Incomplete Recovery from the Radiocontrast-Induced Dysregulated Cell Cycle, Adhesion, and Fibrogenesis in Renal Tubular Cells after Radiocontrast (Iohexol) Removal
Abstract
:1. Introduction
2. Results
2.1. Irreversible Iohexol-Induced Changes in Renal Tubular Cells after Its Removal
2.2. Removal of Iohexol Reduced Apoptosis but Slightly Increased G2/M Arrest and Polyploidy
2.3. Effect of Medium Replacement on the Expression of p21, p27, and p53 after Iohexol Treatment
2.4. Iohexol Impaired the Adhesion, Spreading, and Expression of ZO-1 and E-cadherin in Renal Tubular Cells
2.5. Iohexol Removal Did Not Fully Reverse the Increase in Fibrosis-Related Protein Expression
3. Discussion
4. Materials and Methods
4.1. Cell Culture and Experiment Model for CIN
4.2. MTT Assay
4.3. Flow Cytometric Analysis of Cell Cycle State, Apoptosis, and Polyploidy
4.4. Protein Extraction and Western Blot Analysis
4.5. Cell Adhesion and Spreading
4.6. ELISA
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murphy, S.W.; Barrett, B.J.; Parfrey, P.S. Contrast nephropathy. J. Am. Soc. Nephrol. 2000, 11, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Fahling, M.; Seeliger, E.; Patzak, A.; Persson, P.B. Understanding and preventing contrast-induced acute kidney injury. Nat. Rev. Nephrol. 2017, 13, 169–180. [Google Scholar] [CrossRef] [PubMed]
- McCullough, P.A.; Wolyn, R.; Rocher, L.L.; Levin, R.N.; O’Neill, W.W. Acute renal failure after coronary intervention: Incidence, risk factors, and relationship to mortality. Am. J. Med. 1997, 103, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Bouzas-Mosquera, A.; Vázquez-Rodríguez, J.M.; Calviño-Santos, R.; Peteiro-Vázquez, J.; Flores-Ríos, X.; Marzoa-Rivas, R.; Piñón-Esteban, P.; Aldama-López, G.; Salgado-Fernández, J.; Vázquez-González, N.; et al. Contrast-Induced Nephropathy and Acute Renal Failure Following Emergent Cardiac Catheterization: Incidence, Risk Factors and Prognosis. Revista Española de Cardiología (Engl. Ed.) 2007, 60, 1026–1034. [Google Scholar] [CrossRef]
- Mehran, R.; Nikolsky, E. Contrast-induced nephropathy: Definition, epidemiology, and patients at risk. Kidney Int. Suppl. 2006, 69, S11–S15. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.-Y.; Hsieh, M.-S.; Lin, M.-Y.; Hsu, C.-Y.; Lin, T.-C.; How, C.-K.; Wang, C.-Y.; Tsai, J.C.-H.; Wu, Y.-H.; Chang, Y.-Z. Trends of CT utilisation in an emergency department in Taiwan: A 5-year retrospective study. BMJ Open 2016, 6, e010973. [Google Scholar] [CrossRef] [Green Version]
- Solomon, R. The role of osmolality in the incidence of contrast-induced nephropathy: A systematic review of angiographic contrast media in high risk patients. Kidney Int. 2005, 68, 2256–2263. [Google Scholar] [CrossRef] [Green Version]
- Bucher, A.M.; De Cecco, C.N.; Schoepf, U.J.; Meinel, F.G.; Krazinski, A.W.; Spearman, J.V.; McQuiston, A.D.; Wang, R.; Bucher, J.; Vogl, T.J.; et al. Is contrast medium osmolality a causal factor for contrast-induced nephropathy? BioMed Res. Int. 2014, 2014, 931413. [Google Scholar] [CrossRef] [Green Version]
