Target Discovery of Matrine against PRRSV in Marc-145 Cells via Activity-Based Protein Profiling
Abstract
:1. Introduction
2. Results
2.1. Cytotoxic Effects of Compounds on Marc-145 Cells
2.2. Probes Retained Anti-PRRSV Activity
2.3. Probes Retained Anti-Inflammatory Activity
2.4. Identification of Potential Targets of Matrine
2.5. Functional Analysis of Potential Target Proteins of Matrine
3. Discussion
4. Materials and Methods
4.1. Compounds, Cell and Virus
4.2. Cytotoxicity Assay
4.3. The Inhibition Rate of Probes on PRRSV-Infected Marc-145 Cells
4.4. Detection of PRRSV N Gene/Protein Expression
4.5. Establishment of Inflammatory Cell Model
4.6. Determination of IL-6 mRNA/Protein Expression
4.7. qPCR
4.8. Western Blot
4.9. Target Fishing
4.10. SDS-PAGE-Silver Nitrate Staining
4.11. LC-MS/MS
4.12. Conjoint Analysis
4.13. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, D.; Yang, B.; Yuan, X.; Shen, C.; Zhang, D.; Shi, X.; Zhang, T.; Cui, H.; Yang, J.; Chen, X.; et al. Advanced Research in Porcine Reproductive and Respiratory Syndrome Virus Co-infection With Other Pathogens in Swine. Front. Vet.-Sci. 2021, 8. [Google Scholar] [CrossRef]
- Xu, H.; Li, C.; Li, W.; Zhao, J.; Gong, B.; Sun, Q.; Tang, Y.D.; Xiang, L.; Leng, C.; Peng, J.; et al. Novel characteristics of Chinese NADC34-like PRRSV during 2020–2021. Transbound. Emerg. Dis. 2022, 69, e3215–e3224. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, Y.; Xia, Q.; Guan, Z.; Zhang, J.; Li, B.; Qiu, Y.; Liu, K.; Shao, D.; Ma, Z.; et al. Genetic characterization of porcine reproductive and respiratory syndrome virus from Eastern China during 2017–2022. Front. Microbiol. 2022, 13, 971817. [Google Scholar] [CrossRef]
- Ma, J.; Ma, L.; Yang, M.; Wu, W.; Feng, W.; Chen, Z. The Function of the PRRSV-Host Interactions and Their Effects on Viral Repli-cation and Propagation in Antiviral Strategies. Vaccines 2021, 9, 364. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.X.; Zhou, X.; Guo, T.; Qiao, S.; Guo, Z.; Li, R.; Jin, Q.; Hu, X.; Xing, G.; Deng, R.; et al. Efficacy of a live attenuated highly pathogenic PRRSV vaccine against a NADC30-like strain challenge: Implications for ADE of PRRSV. BMC Vet. Res. 2021, 17, 260. [Google Scholar] [CrossRef]
- Bello-Onaghise, G.; Wang, G.; Han, X.; Nsabimana, E.; Cui, W.; Yu, F.; Zhang, Y.; Wang, L.; Li, Z.; Cai, X.; et al. Antiviral Strategies of Chinese Herbal Medicine Against PRRSV Infection. Front. Microbiol. 2020, 11, 1756. [Google Scholar] [CrossRef]
- Sun, N.; Wang, Z.W.; Wu, C.H.; Li, E.; He, J.P.; Wang, S.Y.; Hu, Y.L.; Lei, H.M.; Li, H.Q. Antiviral activity and underlying molecular mechanisms of Matrine against porcine reproductive and respiratory syndrome virus in vitro. Res. Vet. Sci. 2014, 96, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Sun, P.; Lv, H.; Sun, Y.; Guo, J.; Wang, Z.; Luo, T.; Wang, S.; Li, H. Matrine displayed antiviral activity in porcine alveolar macrophages co-infected by porcine reproductive and respiratory syndrome virus and porcine circovirus type 2. Sci. Rep. 2016, 6, 24401. [Google Scholar] [CrossRef] [Green Version]
