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Abstract: Macroalgae and macroalgae-associated bacteria together constitute the most efficient
metabolic cycling system in the ocean. Their interactions, especially the responses of macroalgae-
associated bacteria communities to algae in different geographical locations, are mostly unknown.
In this study, metagenomics was used to analyze the microbial diversity and associated algal-
polysaccharide-degrading enzymes on the surface of red algae among three remote regions. There
were significant differences in the macroalgae-associated bacteria community composition and
diversity among the different regions. At the phylum level, Proteobacteria, Bacteroidetes, and Acti-
nobacteria had a significantly high relative abundance among the regions. From the perspective
of species diversity, samples from China had the highest macroalgae-associated bacteria diversity,
followed by those from Antarctica and Indonesia. In addition, in the functional prediction of the
bacterial community, genes associated with amino acid metabolism, carbohydrate metabolism, energy
metabolism, metabolism of cofactors and vitamins, and membrane transport had a high relative
abundance. Canonical correspondence analysis and redundancy analysis of environmental factors
showed that, without considering algae species and composition, pH and temperature were the
main environmental factors affecting bacterial community structure. Furthermore, there were sig-
nificant differences in algal-polysaccharide-degrading enzymes among the regions. Samples from
China and Antarctica had high abundances of algal-polysaccharide-degrading enzymes, while those
from Indonesia had extremely low abundances. The environmental differences between these three
regions may impose a strong geographic differentiation regarding the biodiversity of algal micro-
biomes and their expressed enzyme genes. This work expands our knowledge of algal microbial
ecology, and contributes to an in-depth study of their metabolic characteristics, ecological functions,
and applications.

Keywords: metagenomics; red algae; microbial diversity; algal-polysaccharide-degrading enzymes

1. Introduction

Marine algae produce approximately half of the global primary productivity, and the
algae polysaccharides produced by these algae, together with polysaccharide-degrading
heterotrophic microorganisms and their polysaccharide-degrading enzymes, form the
largest and most dynamic carbon cycle on Earth [1,2]. However, little is known about this
microbial-driven system of marine carbon metabolism.

Int. J. Mol. Sci. 2023, 24, 11019. https://doi.org/10.3390/ijms241311019 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms241311019
https://doi.org/10.3390/ijms241311019
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms241311019
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms241311019?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 11019 2 of 20

Marine microorganisms play important roles throughout all marine ecological pro-
cesses; therefore, an increasing amount of attention is being paid to the study of their
populations and functions [3–5]. However, the microbial communities on the surface of
algae are still not fully understood, despite their high biodiversity; furthermore, they are
markedly different from those that live freely in seawater [3]. Microorganisms on the
surface of algae, through a series of complex interactions with their hosts, constitute a
rich source of bioactive compounds and specific polysaccharide active enzymes [6]. It is
generally believed that the secondary metabolites of microorganisms depend on a range
of available organic carbon sources produced by the host algae [7]. Red macroalgae are a
source of nutrition for many marine microorganisms. Carrageenan and agar are types of
sulphated galactose, which are the main cell wall components of red algae [8]. The study of
macroalgae-associated bacterial communities and their relationship with algal hosts pro-
vides important information on the ecological function of algae in aquatic ecosystems [8].
In addition, because these microbes interact with algae in a number of complex ways,
together they form an important source of novel bioactive compounds such as agarase and
carrageenase, with potential applications [6]. Agarose and carrageen, and their oligosac-
charides, are widely used in food, medicine, agriculture, cosmetics, and other fields, and
have huge application potential and market prospects [9,10].

Algae host a large number of bacteria on their surface (up to 106 cells·cm−2), which
varies greatly according to species location and climatic conditions [4,6,11,12]. In addition,
bacteria can become endosymbionts in algal cells and freely grow in the “phycosphere”.
These microorganisms have a very complex relationship with algae [13,14]. Associated
bacteria play a crucial role in the normal growth and development of algae [15]. However,
some bacteria can also become pathogenic [16]. Due to the different thallus components,
macroalgae can also regulate the associated bacteria in various ways, and the community
structure of macroalgae-associated bacteria on the surface of macroalgae also differs [17]. In
addition, seasonal variations, spatial differences, and environmental factors can also affect
the composition of macroalgae-associated bacteria [18,19]. The microbial community com-
position and diversity of the same algal species from different sea areas can be significantly
different. The functional selection of different seaweed species from the same sea area is
also closely related to their habitat, and there are large differences in the dominant species
and diversity [20,21]. The community composition of macroalgae-associated bacteria is not
only related to the environment, but is also affected by the host, which is in accordance
with natural selection.