- Skehan, S.J.; Rasmussen, F.; Gibney, R.G.; Lindequist, S.; Moller-Nielsen, S.; Svaland, M.G.; Kampenes, V.B.; Bjartveit, K.; Greaney, T.; Carlsen, S.D.; et al. A comparison of a non-ionic dimer, iodixanol with a non-ionic monomer, iohexol in low dose intravenous urography. Br. J. Radiol. 1998, 71, 910–917. [Google Scholar] [CrossRef]
- Pan, H.C.; Chen, H.Y.; Chen, H.M.; Huang, Y.T.; Fang, J.T.; Chen, Y.C. Risk factors and 180-day mortality of acute kidney disease in critically ill patients: A multi-institutional study. Front. Med. 2023, 10, 1153670. [Google Scholar] [CrossRef]
- Boozari, M.; Hosseinzadeh, H. Preventing contrast-induced nephropathy (CIN) with herbal medicines: A review. Phytother. Res. 2020, 35, 1130–1146. [Google Scholar] [CrossRef]
- Lin, Q.; Li, S.; Jiang, N.; Jin, H.; Shao, X.; Zhu, X.; Wu, J.; Zhang, M.; Zhang, Z.; Shen, J.; et al. Inhibiting NLRP3 inflammasome attenuates apoptosis in contrast-induced acute kidney injury through the upregulation of HIF1A and BNIP3-mediated mitophagy. Autophagy 2020, 17, 2975–2990. [Google Scholar] [CrossRef]
- Billings, F.T.; Chen, S.W.C.; Kim, M.; Park, S.W.; Song, J.H.; Wang, S.; Herman, J.; D’Agati, V.; Lee, H.T. α2-Adrenergic agonists protect against radiocontrast-induced nephropathy in mice. Am. J. Physiol. Ren. Physiol. 2008, 295, F741–F748. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.-L.; Lei, R.; Duan, S.-B.; Tang, M.-M.; Luo, M.; Xu, Q. Atorvastatin alleviates iodinated contrast media-induced cytotoxicity in human proximal renal tubular epithelial cells. Exp. Ther. Med. 2017, 14, 3309–3313. [Google Scholar] [CrossRef] [Green Version]
- Maioli, M.; Toso, A.; Leoncini, M.; Gallopin, M.; Musilli, N.; Bellandi, F. Persistent renal damage after contrast-induced acute kidney injury: Incidence, evolution, risk factors, and prognosis. Circulation 2012, 125, 3099–3107. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.Z.; Schmerbach, K.; Lu, Y.; Perlewitz, A.; Nikitina, T.; Cantow, K.; Seeliger, E.; Persson, P.B.; Patzak, A.; Liu, R.; et al. Iodinated contrast media cause direct tubular cell damage, leading to oxidative stress, low nitric oxide, and impairment of tubuloglomerular feedback. Am. J. Physiol. Renal Physiol. 2014, 306, F864–F872. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.; Larsson, A.; Venge, P.; Bellomo, R.; Martensson, J. Assessment of cell-cycle arrest biomarkers to predict early and delayed acute kidney injury. Dis. Markers 2015, 2015, 158658. [Google Scholar] [CrossRef] [Green Version]
- Canaud, G.; Bonventre, J.V. Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury. Nephrol. Dial. Transplant. 2015, 30, 575–583. [Google Scholar] [CrossRef] [Green Version]
- Thomasova, D.; Anders, H.-J. Cell cycle control in the kidney. Nephrol. Dial. Transplant. 2015, 30, 1622–1630. [Google Scholar] [CrossRef] [Green Version]