- Sun, N.; Zhang, H.; Sun, P.; Khan, A.; Guo, J.; Zheng, X.; Sun, Y.; Fan, K.; Yin, W.; Li, H. Matrine exhibits antiviral activity in a PRRSV/PCV2 co-infected mouse model. Phytomedicine 2020, 77, 153289. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Sun, N.; Yin, W.; Sun, Y.; Fan, K.; Guo, J.; Khan, A.; He, Y.; Li, H. Matrine inhibits IL-1β secretion in primary porcine alveolar macrophages through the MyD88/NF-κB pathway and NLRP3 inflammasome. Vet. Res. 2019, 50, 53. [Google Scholar] [CrossRef] [Green Version]
- Benns, H.J.; Wincott, C.J.; Tate, E.W.; Child, M.A. Activity- and reactivity-based proteomics: Recent technological advances and applications in drug discovery. Curr. Opin. Chem. Biol. 2021, 60, 20–29. [Google Scholar] [CrossRef]
- Zhao, Y.; Ling, X.; Zhang, H.; Sun, P.; Sun, Y.; Yin, W.; Fan, K.; Yang, H.; Zhong, J.; Zhang, Z.; et al. Network pharmacology and experimental validation to reveal the target of matrine against PRRSV. iScience 2023, 26, 106371. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wong, Y.K.; Wang, J.; Zhang, J.; Lee, Y.-M.; Shen, H.-M.; Lin, Q.; Hua, Z.-C. Target identification with quantitative activity based protein profiling (ABPP). Proteomics 2017, 17, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Liu, D.; Zhang, Q.; Yang, F.; Wong, Y.-K.; Xia, F.; Zhang, J.; Chen, J.; Tian, Y.; Yang, C.; et al. Celastrol induces ferroptosis in activated HSCs to ameliorate hepatic fibrosis via targeting peroxiredoxins and HO-1. Acta Pharm. Sin. B 2022, 12, 2300–2314. [Google Scholar] [CrossRef]
- Zhang, Q.; Luo, P.; Xia, F.; Tang, H.; Chen, J.; Zhang, J.; Liu, D.; Zhu, Y.; Liu, Y.; Gu, L.; et al. Capsaicin ameliorates inflammation in a TRPV1-independent mechanism by inhibiting PKM2-LDHA-mediated Warburg effect in sepsis. Cell Chem. Biol. 2022, 29, 1248–1259.e6. [Google Scholar] [CrossRef]
- Gao, P.; Liu, Y.-Q.; Xiao, W.; Xia, F.; Chen, J.-Y.; Gu, L.-W.; Yang, F.; Zheng, L.-H.; Zhang, J.-Z.; Zhang, Q.; et al. Identification of antimalarial targets of chloroquine by a combined deconvolution strategy of ABPP and MS-CETSA. Mil. Med. Res. 2022, 9, 30. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Wang, L.; Song, H.; Liu, Y.; Wang, Q. Synthesis and Evaluation of 11-Butyl Matrine Derivatives as Potential Anti-Virus Agents. Molecules 2022, 27, 7563. [Google Scholar] [CrossRef]
- Wang, S.-G.; Kong, L.-Y.; Li, Y.-H.; Cheng, X.-Y.; Su, F.; Tang, S.; Bi, C.-W.; Jiang, J.-D.; Li, Y.-H.; Song, D.-Q. Structure-activity relationship of N-benzenesulfonyl matrinic acid derivatives as a novel class of coxsackievirus B3 inhibitors. Bioorganic. Med. Chem. Lett. 2015, 25, 3690–3693. [Google Scholar] [CrossRef]
- Li, C.Q.; Zhu, Y.T.; Zhang, F.X.; Fu, L.C.; Li, X.H.; Cheng, Y.; Li, X.Y. Anti-HBV effect of liposome-encapsulated matrine in vitro and in vivo. World J. Gastroenterol. 2005, 11, 426–428. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, S.; Han, K.; Wang, L.; Liu, X. Induction of Apoptosis by Matrine Derivative ZS17 in Human Hepatocellular Carcinoma BEL-7402 and HepG2 Cells through ROS-JNK-P53 Signalling Pathway Activation. Int. J. Mol. Sci. 2022, 23, 15991. [Google Scholar] [CrossRef]