In recent years, an increasing amount of research has investigated macroalgae-associated
bacteria and algal-polysaccharide-degrading enzymes [22,23]. Numerous macroalgae-
associated marine microorganisms contain undeveloped enzymes such as glycoside hydro-
lase (GH) and polysaccharide lyase (PL) [24], which are involved in important metabolic
pathways, and their characterization has the potential to provide new insights into the
marine carbon cycle. However, the existing research mostly focuses on certain regions,
lacking a comprehensive understanding of the biodiversity and composition of macroalgae-
associated microbiology among remote regions, in part due to limited microbiological
sampling of macroalgae, such as in the remote and hostile Southern Ocean. The spatial
transformation of microbial communities on macroalgae’s surface may be affected by the
complex interactions among abiotic and spatial factors; therefore, it is of great significance
to study the relative effects of different driving forces on microbial diversity and community
composition on the surfaces of macroalgae across remote and distinct environments.

The application of metagenomics significantly promotes the study of marine microbial
diversity and biological function, and greatly increases the opportunities for the discovery
of potential new enzymes [25,26]. Metagenomics not only provides more information for
understanding the microbial diversity that flourishes in marine systems, but can also further
reveal the taxonomic composition and functional potential of microbial communities,
and provide genomic information for understanding the structure and biogeochemical
characteristics of macroalgae ecosystems [6,27].
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In this study, metagenomics was used to analyze the microbial diversity, functional
diversity, and associated algal-polysaccharide-degrading enzymes on the surface of red
algae among three remote regions, and the effects of spatial distance on microbial di-
versity and associated algal-polysaccharide-degrading enzymes, especially the effects of
environmental factors (pH and temperature, etc.), are discussed. This study effectively
extends our understanding of the diversity of algal surface microorganisms and their
polysaccharide-degrading enzymes. This work paves a new path for the exploitation
and utilization of macroalgae resources in the future and the exploitation of excellent
algal-polysaccharide-degrading enzymes from special environmental sources.

2. Results and Discussion
2.1. Characteristics of the Nine Macroalgae Samples

The physiochemical parameters of the seawater overlying the red algae among the
three remote regions differed, with the following ranges (Table 1): water temperature
−1.34–27.9 ◦C, salinity 32.4–34.7‰, pH 8.01–8.79, dissolved oxygen (DO) 8.07–8.79 mg/L,
latitude 0.6–62.2◦, and longitude 58.95–127.86◦. These physicochemical parameters of water
samples can serve as an imperfect proxy for the properties of macroalgae samples, due to
wave and current distributions.

Table 1. The physiochemical parameters of overlying seawater among three remote spaces and the
corresponding most abundant associated bacteria genera.

Location Lat Long DO pH Salinity Temperature The Dominant
Macroalgae-Associated Bacteria

Great Wall Station 62.2◦ 58.95◦ 10.836 mg/L 8.01 34.07‰ −1.34 ◦C
Gammaproteobacteria,

Flavobacteriia, Alphaproteobacteria,
Saprospiria

Halmahera 0.6◦ 127.86◦ 5.44 mg/L 8.79 34.7‰ 27.9 ◦C
Alphaproteobacteria,

Gammaproteobacteria,
Actinobacteria, Flavobacteriia

Weihai 37.42◦ 122.28◦ 6.65 mg/L 8.43 32.4‰ 8 ◦C
Alphaproteobacteria, Flavobacteriia,

Gammaproteobacteria,
Actinobacteria

2.2. Sequencing and Metagenomic Assembly

The Illumina HiSeq sequencing platform produced a total of 81,611.46 Mbp of raw data
(average data volume was 9067.94 Mbp). After quality control, 81,245.68 Mbp of clean data
were obtained (average data volume was 9027.30 Mbp), and the effective data rate of the
quality control was 99.55% (Table S1). After single-sample assembly and mixed assembly,
a total of 2,155,261,173 bp scaftigs were obtained with an average length of 1178.16 bp,
maximum length of 514,363 bp, N50 length of 1230.89 bp, and N90 length of 573.11 bp.
Scaffolds were interrupted at N to generate scaftigs, yielding a total of 2,155,261,173 bp
scaftigs with an average length of 1178 bp; 1231 bp for N50 and 573 bp for N90 (Table S2).

2.3. Microbial Diversity and Community Composition

There were 2,485,201 prediction genes after the original redundancy removal, among
which the number of ORFs annotated in the NR database was 1,781,793 (71.70%). The
proportions were 83.52%, 79.82%, 74.49%, 69.68%, 66.09%, 54.98%, and 44.15% at the
kingdom, phylum, class, order, family, genus, and species levels, respectively.