- Sturmlechner, I.; Durik, M.; Sieben, C.J.; Baker, D.J.; van Deursen, J.M. Cellular senescence in renal ageing and disease. Nat. Rev. Nephrol. 2017, 13, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, H.; Chen, S.; Chen, J.; Tan, N.; Zhou, Y.; Liu, Y.; Ye, P.; Ran, P.; Duan, C.; et al. Excessively High Hydration Volume May Not Be Associated with Decreased Risk of Contrast-Induced Acute Kidney Injury After Percutaneous Coronary Intervention in Patients With Renal Insufficiency. J. Am. Heart Assoc. 2016, 5, e003171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nijssen, E.C.; Rennenberg, R.J.; Nelemans, P.J.; Essers, B.A.; Janssen, M.M.; Vermeeren, M.A.; Ommen, V.V.; Wildberger, J.E. Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): A prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet 2017, 389, 1312–1322. [Google Scholar] [CrossRef] [PubMed]
- Burgess, W.P.; Walker, P.J. Mechanisms of Contrast-Induced Nephropathy Reduction for Saline (NaCl) and Sodium Bicarbonate (NaHCO3). BioMed Res. Int. 2014, 2014, 510385. [Google Scholar] [CrossRef] [Green Version]
- Persson, P.B.; Patzak, A. Renal haemodynamic alterations in contrast medium-induced nephropathy and the benefit of hydration. Nephrol. Dial. Transplant. 2005, 20 (Suppl. 1), i2–i5. [Google Scholar] [CrossRef] [Green Version]
- Briguori, C.; Signoriello, G. Acute kidney injury: Intravenous hydration for the prevention of CIAKI. Nat. Rev. Nephrol. 2017, 13, 264–266. [Google Scholar] [CrossRef]
- Gupta, R.; Moza, A.; Cooper, C.J. Intravenous Hydration and Contrast-Induced Acute Kidney Injury: Too Much of a Good Thing? J. Am. Heart Assoc. 2016, 6, e003777. [Google Scholar] [CrossRef] [Green Version]
- Passos, M.T.; Nishida, S.K.; Camara, N.O.; Shimizu, M.H.; Mastroianni-Kirsztajn, G. Iohexol clearance for determination of glomerular filtration rate in rats induced to acute renal failure. PLoS ONE 2015, 10, e0123753. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Yang, J.; Li, L.; Tan, H.; Wu, Y.; Ran, P.; Sun, S.; Chen, J.; Zhou, Y. Atorvastatin protects against contrast-induced nephropathy via anti-apoptosis by the upregulation of Hsp27 in vivo and in vitro. Mol. Med. Rep. 2017, 15, 1963–1972. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.J.; Zhong, Z.S.; Qi, G.X.; Tian, W. The efficacy of N-acetylcysteine plus sodium bicarbonate in the prevention of contrast-induced nephropathy after cardiac catheterization and percutaneous coronary intervention: A meta-analysis of randomized controlled trials. Int. J. Cardiol. 2016, 221, 251–259. [Google Scholar] [CrossRef]
- Xu, R.; Tao, A.; Bai, Y.; Deng, Y.; Chen, G. Effectiveness of N-Acetylcysteine for the Prevention of Contrast-Induced Nephropathy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis. 2016, 5, e003968. [Google Scholar] [CrossRef] [Green Version]
- Subramaniam, R.M.; Suarez-Cuervo, C.; Wilson, R.F.; Turban, S.; Zhang, A.; Sherrod, C.; Aboagye, J.; Eng, J.; Choi, M.J.; Hutfless, S.; et al. Effectiveness of Prevention Strategies for Contrast-Induced Nephropathy: A Systematic Review and Meta-analysis. Ann. Intern. Med. 2016, 164, 406–416. [Google Scholar] [CrossRef]
- Nough, H.; Daryachahei, R.; Hadiani, L.; Najarzadegan, M.R.; Mirzaee, M.; Hemayati, R.; Meidani, M.; Mousazadeh, R.; Namayandeh, S. Ascorbic acid effect on CIN incidence in diabetic patient after coronary angiography. Adv. Biomed. Res. 2016, 5, 69. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Duan, Y.; Zheng, J.; Wang, Y.; Wang, G.; Norgren, S.; Hei, T.K. Nephroprotective Effects of N-Acetylcysteine Amide against Contrast-Induced Nephropathy through Upregulating Thioredoxin-1, Inhibiting ASK1/p38MAPK Pathway, and Suppressing Oxidative Stress and Apoptosis in Rats. Oxid. Med. Cell. Longev. 2016, 2016, 8715185. [Google Scholar] [CrossRef] [Green Version]
