | Y | 0.619 | 4 | LOW |
810 | Y | 1.87 | 6 | MED | Y | 2.171 | 13 | HIGH |
824 | Y | 2.224 | 8 | MED | N | |||
801 | Y | 2.62 | 9 | MED | Y | 2.88 | 18 | HIGH |
812 | Y | 2.845 | 10 | HIGH | Y | 4.67 | 28 | HIGH |
924 | Y | 3.406 | 12 | HIGH | Y | 1.698 | 10 | HIGH |
926 | Y | 3.746 | 13 | HIGH | Y | 13.511 | 82 | HIGH |
815 | Y | 5.355 | 18 | HIGH | Y | 1.596 | 10 | HIGH |
802 | Y | 5.477 | 19 | HIGH | Y | 5.191 | 32 | HIGH |
908 | Y | 6.25 | 21 | HIGH | Y | 3.312 | 20 | HIGH |
818 | Y | 6.943 | 23 | HIGH | Y | 1.194 | 7 | MED |
804 | Y | 7.361 | 25 | HIGH | Y | 0.341 | 2 | LOW |
914 | Y | 8.636 | 29 | HIGH | Y | 2.485 | 15 | HIGH |
921 | Y | 8.636 | 29 | HIGH | Y | 5.637 | 34 | HIGH |
820 | Y | 12.266 | 41 | HIGH | Y | 0.74 | 5 | MED |
845 | Y | 16.048 | 54 | HIGH | Y | 2.394 | 15 | HIGH |
923 | y | 28.93 | 98 | HIGH | Y | 9.537 | 58 | HIGH |
902 | Y | 53.315 | 180 | HIGH | Y | 1.71 | 10 | HIGH |
913 | Y | 55.088 | 186 | HIGH | Y | 2.008 | 12 | HIGH |
831 | Y | 60.149 | 203 | HIGH | Y | 4.519 | 28 | HIGH |
807 | Y | 105.604 | 357 | HIGH | Y | 0.753 | 5 | MED |
MDA- MB- 157 | MDA- MB- 468 | CAL 51 | PMC 42 | GI 101 | T47D | MDA- MB- 361 | SK-BR-3 | |
---|---|---|---|---|---|---|---|---|
ER | − | − | − | + | +/− | + | + | − |
VDR | + | − | − | + | + | + | + | + |
Brk | − | − | − | − | + | + | + | + |
Involucrin | − | − | − | − | + | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Box, C.; Pennington, C.; Hare, S.; Porter, S.; Edwards, D.; Eccles, S.; Crompton, M.; Harvey, A. Brk/PTK6 and Involucrin Expression May Predict Breast Cancer Cell Responses to Vitamin D3. Int. J. Mol. Sci. 2023, 24, 10757. https://doi.org/10.3390/ijms241310757
Box C, Pennington C, Hare S, Porter S, Edwards D, Eccles S, Crompton M, Harvey A. Brk/PTK6 and Involucrin Expression May Predict Breast Cancer Cell Responses to Vitamin D3. International Journal of Molecular Sciences. 2023; 24(13):10757. https://doi.org/10.3390/ijms241310757
Chicago/Turabian StyleBox, Carol, Caroline Pennington, Stephen Hare, Sarah Porter, Dylan Edwards, Suzanne Eccles, Mark Crompton, and Amanda Harvey. 2023. "Brk/PTK6 and Involucrin Expression May Predict Breast Cancer Cell Responses to Vitamin D3" International Journal of Molecular Sciences 24, no. 13: 10757. https://doi.org/10.3390/ijms241310757
APA StyleBox, C., Pennington, C., Hare, S., Porter, S., Edwards, D., Eccles, S., Crompton, M., & Harvey, A. (2023). Brk/PTK6 and Involucrin Expression May Predict Breast Cancer Cell Responses to Vitamin D3. International Journal of Molecular Sciences, 24(13), 10757. https://doi.org/10.3390/ijms241310757