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Abstract: Trace metals are essential elements that play key roles in a number of biochemical processes
governing human visual physiology in health and disease. Several trace metals, such as zinc, have
been shown to play important roles in the visual phototransduction process. In spite of this, there has
been little research conducted on the direct effect of trace metal elements on the visual photoreceptor
rhodopsin. In the current study, we have determined the effect of several metal ions, such as iron,
copper, chromium, manganese, and nickel, on the conformational stability of rhodopsin. To this aim,
we analyzed, by means of UV-visible and fluorescence spectroscopic methods, the effects of these
trace elements on the thermal stability of dark rhodopsin, the stability of its active Metarhodopsin II
conformation, and its chromophore regeneration. Our results show that copper prevented rhodopsin
regeneration and slowed down the retinal release process after illumination. In turn, Fe3+, but
not Fe2+, increased the thermal stability of the dark inactive conformation of rhodopsin, whereas
copper ions markedly decreased it. These findings stress the important role of trace metals in retinal
physiology at the photoreceptor level and may be useful for the development of novel therapeutic
strategies to treat retinal disease.
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1. Introduction

The vertebrate retina contains an array of cells with a photosensitive layer composed
of rod and cone photoreceptor cells. Rod cells respond to dim light, whereas cone cells
are strong light- and color-sensing cells that contain red, green, and blue cone opsin
proteins [1–5]. Rhodopsin (Rho) is the photoreceptor protein of rod cells responsible for
dim-light vision, and a prototypic model of class A G protein-coupled receptors (GPCRs).
Rho was the first GPCR whose crystallographic three-dimensional structure was solved at
atomic resolution [6,7]. Rho is made up of opsin—with a distinctive seven transmembrane
helical architecture—and the 11-cis-retinal (11CR) chromophore covalently bound, through
a protonated Schiff base (PSB) linkage to Lys296 at helix 7, in the transmembrane core of
the receptor [8]. The first step in the visual phototransduction process is the capture of
photons using the 11CR chromophore. Upon illumination, 11CR isomerizes to its all-trans-
retinal (ATR) configuration instantaneously, and this causes a conformational change that
leads to the formation of the active Metarhodopsin II (Meta II) species. The active Meta
II state is formed through a complex cycle of short-lived photointermediates, including
bathorhodopsin, lumirhodopsin, and Meta I, which are formed on the picosecond to mil-
lisecond time scale [9]. The Meta II conformation eventually decays, with the formed ATR
subsequently leaving the retinal binding pocket [10,11]. The active Meta II conformation
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can activate the G protein transducin and elicit a cascade of biochemical reactions by means
of downstream effectors that eventually result in a visual signal to the brain [12–14].

Trace metals are indispensable for biochemical processes and are important cofactors
for up to 40% of proteins to function properly [15]. Furthermore, these trace elements play
an essential role in human visual physiological function [16]. The absence or excess of trace
elements may lead to various diseases [17,18]. For instance, insufficient iron levels can
result in anemia, inadequate iodine intake can lead to thyroid disorders, and a deficiency in
zinc can cause the dysfunction of retinal cells, contributing to the development of diverse
eye diseases [19–23]. The role of different metal ions on retinal phototransduction has been
poorly investigated, and the effect of these elements at the photoreceptor Rho level has
not been analyzed to date. Therefore, it is important to clarify the potential effects of such
ions at the molecular level on the photoreceptor protein Rho. This knowledge can shed
light on the molecular mechanisms underlying the pathophysiology of visual disorders
and facilitate the development of innovative therapeutic approaches to address them.
The presence and accumulation of some metals in eye structures have been previously
investigated, and they have been shown to be critical for visual function, especially at the
retinal level [24,25]. In particular, changes in zinc levels have been linked to age-related eye
diseases, vision loss, age-related macular degeneration, and cataracts [26,27]. Specific and
nonspecific binding sites for zinc ions have been reported for Rho [28–30], and changes in
these binding sites affect the stability of Rho. However, there are no available reports on the
effects of other trace metal ions on the conformational stability of Rho, which is of interest
to clarify the role of such metals at the photoreceptor cell structural level and particularly
on the key photoreceptor protein Rho.