- de Almeida, L.S.; Barboza, J.R.; Freitas, F.P.; Porto, M.L.; Vasquez, E.C.; Meyrelles, S.S.; Gava, A.L.; Pereira, T.M. Sildenafil prevents renal dysfunction in contrast media-induced nephropathy in Wistar rats. Hum. Exp. Toxicol. 2016, 35, 1194–1202. [Google Scholar] [CrossRef]
- Kongkham, S.; Sriwong, S.; Tasanarong, A. Protective effect of alpha tocopherol on contrast-induced nephropathy in rats. Nefrologia 2013, 33, 116–123. [Google Scholar] [CrossRef]
- Gong, X.; Duan, Y.; Zheng, J.; Ye, Z.; Hei, T.K. Tetramethylpyrazine Prevents Contrast-Induced Nephropathy via Modulating Tubular Cell Mitophagy and Suppressing Mitochondrial Fragmentation, CCL2/CCR2-Mediated Inflammation, and Intestinal Injury. Oxid. Med. Cell. Longev. 2019, 2019, 7096912. [Google Scholar] [CrossRef] [Green Version]
- Rear, R.; Bell, R.M.; Hausenloy, D.J. Contrast-induced nephropathy following angiography and cardiac interventions. Heart 2016, 102, 638–648. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.H.; Koh, S.O.; Kim, E.J.; Cho, J.S.; Na, S.-W. Incidence and outcome of contrast-associated acute kidney injury assessed with Risk, Injury, Failure, Loss, and End-stage kidney disease (RIFLE) criteria in critically ill patients of medical and surgical intensive care units: A retrospective study. BMC Anesthesiol. 2015, 15, 23. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, M.S.; Chiu, C.S.; How, C.K.; Chiang, J.H.; Sheu, M.L.; Chen, W.C.; Lin, H.J.; Hsieh, V.C.; Hu, S.Y. Contrast Medium Exposure During Computed Tomography and Risk of Development of End-Stage Renal Disease in Patients with Chronic Kidney Disease: A Nationwide Population-Based, Propensity Score-Matched, Longitudinal Follow-Up Study. Medicine 2016, 95, e3388. [Google Scholar] [CrossRef]
- Wen, X.; Peng, Z.; Li, Y.; Wang, H.; Bishop, J.V.; Chedwick, L.R.; Singbartl, K.; Kellum, J.A. One dose of cyclosporine A is protective at initiation of folic acid-induced acute kidney injury in mice. Nephrol. Dial. Transplant. 2012, 27, 3100–3109. [Google Scholar] [CrossRef] [Green Version]
- Lovisa, S.; LeBleu, V.S.; Tampe, B.; Sugimoto, H.; Vadnagara, K.; Carstens, J.L.; Wu, C.-C.; Hagos, Y.; Burckhardt, B.C.; Pentcheva-Hoang, T.; et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat. Med. 2015, 21, 998–1009. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, T.G.; Bulugahapitiya, S. Contrast-Induced Nephropathy. Am. J. Roentgenol. 2004, 183, 1673–1689. [Google Scholar] [CrossRef] [PubMed]
- Kiss, N.; Hamar, P. Histopathological Evaluation of Contrast-Induced Acute Kidney Injury Rodent Models. BioMed Res. Int. 2016, 2016, 3763250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Besschetnova, T.Y.; Brooks, C.R.; Shah, J.V.; Bonventre, J.V. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat. Med. 2010, 16, 535–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zlotorynski, E. Ageing: Live longer with small nucleoli. Nat. Rev. Mol. Cell Biol. 2017, 18, 651. [Google Scholar] [CrossRef]