- Cheng, X.; He, H.; Dong, F.; Xu, C.C.; Zhang, H.; Liu, Z.; Lv, X.; Wu, Y.; Jiang, X.; Qin, X. Synthesis of Halopyrazole Matrine Derivatives and Their Insecticidal and Fungicidal Activities. Molecules 2022, 27, 4974. [Google Scholar] [CrossRef]
- Sun, Y.; Xiao, S.; Wang, D.; Luo, R.; Li, B.; Chen, H.; Fang, L. Cellular membrane cholesterol is required for porcine reproductive and respiratory syndrome virus entry and release in MARC-145 cells. Sci. China Life Sci. 2011, 54, 1011–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ke, W.; Zhou, Y.; Lai, Y.; Long, S.; Fang, L.; Xiao, S. Porcine reproductive and respiratory syndrome virus nsp4 positively regulates cellular cholesterol to inhibit type I interferon production. Redox Biol. 2022, 49, 102207. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhang, B.; Zhang, S.; Hu, H.; Liu, T. LDH, CRP and ALB predict nucleic acid turn negative within 14 days in symptomatic patients with COVID-19. Scott. Med. J. 2021, 66, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Han, G.; Wang, J.; Han, X.; Zhao, M.; Duan, X.; Mi, L.; Li, N.; Yin, X.; Shi, H.; et al. Matrine promotes hepatic oval cells differentiation into hepatocytes and alleviates liver injury by suppression of Notch signalling pathway. Life Sci. 2020, 261, 118354. [Google Scholar] [CrossRef]
- Protzer, U.; Seyfried, S.; Quasdorff, M.; Sass, G.; Svorcova, M.; Webb, D.; Bohne, F.; Hösel, M.; Schirmacher, P.; Tiegs, G. Antiviral Activity and Hepatoprotection by Heme Oxygenase-1 in Hepatitis B Virus Infection. Gastroenterology 2007, 133, 1156–1165. [Google Scholar] [CrossRef]
- Lehmann, E.; El-Tantawy, W.H.; Ocker, M.; Bartenschlager, R.; Lohmann, V.; Hashemolhosseini, S.; Tiegs, G.; Sass, G. The heme oxygenase 1 product biliverdin interferes with hepatitis C virus replication by increasing antiviral interferon response. Hepatology 2010, 51, 398–404. [Google Scholar] [CrossRef]
- Devadas, K.; Dhawan, S. Hemin Activation Ameliorates HIV-1 Infection via Heme Oxygenase-1 Induction. J. Immunol. 2006, 176, 4252–4257. [Google Scholar] [CrossRef]
- Liu, X.; Song, Z.; Bai, J.; Nauwynck, H.; Zhao, Y.; Jiang, P. Xanthohumol inhibits PRRSV proliferation and alleviates oxidative stress induced by PRRSV via the Nrf2–HMOX1 axis. Vet. Res. 2019, 50, 61. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Lear, Z.; Hughes, D.J.; Wu, W.; Zhou, E.-M.; Whitehouse, A.; Chen, H.; Hiscox, J.A. Resolution of the cellular proteome of the nucleocapsid protein from a highly pathogenic isolate of porcine reproductive and respiratory syndrome virus identifies PARP-1 as a cellular target whose interaction is critical for virus biology. Vet. Microbiol. 2015, 176, 109–119. [Google Scholar] [CrossRef]
- Patel, D.; Nan, Y.; Shen, M.; Ritthipichai, K.; Zhu, X.; Zhang, Y.J. Porcine reproductive and respiratory syndrome virus inhibits type I interferon signaling by blocking STAT1/STAT2 nuclear translocation. J. Virol. 2010, 84, 11045–11055, Erratum in J. Virol. 2011, 85, 5705. [Google Scholar] [CrossRef] [Green Version]