To study the effects of trace metal elements on Rho conformational properties, we
have selected iron (Fe3+ and Fe2+), copper (Cu2+), chromium (Cr3+), manganese (Mn2+),
and nickel (Ni2+), which are known to be present in the retina, as representative ions for our
study. We have investigated the effect of such metals (in the form of chloride salts) on the
chromophore thermal stability of the inactive (dark state) and active (Meta II formed after
photoactivation) conformations and in the chromophore regeneration process of purified
Rho. We find that Fe3+, but not Fe2+, clearly stabilizes the inactive dark state conformation
of Rho, whereas Cu2+ destabilizes it. In turn, Cu2+ prevents chromophore regeneration and
dramatically slows down the Meta II decay process.

2. Results
2.1. Purification and Spectroscopic Analysis of Rho Isolated from Rod Outer Segments (ROS) of
Bovine Retinas

We purified bovine ROS Rho via immunochromatography using the Rho-1D4 mono-
clonal antibody and checked its purity via gel electrophoresis (Figure S1). Bovine Rho has
been extensively used for structural studies because of its availability in large amounts.
Therefore, it was of interest to investigate the effect of the metal ions on this Rho for a
proper comparison with previously published data using purified Rho. The spectrum of
the purified ROS Rho from bovine retinas showed the characteristic UV-vis profile with
two main bands corresponding to opsin (280 nm) and 11CR covalently bound to opsin
(500 nm) (Figure 1). The absorbance of Rho at 500 nm was 0.23, and the A280/A500 ratio
was 1.95, which indicated a successful purification. This, and analogous samples, were
used in the experiments described below.
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tion, resulting in a blue shift of the visible absorption band to 380 nm. Subsequently, the 

addition of H2SO4 causes the Schiff base (SB) to re-protonate, but the visual protein un-

dergoes denaturation, leading to a red shift of the maximum absorption band to 440 nm. 

In this experiment, we treated the Rho samples with Fe3+, Fe2+, Cu2+, Cr3+, Mn2+, and Ni2+ 

individually and recorded the corresponding spectra (Figures 2 and S2). The samples 

treated with Cr3+ and Mn2+ exhibited similar behavior to that of the control Rho sample 

without the addition of metal ion. However, samples treated with Fe3+, Fe2, and Cu2+ did 

not show complete conversion to the 380 nm species upon illumination, and we could 

detect some small remaining band at 500 nm. This may indicate the presence of some 

small fraction of PSB-linked species remaining in these cases. 

 

 

Figure 2. The UV-vis absorption spectra of Rho were obtained following pre-treatment with various 

metals under different experimental conditions. Spectra of samples were recorded in the dark state 

(dark, solid line), after metal addition (dark, dashed red line), upon photobleaching for 30 s (light, 

dashed line) and after acidification with 2N H2SO4 (acid, dotted line). Samples were, respectively, 

treated with Fe3+, Cu2+, and Fe2+ at a final concentration of 50 μM. All the above experiments were 

conducted at 20 °C. 

Figure 1. UV-vis absorption spectrum of immunopurified Rho from bovine ROS, in 2 mM sodium
phosphate (NaPi), pH 6.0, and 0.05% n-dodecyl-β-D-maltoside (DM). The spectrum shows the
characteristic bands at 280 nm (opsin) and 500 nm (11CR bound to opsin).