Among all seawater microorganisms, the community structure of macroalgae-associated
bacteria has certain specificity, and the two can be bidirectionally selected through in-
teractions [28]. Therefore, studying the macroalgae-associated bacteria community is a
necessary prerequisite to understanding the relationship between algae and bacteria. At the
phylum level, Proteobacteria (validly published name: Pseudomonadota), Bacteroidetes
(validly published name: Bacteroidota), and Actinobacteria (validly published name: Acti-
nomycetota) had a significantly high relative abundance in NJDZ, YNDZ, and WHDZ
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samples (Figures 1a and 2a). However, Proteobacteria, Bacteroidetes, and Actinobacteria
had a significantly higher relative abundance in WHDZ samples than in NJDZ and YNDZ
samples. Among them, the maximum abundances of Proteobacteria, Bacteroidetes, and
Actinobacteria were recorded in WHDZ01, NJDZ01, and WHDZ02, respectively (Figure 2c).
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Figure 1. Relative abundance of species at phylum level. (a) Sample clustering analysis; on the left
is Bray–Curtis distance clustering tree structure; on the right is the relative abundance distribution
of each sample at phylum level. (b) NMDS analysis; each point in the figure represents a sample,
the distance between points represents the degree of difference, and samples in the same group are
represented by the same color; the stress is less than 0.2, indicating that the NMDS analysis has a
certain reliability.

Proteobacteria is the most dominant seawater phylum [29]. Bacteroidetes can de-
grade some biological macromolecules such as chitin and cellulose [30]. Actinobacteria
can degrade organic pollutants and play an important role in marine pollution remedi-
ation [31,32]. In addition, some phyla with a low abundance were also recorded, such
as Cyanobacteria and Firmicutes, among which Cyanobacteria had a high abundance in
YNDZ02 and YNDZ03, while Firmicutes had a high abundance in YNDZ01 and YNDZ02.
Vieira et al. pointed out that Firmicutes may be related to sea pollution; therefore, sea areas
with high Firmicutes abundance may indicate pollution [32]. Nonmetric multidimensional
scaling showed that the microbial communities of the NJDZ and WHDZ samples had a
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similar species composition, and the microbial community of the YNDZ samples had a
different species composition (Figure 1b). Environmental and ecological selection may play
a role in generating and maintaining microbial diversity in a geographically defined and
seemingly unstructured marine ecosystem. Algal microbiomes are complex and dynamic,
and their diversity may be driven by ecological or environmental selection to generate and
maintain these intimate relationships over space and evolutionary time [33,34].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 21 
 

 

 
(a) 

 
(b) 

Figure 2. Cont.



Int. J. Mol. Sci. 2023, 24, 11019 6 of 20

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 21 
 

 

 
(c) 

 
(d) 

Figure 2. Relative species abundance at phylum and class levels. (a,c): Relative species abundance 
at phylum levels. (b,d): Relative species abundance at class levels. 

Proteobacteria is the most dominant seawater phylum [29]. Bacteroidetes can de-
grade some biological macromolecules such as chitin and cellulose [30]. Actinobacteria 

Figure 2. Relative species abundance at phylum and class levels. (a,c): Relative species abundance at
phylum levels. (b,d): Relative species abundance at class levels.

The most abundant microbial class among the nine macroalgae samples also sig-
nificantly differed according to region. The dominant macroalgae-associated bacteria of
the NJDZ samples were mostly Gammaproteobacteria, Flavobacteriia, Alphaproteobacte-



Int. J. Mol. Sci. 2023, 24, 11019 7 of 20

ria, and Saprospiria; the dominant macroalgae-associated bacteria of the YNDZ samples
were mostly Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Flavobacteriia,
Acidimicrobiia, and Bacilli; and the dominant macroalgae-associated bacteria of the WHDZ
samples were mostly Alphaproteobacteria, Flavobacteriia, Gammaproteobacteria, Acti-
nobacteria, and Acidimicrobiia (Table 1). It is worth noting that Gammaproteobacteria was
the dominant class in the NJDZ samples, while Alphaproteobacteria was the dominant class
in the WHDZ and YNDZ samples (Figure 2b,d). These results indicate that the community
composition of the macroalgae-associated bacteria is not only related to the environment,
but also affected by the host, in accordance with natural selection.

2.4. Functional Prediction of Bacterial Communities

DIAMOND software (Version 0.9.9.110) was used to annotate the database of common
functions of nonredundant gene sets (e-value ≤ 10−5); there were 2,485,201 predicted
genes after the original redundancy was removed, and 1,493,359 (60.09%) genes could
be compared with the KEGG database, among which 806,765 (32.46%) genes could be
compared with 7566 KEGG ortholog groups. There were 1,428,379 (57.48%) genes that
could be compared with the eggNOG database, and 61,807 (2.49%) that could be compared
with the CAZy database (Table 2).