- Bonventre, J.V. Maladaptive Proximal Tubule Repair: Cell Cycle Arrest. Nephron Clin. Pract. 2014, 127, 61–64. [Google Scholar] [CrossRef]
- Was, H.; Borkowska, A.; Olszewska, A.; Klemba, A.; Marciniak, M.; Synowiec, A.; Kieda, C. Polyploidy formation in cancer cells: How a Trojan horse is born. Semin. Cancer Biol. 2022, 81, 24–36. [Google Scholar] [CrossRef]
- Chawla, L.S.; Bellomo, R.; Bihorac, A.; Goldstein, S.L.; Siew, E.D.; Bagshaw, S.M.; Bittleman, D.; Cruz, D.; Endre, Z.; Fitzgerald, R.L.; et al. Acute kidney disease and renal recovery: Consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat. Rev. Nephrol. 2017, 13, 241–257. [Google Scholar] [CrossRef] [Green Version]
- Biliran, H., Jr.; Wang, Y.; Banerjee, S.; Xu, H.; Heng, H.; Thakur, A.; Bollig, A.; Sarkar, F.H.; Liao, J.D. Overexpression of cyclin D1 promotes tumor cell growth and confers resistance to cisplatin-mediated apoptosis in an elastase-myc transgene-expressing pancreatic tumor cell line. Clin. Cancer Res. 2005, 11, 6075–6086. [Google Scholar] [CrossRef] [Green Version]
- Chang-Panesso, M.; Humphreys, B.D. Cellular plasticity in kidney injury and repair. Nat. Rev. Nephrol. 2016, 13, 39. [Google Scholar] [CrossRef]
- Pan, T.-L.; Hsu, S.-Y.; Wang, P.-W.; Cheng, Y.-T.; Chang, Y.-C.; Saha, S.; Hu, J.; Ouyang, P. FLJ25439, a novel cytokinesis-associated protein, induces tetraploidization and maintains chromosomal stability via enhancing expression of endoplasmic reticulum stress chaperones. Cell Cycle 2015, 14, 1174–1187. [Google Scholar] [CrossRef]
- Moonen, L.; D’Haese, P.C.; Vervaet, B.A. Epithelial Cell Cycle Behaviour in the Injured Kidney. Int. J. Mol. Sci. 2018, 19, 2038. [Google Scholar] [CrossRef] [Green Version]
- Wei-Gang, W.; Wei-Xia, S.; Bao-Shan, G.; Xin, L.; Hong-lan, Z. Cell cycle arrest as a therapeutic target of acute kidney injury. Curr. Protein Peptide Sci. 2016, 18, 1224–1231. [Google Scholar] [CrossRef]
- Ellis, J.H.; Cohan, R.H. Prevention of contrast-induced nephropathy: An overview. Radiol. Clin. 2009, 47, 801–811. [Google Scholar] [CrossRef]
- Verbon, E.H.; Post, J.A.; Boonstra, J. The influence of reactive oxygen species on cell cycle progression in mammalian cells. Gene 2012, 511, 1–6. [Google Scholar] [CrossRef]
- Kushida, N.; Nomura, S.; Mimura, I.; Fujita, T.; Yamamoto, S.; Nangaku, M.; Aburatani, H. Hypoxia-Inducible Factor-1α Activates the Transforming Growth Factor-β/SMAD3 Pathway in Kidney Tubular Epithelial Cells. Am. J. Nephrol. 2016, 44, 276–285. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, R.; Wang, Z. Contribution of Oxidative Stress to HIF-1-Mediated Profibrotic Changes during the Kidney Damage. Oxid. Med. Cell. Longev. 2021, 2021, 6114132. [Google Scholar] [CrossRef]
- Koshiji, M.; Kageyama, Y.; Pete, E.A.; Horikawa, I.; Barrett, J.C.; Huang, L.E. HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. EMBO J. 2004, 23, 1949–1956. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.M.; You, S.J.; Lee, Y.M.; Oh, S.W.; Ahn, S.Y.; Kim, S.; Chin, H.J.; Chae, D.W.; Na, K.Y. Hypoxia-inducible factor activation protects the kidney from gentamicin-induced acute injury. PLoS ONE 2012, 7, e48952. [Google Scholar] [CrossRef] [Green Version]