2.2. Photobleaching and Acidification of Rho Treated with Different Trace Elements

Upon illumination, the PSB formed between 11CR and opsin undergoes deprotonation,
resulting in a blue shift of the visible absorption band to 380 nm. Subsequently, the addition
of H2SO4 causes the Schiff base (SB) to re-protonate, but the visual protein undergoes
denaturation, leading to a red shift of the maximum absorption band to 440 nm. In this
experiment, we treated the Rho samples with Fe3+, Fe2+, Cu2+, Cr3+, Mn2+, and Ni2+

individually and recorded the corresponding spectra (Figures 2 and S2). The samples
treated with Cr3+ and Mn2+ exhibited similar behavior to that of the control Rho sample
without the addition of metal ion. However, samples treated with Fe3+, Fe2, and Cu2+ did
not show complete conversion to the 380 nm species upon illumination, and we could
detect some small remaining band at 500 nm. This may indicate the presence of some small
fraction of PSB-linked species remaining in these cases.
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Figure 2. The UV-vis absorption spectra of Rho were obtained following pre-treatment with various
metals under different experimental conditions. Spectra of samples were recorded in the dark state
(dark, solid line), after metal addition (dark, dashed red line), upon photobleaching for 30 s (light,
dashed line) and after acidification with 2N H2SO4 (acid, dotted line). Samples were, respectively,
treated with Fe3+, Cu2+, and Fe2+ at a final concentration of 50 µM. All the above experiments were
conducted at 20 ◦C.
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2.3. Effects of Trace Metal Elements on Rho Thermal Stability in the Dark State

Although the contents of trace elements in the human body is significantly low, they
serve essential biological functions of utmost importance. These trace metals are involved
in the metabolism of enzymes, hormones, and nucleic acids and also assist in the transport
of macro elements. There are also different trace elements distributed in different areas of
the eye, and among those we selected Fe3+, Cr3+, Mn2+, Ni2+, Cu2+, and Fe2+ to explore
their effects on the chromophore thermal stability of the dark inactive conformation of Rho.
The thermal decay process of Rho can be divided into two steps. In the first step, as the
temperature increases, the 11CR bound to opsin undergoes isomerization to form ATR. In
the second step, the deprotonated SB linkage is hydrolyzed and free ATR is released from
opsin [31]. In our experiment, the chromophore thermal stability of the Rho samples, with
and without metal elements, was tested using UV-Vis spectrophotometry in the dark at
48 ◦C. The thermal decay of purified Rho is clearly altered in different ways by the different
metal ions (Figure 3). The half-life time (t1/2) for the process, particularly for Fe3+, but
also for Cr3+, Ni2+, and, to a lesser extent, Mn2+, was clearly increased, indicating that
these metal ions enhance the thermal stability of the dark inactive conformation of Rho. It
is noteworthy that the other iron species, Fe2+, did not cause any change in the thermal
stability compared to the control sample without any added metal ion. On the other side,
Cu2+ produced a decrease in the thermal stability as judged by the lower t1/2 value of the
corresponding decay process.
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Figure 3. Effects of selected trace metals on the chromophore thermal stability of Rho in vitro. Under
dark conditions, each trace metal was added separately to the sample at a final concentration of
50 µM. The absorbance of the sample was recorded in the wavelength range of 250 nm to 650 nm
at 48 ◦C, with measurements taken every 2 min for a total duration of 100 min. The absorbance at
500 nm was plotted, and the t1/2 of the process was calculated based on the fitted curves. Mean and
standard error of mean values were derived from independent repeated experiments (n = 3, * p < 0.05,
** p < 0.01).

2.4. Effects of Trace Elements on the Chromophore Regeneration of Rho

The regeneration of Rho is an important step in the visual process. The chromophore
regeneration process was followed by measuring the increase at 500 nm after illumination
of a Rho sample containing exogenously added free 11CR. The results obtained indicate
that only Cu2+ affected the chromophore regeneration process by basically impairing it
(Figure S3), but all the other metal ions did not significantly affect it (Figure 4). Analyses of
the t1/2 of Rho regeneration showed no significant difference between the metal-treated
and control untreated samples (Figure 4a). The t1/2 of the sample containing Fe3+ was
essentially the same as that of the control sample, whereas the t1/2 of the other metal-
containing samples was slightly lower than that of the control. Finally, the percentage of
regenerated Rho, with respect to the original Rho, was determined, and it was found to be
about 80% under our experimental conditions (Figure 4b). These results indicate that the
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metal ions, except for Cu2+, did not differentially affect the final percentage of chromophore
regeneration.
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Figure 4. Effect of trace elements on the chromophore regeneration of Rho. The impact of trace
elements on Rho regeneration was determined. Different metals and 11CR were added and the dark
spectra were measured. Samples were subsequently photobleached, and spectra were recorded every
2 min at 20 ◦C min. The absorbance at 500 nm was plotted, and the mean and standard error of
mean were calculated based on independent repeated experiments. (a) The t1/2 of the process was
calculated from the fitted curves. (b) Regeneration percentage of Rho. The ratio of the amount of
regenerated Rho to the original Rho was calculated. Mean and standard error of mean values were
derived from independent repeated experiments (n = 3).