Table 2. The functional prediction of bacterial communities.

Gene catalogue 2,485,201

Annotated on KEGG 1,493,359 (60.09%)

Annotated on KO 806,765 (32.46%)

Annotated on KO number 7566

Annotated on EC 493,520 (19.86%)/2517

Annotated on pathway 507,914 (20.44%)/409

Annotated on eggNOG 1,428,379 (57.48%)

Annotated on OG 1,428,379 (57.48%)/31,380

Annotated on CAZy 61,807 (2.49%)

In the functional level of the communities, there were significant differences in the com-
position and abundance of functional genes of macroalgae-associated bacteria distributed
in different spaces on the surface of red algae. Regarding the community functional level,
there were significant differences in the composition and abundance of functional genes of
macroalgae-associated bacteria on the surface of red algae among regions. WHDZ samples
had a higher genetic diversity regarding all of the functional properties, while YNDZ
samples had a lower genetic diversity (Figure 3). The distribution of KEGG subclasses
(level 1) showed more genes related to various metabolism pathways, followed by ge-
netic information processing pathways (Figure 3a,b). The relative abundance of YNDZ01
enriched in various pathways was the lowest, and the relative abundance of YNDZ02
enriched in human disease pathways was the highest. These predicted genes were signifi-
cantly enriched in amino acid metabolism, carbohydrate metabolism, energy metabolism,
metabolism of cofactors and vitamins, membrane transport, nucleotide metabolism, and
cellular community-prokaryotes. A principal components analysis plot showed that the
microbial communities in NJDZ, YNDZ, and WHDZ samples differed in terms of functional
structure (Figure 3c).

The annotated genes in the Clusters of Orthologous Genes database are divided into
21 Clusters of Orthologous Genes functional classes. In this analysis, a large number of
contigs were classified as “function unknown (S)”, “amino acid transport and metabolism
(E)”, “energy production and conversion (C)”, “replication, recombination and repair
(L)”, “cell wall/membrane/envelope biogenesis (M)”, and “inorganic ion transport and
metabolism (P)” (Figure S2).
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2.5. CAZymes Insights on the Bacterial Community

The BLASTX results of the CAZy database are combined with the hierarchical structure
of the database to obtain each level of CAZymes information. Comparing the various strains
of the six families with the CAZy database (Figure 4a) revealed 2,151,233 carbohydrate
active enzyme genes, among which the GH family had the most genes (24,756), followed
by the family of glycosyltransferase (GT) genes (20,694), carbohydrate-binding module
(CBM) family genes (11,291), carbohydrate esterase family genes (3079), PL family genes
(2564), and auxiliary activity family genes (1539). The strains with more GH family genes
also had more GT and CBM family genes (Figure 4b), which might be related to the
functional correlation of enzymes in each family. The most abundant families predicted
in this genome were GH28, GH38, GT2, GT4, CBM13, GT51, GH3, CBM6, CBM50, and
GH23 from level 2 of the CAZymes database (Figure 4c). Further analysis showed that
the strains with a high carbohydrate active enzyme gene richness were mainly from the
Pseudoalteromonadaceae of Proteobacteria and Flavobacteriaceae of Bacteroidetes.

Marine algae are the most promising raw material for the replacement of land plants,
and algal oligosaccharides are degraded and utilized by marine heterotrophic microor-
ganisms [35]. Many enzymes in algae-related microorganisms, such as GH and PL, are
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involved in this important metabolic process [6,35]. The GH family can hydrolyze the
glycosidic bonds between two or more carbohydrates or between carbohydrate and non-
carbohydrate components, and are essential in the red algae polysaccharide hydrolyzing
process [36]. The GT family is involved in the biosynthesis of disaccharides, oligosac-
charides, and polysaccharides by catalyzing the transfer of glycosylates from activated
donor molecules to specific receptors to form glycosidic bonds. The most widely dis-
tributed GT2 family proteins have the activities of cellulose synthetase, chitin synthetase,
hyaluronic acid synthetase, glucan synthetase, and mannan synthetase [37]. These enzymes
are related to the synthesis of algae polysaccharides, indicating that these macroalgae-
associated bacteria can not only degrade algae polysaccharides, but also synthesize related
polysaccharides themselves.