- Koyano, T.; Namba, M.; Kobayashi, T.; Nakakuni, K.; Nakano, D.; Fukushima, M.; Nishiyama, A.; Matsuyama, M. The p21 dependent G2 arrest of the cell cycle in epithelial tubular cells links to the early stage of renal fibrosis. Sci. Rep. 2019, 9, 12059. [Google Scholar] [CrossRef] [Green Version]
- Ryan, M.J.; Johnson, G.; Kirk, J.; Fuerstenberg, S.M.; Zager, R.A.; Torok-Storb, B. HK-2: An immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney Int. 1994, 45, 48–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, B.; Zhao, Q.; Li, J.; Xing, T.; Wang, F.; Wang, N. Renalase Protects against Contrast-Induced Nephropathy in Sprague-Dawley Rats. PLoS ONE 2015, 10, e0116583. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Liao, G.; Zhou, Q.; Lv, D.; Holthfer, H.; Zou, H. Sulforaphane Attenuates Contrast-Induced Nephropathy in Rats via Nrf2/HO-1 Pathway. Oxid. Med. Cell. Longev. 2016, 2016, 9825623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardiek, K.; Katholi, R.E.; Ramkumar, V.; Deitrick, C. Proximal tubule cell response to radiographic contrast media. Am. J. Physiol. Renal Physiol. 2001, 280, F61–F70. [Google Scholar] [CrossRef]
- Pozarowski, P.; Darzynkiewicz, Z. Analysis of cell cycle by flow cytometry. Methods Mol. Biol. 2004, 281, 301–311. [Google Scholar] [CrossRef]
- Kim, D.H.; Wirtz, D. Predicting how cells spread and migrate: Focal adhesion size does matter. Cell Adh. Migr. 2013, 7, 293–296. [Google Scholar] [CrossRef] [Green Version]
- Trepat, X.; Chen, Z.; Jacobson, K. Cell migration. Compr. Physiol. 2012, 2, 2369–2392. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.-Y.; Wu, Y.-H.; Wei, C.-Y.; Liao, Z.-Y.; Wu, H.-T.; Chen, Y.-C.; Pang, J.-H.S. Incomplete Recovery from the Radiocontrast-Induced Dysregulated Cell Cycle, Adhesion, and Fibrogenesis in Renal Tubular Cells after Radiocontrast (Iohexol) Removal. Int. J. Mol. Sci. 2023, 24, 10945. https://doi.org/10.3390/ijms241310945
Chen H-Y, Wu Y-H, Wei C-Y, Liao Z-Y, Wu H-T, Chen Y-C, Pang J-HS. Incomplete Recovery from the Radiocontrast-Induced Dysregulated Cell Cycle, Adhesion, and Fibrogenesis in Renal Tubular Cells after Radiocontrast (Iohexol) Removal. International Journal of Molecular Sciences. 2023; 24(13):10945. https://doi.org/10.3390/ijms241310945
Chicago/Turabian StyleChen, Hsing-Yu, Yi-Hong Wu, Cheng-Yu Wei, Zhi-Yao Liao, Hsiao-Ting Wu, Yung-Chang Chen, and Jong-Hwei S. Pang. 2023. "Incomplete Recovery from the Radiocontrast-Induced Dysregulated Cell Cycle, Adhesion, and Fibrogenesis in Renal Tubular Cells after Radiocontrast (Iohexol) Removal" International Journal of Molecular Sciences 24, no. 13: 10945. https://doi.org/10.3390/ijms241310945
APA StyleChen, H. -Y., Wu, Y. -H., Wei, C. -Y., Liao, Z. -Y., Wu, H. -T., Chen, Y. -C., & Pang, J. -H. S. (2023). Incomplete Recovery from the Radiocontrast-Induced Dysregulated Cell Cycle, Adhesion, and Fibrogenesis in Renal Tubular Cells after Radiocontrast (Iohexol) Removal. International Journal of Molecular Sciences, 24(13), 10945. https://doi.org/10.3390/ijms241310945