2.5. Effects of Trace Elements on the Meta II Decay Process

Upon illumination, the 11CR covalently linked to opsin by means of a PSB linkage,
changing its configuration to ATR. As a consequence, activated Meta II is formed which
decays to free ATR and opsin with time. Under our experimental conditions, the Meta II
decay process closely parallels the retinal release from the binding pocket. This allows an
increase in Trp265 fluorescence to occur due to the fact that it was previously quenched by
the presence of retinal in the binding pocket [9,32]. The effect of trace elements on Meta II
can be analyzed by monitoring this fluorescence increase as a function of time.

The fluorescence curves were recorded in the dark after illumination of the sample for
40 s at 20 ◦C (Figure 5). The samples treated with divalent iron and trivalent iron reached
their maximum fluorescence faster than the control without metals and, consequently,
had a reduced t1/2, particularly Fe3+ (Figure 6). However, the Cu2+-treated sample took
much longer to reach its maximum fluorescence value, clearly reflecting a slower process
compared to the other two cases. The behavior for chromium, manganese, and nickel
samples was similar to that of the control sample (Figure S4). The sample treated with Cu2+

showed a much slower process than the control sample 27.7 ± 2.5 min vs. 12.3 ± 0.3 min,
respectively. In the case of Fe2+ (9.6 ± 0.9 min) and Fe3+ (6.6 ± 0.6 min), these values
reflected significantly faster processes compared to the control sample without metal ions.
There was no significant difference in t1/2 between the control sample and the samples
treated with chromium, manganese, and nickel, respectively.



Int. J. Mol. Sci. 2023, 24, 11231 6 of 12Int. J. Mol. Sci. 2023, 24, 11231 6 of 12 
 

 

 

Figure 5. Meta II stability of Rho treated with or without metals. Fluorescence curves were recorded 

on a PTI Quanta Master 4 spectrofluorometer with a sample 0.5 μM Rho in the absence and the 

presence of metals at 20 °C. The fluorescence signal of Trp265 gradually increased over time, as a 

result of retinal leaving its binding pocket, until it reached a plateau. 

 

Figure 6. Effects of trace elements on Meta II t1/2. Upon excitation with light at 295 nm, Rho under-

goes conformational changes, causing the release of bound retinal from the binding pocket and the 

fluorescence emission of a previously shielded Trp265. The fluorescence signal increase was rec-

orded using a spectrofluorometer, and the t1/2 of the Meta II decay process was determined. Mean 

and standard error of mean values were derived from independent repeated experiments (n = 3, * p 

< 0.05, ** p < 0.01). 

2.6. Molecular Modeling of Fe3+ and Fe2+ Interaction with Rho 

Fe3+ and Fe2+ putative binding sites were identified by calculating the interaction po-

tential maps. To this aim, Fe3+ and Fe2+ probes were passed through the crystal structure 

of bovine Rho. The results show that the interaction surfaces on Rho for Fe3+ are larger 

than those for Fe2+ at the same energy level (Figure 7). This indicates that Fe3+ has a higher 

affinity for the protein than Fe2+ and could explain the increased stability provided by Fe3+. 

These models may be reflecting electrostatic contributions to a significant extent, but more 

specific binding effects, such as those of a steric or structural nature, cannot be ruled out. 