The main components of red algae are agar and carrageen. Research on carrageenase
is the earliest and most extensive; κ-carrageenase belongs to the GH16 family and τ-
carrageenase belongs to the GH82 family. β-Agarase belongs to the GH16, GH39, GH50,
GH86, and GH118 families, while α-agarase belongs to the GH96 and GH117 families [38].
β-agarase in the GH16 and GH86 families is an endonuclease, β-agarase in the GH50
family has exonuclease activity, and α-agarase in the GH117 family is an exonuclease [39].
Therefore, when macroalgae-associated bacteria communities contain a variety of GH
family enzyme coding genes, there is an opportunity for the emergence of endo-cut
β-agarase, exo-cut β-agarase, and exo-cut α-agarase systems, which eventually degrade
polysaccharides into oligosaccharides.
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Annotation of the functional genes of the macroalgae-associated bacteria genome
revealed that the bacteria genome isolated from the surface of red algae contained a large
number of genes related to the degradation of alginate. This indicated that most of the
strains on the surface of the algae had the basic function of degrading alginate, which was
related to their living environment and their own carbon source utilization function [40,41].
Therefore, the diversity of these functional genes was further analyzed, revealing the
presence of the PL7 family in strains distributed in Proteobacteria and Bacteroidetes. These
results indicate that the microorganisms on the surface of algae are rich in alginate lyase,
and that algae degradation requires the coordination of enzymes with multiple functions.
These enzymes work together to utilize algae polysaccharides.

2.6. Mining of Enzymes for Algal Polysaccharide Degradation

Increasing attention has been paid to marine oligosaccharides due to their bioactivity,
solubility, and bioavailability. Studies have shown that algae oligosaccharides have many
potential applications [42]. The in-depth functional analysis of nine macroalgae metage-
nomic data was performed to identify new algal-polysaccharide-degrading enzymes for
biotechnological purposes (Table 3 and Figure 5). Metagenomic data were then further ana-
lyzed to explore the number of algal-polysaccharide-degrading enzyme genes. There were
significant differences in algal-polysaccharide-degrading enzymes on the surface of red
algae among the remote regions. The number of alginate lyase, agarose, and carrageenase
genes on the surface of red algae among the regions is shown in Table 3. The number of
agarase genes from WHDZ was 1076, and that from NJDZ was 939, while YNDZ had only
41. The number of carrageenase genes from WHDZ was 940, and that from NJDZ was 759,
with YNDZ only having 33. The number of alginate lyase genes from WHDZ was 840, and
that from NJDZ was 829, while YNDZ had only 1. The agarase gene was mainly distributed
in WHDZ03, followed by NJDZ01. There were very few agarase genes in YNDZ, with only
3 alginate lyase genes in YNDZ01 and 38 in YNDZ03. The carrageenase gene was mainly
distributed in WHDZ03, followed by NJDZ01. Similarly, there were very few carrageenase
genes in YNDZ, with only 3 carrageenase lyase genes in YNDZ01 and 30 in YNDZ03. The
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alginate lyase gene was mainly distributed in NJDZ01, followed by WHDZ03. There were
also very few alginate lyase genes in YNDZ, with only one in YNDZ03.

These results suggest that WHDZ and NJDZ had a high abundance of algal-polysaccharide-
degrading enzymes, while YNDZ had an extremely low abundance. There is evidence
that the characteristics of the algae itself, secretions at different growth stages (small
organic molecules such as early amino acids and organic acids, and large organic molecules
such as algal polysaccharides and lipids), and environmental conditions for algal growth
(such as pH, water flow, light, temperature, and nutrients) affect the composition of the
macroalgae-associated bacterial community, and thus enzyme abundance [43–46]. Of
note, there were significant differences in the algal-polysaccharide-degrading enzymes
on the surface of red algae among the remote regions, especially in the NJDZ samples.
The environmental differences between NJDZ, WHDZ, and YNDZ may impose a strong
geographic differentiation in the biodiversity of algal microbiomes and their expressed
enzyme genes.

Table 3. The predicted proteins containing CAZymes modules acting on algal polysaccharide.