Figure 5. Meta II stability of Rho treated with or without metals. Fluorescence curves were recorded
on a PTI Quanta Master 4 spectrofluorometer with a sample 0.5 µM Rho in the absence and the
presence of metals at 20 ◦C. The fluorescence signal of Trp265 gradually increased over time, as a
result of retinal leaving its binding pocket, until it reached a plateau.
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Figure 6. Effects of trace elements on Meta II t1/2. Upon excitation with light at 295 nm, Rho
undergoes conformational changes, causing the release of bound retinal from the binding pocket
and the fluorescence emission of a previously shielded Trp265. The fluorescence signal increase was
recorded using a spectrofluorometer, and the t1/2 of the Meta II decay process was determined. Mean
and standard error of mean values were derived from independent repeated experiments (n = 3,
* p < 0.05, ** p < 0.01).

2.6. Molecular Modeling of Fe3+ and Fe2+ Interaction with Rho

Fe3+ and Fe2+ putative binding sites were identified by calculating the interaction
potential maps. To this aim, Fe3+ and Fe2+ probes were passed through the crystal structure
of bovine Rho. The results show that the interaction surfaces on Rho for Fe3+ are larger
than those for Fe2+ at the same energy level (Figure 7). This indicates that Fe3+ has a higher
affinity for the protein than Fe2+ and could explain the increased stability provided by Fe3+.
These models may be reflecting electrostatic contributions to a significant extent, but more
specific binding effects, such as those of a steric or structural nature, cannot be ruled out.
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Figure 7. Fe3+ and Fe2+ binding sites on the surface of the crystal structure of bovine Rho (PDB ID:
1U19) determined by GRID22 program as implemented in MOE software (version MOE2020.09). Left
models correspond to a full protein view, whereas the right models correspond to the magnified
retinal binding pocket domain and are depicted in an inverted manner with regard to the left images
for better visualization of the 11-cis-retinal chromophore. The secondary structure is represented
in blue-colored ribbon, whereas retinal is shown in green using CPK (left) or stick representation
(right). Surfaces in orange and purple are the calculated interaction potential surfaces for Fe3+ and
Fe2+, respectively, using an iso-contour level of −12.5 kcal/mol.

3. Discussion

Trace elements are indispensable cofactors for more than 40% of protein active sites
and are very important for human health. Several studies have shown that the absence
or deficiency of certain trace elements can lead to disease. Trace elements are found
throughout the body, including the eyes, and their influence on retinal physiology in
connection with visual health has been the matter of previous investigations [33]. In the
case of zinc, there is a certain concentration of zinc in the retina, which appears to play an
important role in the structural stability of the visual photoreceptor protein Rho. In this
regard, abnormal concentrations of zinc in the retina can lead to vision loss and cataract
formation [34]. In spite of this, there are scarce studies dealing with the effect of trace
elements on Rho structure and conformational stability. To fill this gap, we have conducted
an analysis of the effects of different selected trace metal ions, namely Fe3+, Cr3+, Mn2+,
Ni2+, Cu2+, and Fe2+, on Rho conformation and structural stability.
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We focused on the effect of trace elements on three main parameters of Rho: thermal
stability, chromophore regeneration, and the decay of the active conformation of Rho, Meta
II, formed upon illumination. A very interesting feature of our results is the differential
effect of Fe3+ and Fe2+, particularly concerning the chromophore thermal stability in the
dark state. These results indicate that only Fe3+ provides increased stability to Rho, but Fe2+

did not affect this property. Moreover, Fe3+ showed a more pronounced effect on the retinal
release process than Fe2+. In contrast, the two iron species showed no significant effects
on the chromophore regeneration process compared to the control sample (see Figure 4).
This result provides increased evidence of the importance of metal ions homeostasis in
biochemical processes and the relevance of this fine-tuned regulation. In this regard,
the differential effect of iron in different oxidation states should be further stressed and
taken into account in future studies. It has been recently reported that Fe2+, but not its
Fe3+ counterpart, can cause oxidative stress and photoreceptor cell death in a mouse
model of retinal degeneration [35]. Iron accumulation has also been associated with lipid
peroxidation and ferroptosis as a result of the disturbance of iron homeostasis in age-related
macular degeneration [36]. Fe2+ has also been associated with ferroptosis photoreceptor
degeneration in mice with defects in ATR clearance [37].

On the other side, specific behavior of Cu2+ was also observed. In this case, this
metal ion would cause an important decrease in thermal stability and at the same time
would dramatically slow down the retinal release process, after photoactivation, and this
would be a possible cause of its lack of chromophore regeneration. These results point
to a deleterious effect of copper on the structural stability of retinal Rho, at least under
our experimental conditions. A potential explanation of the observed behavior with Cu2+

may be found in the fact that a high binding affinity of copper for Rho was previously
reported in a study where only this metal could compete for zinc binding to Rho [38]. This
indicates that copper interacts with Rho and impairs retinal release and subsequent free
11CR uptake, and this would explain the lack of chromophore regeneration observed in the
Cu2+-treated sample (Figure 4). Therefore, the significantly increased t1/2 value for copper
(Figure 6) can be interpreted as a very slow retinal release process that would preclude
chromophore regeneration by impairing free 11CR binding to the protein. In contrast, iron
did show a faster process, indicating that retinal could readily enter the binding pocket to
regenerate Rho. An alternative explanation for the effect seen for copper is that this metal
ion would bind at a site which is in the pathway of retinal entry, and this would cause the
observed lack of chromophore regeneration.

In conclusion, copper has a strong negative effect on Rho stability, possibly as a result
of its specific binding to the photoreceptor protein, whereas Fe3+ is beneficial for improving
Rho thermal stability. Interestingly, Fe2+ is not able to stabilize Rho towards thermal
bleaching. A differential effect of iron at different oxidation states has been previously
observed in other biochemical pathways [35,36]. Notably, the stabilizing effect of Fe3+, but
not Fe2+, on Rho dark-adapted conformation detected in our study may have implications
for retinal physiology and opens up novel avenues for the use of such metal in combination
with other molecular entities in the development of successful therapeutic strategies to
treat inherited visual disorders.

4. Materials and Methods
4.1. Materials

All metal compounds were used as chloride salts and were purchased from Sigma
(Madrid, Spain). DM was purchased from Anatrace Inc. (Maumee, OH, USA). Bovine
retinas were purchased from WL Lawson (Omaha, NE, USA). 11CR was provided by the
National Eye Institute, National Institutes of Health (Bethesda, MD, USA), and ATR from
Sigma (Madrid, Spain). The mAb rho-1D4 antibody was obtained from Cell Essentials
(Boston, MA, USA). H-TETSQVAPA-OH (9-mer) peptide was synthesized by Unitat de
Tècniques Separatives i Síntesi de Pèptids (Barcelona, Spain).
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4.2. Methods
4.2.1. Purification of Rho from ROS of Bovine Retinas

The whole purification process of Rho was carried out in the dark or under dim-
red light of Kodak safelight filter-1521624. ROS membranes from bovine retinas were
resuspended with 2 mM NaPi buffer, pH 6.0, and solubilized using 1% DM (w/v) by
gently shaking for 1 h, and the samples were subsequently centrifuged. The supernatant
was collected and mixed with 1D4-coupled Sepharose beads, gently nutated for 3 h, and
centrifuged again. The beads were washed multiple times (at least 3 times), and Rho was
eluted with a buffer containing the 9-mer peptide corresponding to the last 9 amino acids
of the C-terminal tail of Rho. The absorbance of all samples was recorded with a Varian
Cary 100 UV-Vis spectrophotometer in the dark at 20 ◦C. The concentration of the purified
Rho was determined by measuring the absorbance at 500 nm with an ε = 40,600 M−1·cm−1.

4.2.2. Photobleaching and Acidification

First, the spectrum of the sample in the dark state was recorded (dark spectrum). Then,
the sample was exposed for 30 s to a Dolan-Jenner MI-150 light source (Boxborough, MA,
USA), with a cut-off filter at 495 nm, and the spectrum after photolysis was recorded (light
spectrum). Finally, 2N H2SO4 was added to the sample, and the spectrum was immediately
recorded (acid spectrum). The maximum absorption peak of the sample exhibited a shift
from 500 nm to 380 nm upon photobleaching, and to 440 nm upon subsequent acidification.