Location Enzyme Number E.C. Number CAZy Family

Agarase

NJDZ 939

EC 3.2.1.81 GH16
EC 3.2.1.81 GH50
EC 3.2.1.81 GH86
EC 3.2.1.- GH117

WHDZ 1076

EC 3.2.1.81 GH16
EC 3.2.1.81 GH50
EC 3.2.1.81 GH86
EC 3.2.1.- GH117

YNDZ 41
EC 3.2.1.81 GH16
EC 3.2.1.- GH117

Carrageenase

NJDZ 759
EC 3.2.1.83 GH16

EC 3.2.1.157 GH82

WHDZ 940
EC 3.2.1.83 GH16

EC 3.2.1.157 GH82
YNDZ 33 EC 3.2.1.83 GH16

Alginate lyase

NJDZ 829

EC 4.2.2.3 PL5
EC 4.2.2.3 PL6
EC 4.2.2.- PL7
EC 4.2.2.3 PL14
EC 4.2.2.3 PL15
EC 4.2.2.3 PL17
EC 4.2.2.3 PL18

WHDZ 840

EC 4.2.2.3 PL5
EC 4.2.2.3 PL6
EC 4.2.2.- PL7
EC 4.2.2.3 PL14
EC 4.2.2.3 PL15
EC 4.2.2.3 PL17

YNDZ 1 EC 4.2.2.3 PL6

Numerous macroalgae-associated marine microorganisms contain undeveloped en-
zymes such as GH and PL, which are involved in important metabolic pathways and whose
characterization has the potential to provide new insights into the marine carbon cycle [24].
This study effectively extends our understanding of the diversity of algae surface microor-
ganisms and their polysaccharide-degrading enzymes. It also deepens our understanding
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of how microorganisms process the hundreds of millions of tons of polysaccharides pro-
duced by algae each year and their role in the marine carbon cycling system.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 13 of 21 
 

 

Table 3. The predicted proteins containing CAZymes modules acting on algal polysaccharide. 

Location Enzyme Number E.C. Number CAZy Family 
Agarase 

NJDZ 939 

EC 3.2.1.81 GH16 
EC 3.2.1.81 GH50 
EC 3.2.1.81 GH86 
EC 3.2.1.- GH117 

WHDZ 1076 

EC 3.2.1.81 GH16 
EC 3.2.1.81 GH50 
EC 3.2.1.81 GH86 
EC 3.2.1.- GH117 

YNDZ 41 EC 3.2.1.81 GH16 
EC 3.2.1.- GH117 

Carrageenase 

NJDZ 759 
EC 3.2.1.83 GH16 

EC 3.2.1.157 GH82 

WHDZ 940 
EC 3.2.1.83 GH16 

EC 3.2.1.157 GH82 
YNDZ 33 EC 3.2.1.83 GH16 

Alginate lyase 

NJDZ 829 

EC 4.2.2.3 PL5 
EC 4.2.2.3 PL6 
EC 4.2.2.- PL7 
EC 4.2.2.3 PL14 
EC 4.2.2.3 PL15 
EC 4.2.2.3 PL17 
EC 4.2.2.3 PL18 

WHDZ 840 

EC 4.2.2.3 PL5 
EC 4.2.2.3 PL6 
EC 4.2.2.- PL7 
EC 4.2.2.3 PL14 
EC 4.2.2.3 PL15 
EC 4.2.2.3 PL17 

YNDZ 1 EC 4.2.2.3 PL6 

 

Figure 5. Relative abundances of agarase (a), carrageenase (b), and alginate lyase (c) in CAZy family
from the metagenomic sample.

2.7. Environmental Factor Analysis

Canonical correspondence analysis (CCA) and redundancy analysis (RDA) were per-
formed using R software (Version 2.15.3), and relationships between bacterial communities
and environmental variables were constructed at the genus level. As shown in Figure 6a,b,
the first and second spindles of the CCA accounted for 56.85% and 43.15% of the vari-
ance in the relative abundance of the bacterial community, respectively, and the first and
second spindles of RDA accounted for 53.46% and 46.54%, respectively. This indicated
that the relationship between the bacterial community and environmental variables was
reliable. The CCA and RDA analyses of environmental factors showed that, without
considering the species and composition of algae, pH and temperature were the main
environmental factors affecting bacterial community structure. Most previous studies have
compared native species diversity (alpha diversity) at different latitudes [46]. However,
recent studies have shown that temperature is also one of the most important variables ex-
plaining the differences in local community species composition over large-scale latitudinal
gradients [34,47].

Salinity, temperature, pH, and DO are the main environmental factors affecting
macroalgae-associated bacteria communities. They not only affect the community structure
and distribution of bacteria, but also can be used to indicate the environmental status
of marine ecosystems [44,45]. In order to further explore the influence of environmental
factors on the macroalgae-associated bacteria communities, a correlation heat map analysis
was conducted, and the results are shown in Figure 7. Limnothrix and Leptolyngbya were
positively correlated with temperature and pH, but negatively correlated with DO. Psy-
chroflexus and Psychromonas were positively correlated with DO, but negatively correlated
with temperature and pH. In addition, Maribacter, Nitratireductors, and Robiginitomacu-
lum were negatively correlated with salinity, and Acinetobacter was positively correlated
with salinity. This showed that environmental factors had varying effects on different
macroalgae-associated bacteria.
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Figure 7. Correlation analysis between macroalgae-associated bacteria and environmental factors.
The horizontal axis is the species information, the vertical axis is the environmental factor, the R-value
is displayed in different colors in the figure, and the legend on the right side is different color intervals;
* 0.01 ≤ p ≤ 0.05, ** 0.001 ≤ p ≤ 0.01.
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2.8. Diverse Bacterial Lineages Potentially Harbor Antibiotic Resistance Genes