4.2.3. Thermal Decay Kinetics in the Dark State

Thermal decay kinetics experiments were conducted with purified Rho in 2 mM
NaPi buffer, pH 6.0, and 0.05% DM. First, the UV-vis spectrum in the 250–650 nm interval
region of the Rho sample was measured in the dark at 20 ◦C. Then, the temperature of the
instrument was set at 48 ◦C, and spectral cycles were measured to follow the decay of the
visible absorption band with time. Samples with metals contained a final concentration of
50 µM (added from a concentrated stock of the corresponding chloride salt), and spectra
of the corresponding samples without added metal were also measured as a control. The
specific spectra acquisition parameters were 50 cycles in total, 2 min for each cycle, and a
scan speed of 400 nm/min. Finally, the equation A500 = A/A0, where A is the absorbance
recorded at 500 nm at different times and A0 is the original absorbance at 500 nm, was used
to normalize the data, and the obtained curves were fitted to an exponential function. All
experiments were repeated three times for statistical significance.

4.2.4. Chromophore Regeneration Assay

The chromophore regeneration assay was carried out at 20 ◦C in the dark. Briefly,
the initial dark UV-vis spectra of the Rho samples, with or without metal ions (final
concentration 50 µM), were measured. Next, exogenous 11CR (from a concentrated stock
ethanol solution) was added to the Rho sample, and the UV-vis spectrum was recorded
again. Then, the Rho samples were bleached by means of a Dolan Jenner FIBER-LITE-
MI-150 light source equipped with a λ > 495 nm cut-off filter for 40 s, and the increasing
absorbance at the visible maximum was continuously measured with time. The spectral
absorption data were recorded using the following procedure: the specific parameters were
50 cycles in total, 2 min for each cycle, and a scan speed of 400 nm/min. All experiments
were repeated three times. The obtained data were finally curve-fitted to an exponential
function and the t1/2 was derived.

4.2.5. Meta II Decay by Fluorescence Spectroscopy

This assay was conducted on a Photon Technologies International Quanta Master
4 Spectrofluorometer (Birmingham, NJ, USA). A 0.5 µM Rho sample was added to a
fluorometric cuvette. The whole experiment was carried out at 20 ◦C in the dark. The
excitation wavelength was set to 295 nm and the sample was irradiated through a 0.5 nm
beam slit for 2 s. Then, a beam shutter was used to block the excitation light for 28 s. The
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tryptophan fluorescence signal was recorded at 330 nm through a 10 nm slit. Initially,
the sample was measured in the fluorometer, in the dark, until the fluorescence signal
was stable, and the sample was then irradiated with a 150 W Dolan-Jenner Mi-150 power
source using a λ > 495 nm cut-off filter for 40 s. The fluorescence signal of Trp265 gradually
increased over time, as a result of retinal leaving its binding pocket, until it reached a
plateau. Finally, the experimental data were fitted to an exponential function and the t1/2
of the process was determined.

4.2.6. Molecular Modeling

Fe3+ and Fe2+ putative binding sites were identified by calculating the interaction
potential maps using the GRID22 (Molecular Discovery Ltd., Borehamwood, UK) probes
as implemented in the MOE software (version MOE2020.09). Accordingly, Fe3+ and Fe2+

probes were passed through the crystal structure of bovine rhodopsin (PDB ID: 1U19).
Surfaces depicted in the model correspond to the calculated interaction potential surfaces
for Fe3+ and Fe2+, respectively, using an iso-contour level of −12.5 kcal/mol.

4.2.7. Statistical Analysis

The results were presented as the mean value ± standard error of the mean which
was calculated from independent replicates (n = 3). Statistical analysis was performed
using GraphPad Prism 6 (GraphPad Software Inc., San Diego, CA, USA). To determine the
statistical significance of the findings, an unpaired two-tailed t-test was conducted with a
significance level set at p < 0.05.
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