This study further screened the diversity and abundance of the antibiotic resistance
genes (ARGs) in the microbial gene catalog. The ARG-like genes were assigned to 20 ARG
classes, with high proportions being unclassified (Figure S3a). The total numbers of ARG
classes in YNZD02 were surprisingly higher than in other samples, suggesting that human
activities may also lead to ARG enrichment [48,49]. YNZD had a higher relative abundance
of ARG classes compared with NJDZ and YNDZ (Figure S3b). These findings suggest
that macroalgae are a neglected but potentially important reservoir of ARGs. The main
ARG classes detected in YNZD02 were TEM-171 and tetG (tetracycline resistance) genes
(Figure S3a). These findings suggest that macroalgae in Halmahera, Indonesia are possibly
contaminated by anthropogenic ARGs to a certain extent. The diversity of ARG hosts with
multiple antibiotic potential resistances suggests that these bacteria are ARG hosts and may
play a key role in the acquisition and spread of antibiotic resistance in macroalgae.

ARGs are present in almost all environments. They are either endemic to the natural
environment or derived from human-dominated ecosystems [50,51]. However, the diversity
and hosts of ARGs in macroalgae remain unclear. Their abundance of microbes indicates
that macroalgae could be a potential reservoir for ARGs. If these microbes that are resistant
to various antibiotics are algal pathogens, this could worsen an outbreak of macroalgal
disease. In addition, macroalgal ecosystems may be contaminated by antibiotics and
ARGs from human and agricultural wastes [52]. Residues of antibiotics in aquatic systems
can be deposited in macroalgae, and may eventually threaten their growth and affect
microbial ecology [53]. Therefore, studying ARGs is an important component of evaluating
macroalgae ecosystem health.

3. Materials and Methods
3.1. Macroalgae Sampling and Characterization

Three macroalgae samples (NJDZ01, NJDZ02, and NJDZ03) were collected from the
Great Wall Station in Antarctica (lat: 62◦12′, long: 58◦57′) during China’s 34th Antarctic
expedition, another three (YNDZ01, YNDZ02, and YNDZ03) from Halmahera in Indonesia
(lat: 0◦36′, long: 127◦52′), and a final three (WHDZ01, WHDZ02, and WHDZ03) from
Weihai in China (lat: 37◦25′, long: 122◦17′). The nine macroalgae samples, identified as
Palmaria decipiens (NJDZ01), Curdiea racovitzae (NJDZ02), Iridaea cordata (NJDZ03), Lau-
rencia japonica (YNDZ01), Amphiroa foliacea (YNDZ02), Gracilaria tenuistipitata (YNDZ03),
Grateloupia filicina (WHDZ01), Chondrus ocellatus (WHDZ02), and Hyalosiphonia caespitosa
(WHDZ03), were collected from the seashore. The algal samples were washed with sterile
seawater and brought back to the laboratory for collection of surface-associated bacteria.

Samples were then washed again with sterile seawater in the laboratory. After washing,
sterile scissors were used to cut the algae into smaller chunks. They were then placed in a
sterile tube with an appropriate amount of sterilized seawater and vortexed three times
for 40 s each. The liquid was filtered onto 0.22 µm filter membranes (Merck Millipore,
Darmstadt, Germany) to collect the associated bacteria.

3.2. DNA Extraction and Sequencing

The FastDNA Spin Kit for Soil (MP Bio, Santa Ana, CA, USA) was used to extract
genomic DNA from the macroalgae-associated microorganisms. After genomic DNA
extraction was completed, the extracted genomic DNA purity and integrity were analyzed
using agarose gel electrophoresis (Figure S1). To conduct metagenomic sequencing of the
DNA samples of the macroalgae-associated microorganisms, the qualified genomic DNA
was sent to Novogene Bioinformatics Technology Co., Ltd. (Beijing, China) for sequencing,
assembly, and functional annotation.

After base calling, the result file stored in FASTQ format, called a raw read, was
obtained. Since the original dismounting data may contain data with joints (introduced
during database construction) and a certain proportion of low-quality data (generated with
sequencing reading), in order to ensure the accuracy and reliability of subsequent analysis
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results, Trim Galore was used to preprocess raw data and obtain clean data for subsequent
analysis. In the preprocessing, the junction sequence in sequencing reads, sequences with
average mass value <25, truncated sequences with a length <70 bp, and host sequence
contaminations were removed. Due to the impact of the high-throughput sequencing error
rate on the results, it was necessary to evaluate the quality of the optimized data.

3.3. Metagenome Assembly

After pretreatment, clean data were obtained, and assembly analysis was performed
using MEGAHIT assembly software (Version 1.0.4, http://www.l3-bioinfo.com/products/
megahit.html accessed on 8 December 2022) [54]. The assembled scaffolds were bro-
ken at the N joint to produce N-free sequence fragments called scaftigs. Clean data of
samples after quality control were compared with scaftigs after sample assembly using
Bowtie2 software (https://bowtie-bio.sourceforge.net/bowtie2/index.shtml accessed on
10 December 2022) [55], and unused pair-end reads were obtained. The unused reads of
each sample were combined together for mixed assembly with the same assembly param-
eters as those of a single sample. Then the assembled scaftigs were interrupted from N
connection and the scaftigs without N were left. For scaftigs generated by single-sample
and mixed assembly, fragments <500 bp were filtered out, and statistical analysis and
subsequent gene prediction were performed.

3.4. Gene Prediction and Abundance Analysis

MetaGeneMark (Version 2.1, http://topaz.gatech.edu/GeneMark/meta_gmhmmp.
cgi accessed on 11 December 2022) [56] was utilized to predict the open reading frame
(ORF) of each sample and mixed assembled scaftig (≥500 bp). Based on the predicted
result, information <100 nt was filtered out. For ORF prediction results of each sample and
mixed assembly, CD-HIT software (Version 4.5.8, http://www.bioinformatics.org/cd-hit/
accessed on 12 December 2022) [57] was used to remove redundancy in order to obtain a
nonredundant initial gene catalogue. By default, a 95% identify and 90% coverage were
used for clustering, and the longest sequence was selected as the representative sequence.
Clean data of each sample were compared with the initial gene catalogue with Bowtie2,
and the number of gene reads in each sample was calculated. The number of reads ≤2
in each sample was filtered out, and the final gene catalogue (unigenes) for subsequent
analysis was obtained. Based on the number of reads and gene length, the abundance of
each gene in each sample was calculated.

3.5. Taxonomy Prediction

DIAMOND software (Version 0.9.9, https://github.com/bbuchfink/diamond/ accessed
on 15 December 2022) [58] compared unigenes with bacteria, fungi, archaea, and viruses
extracted from the National Center for Biotechnology Information nonredundant (NR)
database (Version 2018.01). For the comparison results of each sequence, e values ≤ the
smallest e value* 10 were selected for subsequent analysis. After filtering, since each se-
quence may have multiple comparison results, multiple different species’ classification
information could be obtained. In order to ensure its biological significance, the lowest
common ancestor algorithm (systematic classification applied to MEGAN software Ver-
sion 4) was adopted to apply the classification level before the first branch as the species
annotation information of the sequence. Based on the results of lowest common ancestor
annotation and gene abundance table, the abundance of each sample in each taxonomic
level (kingdom, phylum, class, order, family, genus, and species) was obtained.

3.6. Functional Annotations

DIAMOND software (Version 0.9.9, https://github.com/bbuchfink/diamond/ accessed
on 16 December 2022) [58] was used to compare unigenes with various functional databases.
For the comparison results of each sequence, the results with the highest score were selected
for subsequent analysis. Based on the comparison results, the relative abundance of
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different functional levels was calculated (the relative abundance of each functional level
was equal to the sum of the relative abundances of the genes annotated as this functional
level). The Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Version 2018-
01-01, http://www.kegg.jp/kegg/ accessed on 18 December 2022) [59] was divided into
six levels, the eggNOG database (Version 4.5, http://eggnogdb.embl.de/#/app/home
accessed on 18 December 2022) [60] into three levels, and the CAZy database (Version
201801, http://www.cazy.org/ accessed on 18 December 2022) [61] into three levels. Based
on the results of functional annotation and gene abundance table, the gene number table of
each sample at each classification level was obtained.

4. Conclusions

Among the abundance of living organisms in the ocean, algae are the main source
of carbon and carry out photosynthesis for microorganisms. Marine algae contain rich
polysaccharide substances, and their polysaccharide degradation products are widely
used in medicine, food, and cosmetics industries. Therefore, it is very important to un-
derstand the degradation strains and enzymes of algae-related microbes. The results of
this study showed that the microbial community composition was closely related to the
living environment of the algae, with obvious regional differences, and was greatly af-
fected by temperature and DO. By analyzing the genomic data of isolated strains on red
algae surfaces, the diversity of related bacteria and polysaccharide-degrading enzyme
systems was discussed. These findings broaden the research into marine polysaccharide-
degrading enzymes, and provide reference for the subsequent development of macroalgae
polysaccharide-degrading bacteria and enzymes.
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