- Taguwa, S.; Maringer, K.; Li, X.; Bernal-Rubio, D.; Rauch, J.N.; Gestwicki, J.E.; Andino, R.; Fernandez-Sesma, A.; Frydman, J. Defining Hsp70 Subnetworks in Dengue Virus Replication Reveals Key Vulnerability in Flavivirus Infection. Cell 2015, 163, 1108–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, C.K.; Yang, T.H.; Chen, T.H.; Yang, C.F.; Chen, W.J. Heat shock cognate protein 70 isoform D is required for clath-rin-dependent endocytosis of Japanese encephalitis virus in C6/36 cells. J Gen Virol. 2015, 96, 793–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sztuba-Solinska, J.; Diaz, L.; Kumar, M.R.; Kolb, G.; Wiley, M.R.; Jozwick, L.; Kuhn, J.H.; Palacios, G.; Radoshitzky, S.R.; Le Grice, S.F.J.; et al. A small stem-loop structure of the Ebola virus trailer is essential for replication and interacts with heat-shock protein A8. Nucleic Acids Res. 2016, 44, 9831–9846. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Yang, X.; Zhao, J.; Cheng, Y.; Wang, J. Mechanism and Complex Roles of HSC70 in Viral Infections. Front. Microbiol. 2020, 11, 1577. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, R.; Geng, R.; Zhang, L.; Chen, X.-X.; Qiao, S.; Zhang, G. Heat Shock Protein Member 8 (HSPA8) Is Involved in Porcine Reproductive and Respiratory Syndrome Virus Attachment and Internalization. Microbiol. Spectr. 2022, 10, e0186021. [Google Scholar] [CrossRef]
- Oh, K.K.; Adnan, M.; Cho, D.H. Drug-repurposing against COVID-19 by targeting a key signaling pathway: An in silico study. Med Hypotheses 2021, 155, 110656. [Google Scholar] [CrossRef]
- Zhu, Z.; Fan, Y.; Liu, Y.; Jiang, T.; Cao, Y.; Peng, Y. Prediction of antiviral drugs against African swine fever viruses based on protein-protein interaction analysis. PeerJ 2020, 8, e8855. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Chen, R.; Xiao, D.; Zhang, L.; Song, D.; Wen, Y.; Wu, R.; Zhao, Q.; Du, S.; Wen, X.; et al. A Comparative Transcriptomic Analysis Reveals That HSP90AB1 Is Involved in the Immune and Inflammatory Responses to Porcine Deltacoronavirus Infection. Int. J. Mol. Sci. 2022, 23, 3280. [Google Scholar] [CrossRef]
- Yan, M.; Hou, M.; Liu, J.; Zhang, S.; Liu, B.; Wu, X.; Liu, G. Regulation of iNOS-Derived ROS Generation by HSP90 and Cav-1 in Porcine Reproductive and Respiratory Syndrome Virus-Infected Swine Lung Injury. Inflammation 2017, 40, 1236–1244. [Google Scholar] [CrossRef]
- Gao, J.; Xiao, S.; Liu, X.; Wang, L.; Zhang, X.; Ji, Q.; Wang, Y.; Mo, D.; Chen, Y. Inhibition of HSP90 attenuates porcine reproductive and respiratory syndrome virus production in vitro. Virol. J. 2014, 11, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanabe, N.; Kuboyama, T.; Tohda, C. Matrine Directly Activates Extracellular Heat Shock Protein 90, Resulting in Axonal Growth and Functional Recovery in Spinal Cord Injured-Mice. Front. Pharmacol. 2018, 9, 446. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Jing, D.; Zhao, D.; Wu, Y.; Xing, L.; Rashid, H.U.; Wang, H.; Wang, L.; Cao, H. New modification strategy of matrine as Hsp90 inhibitors based on its specific L conformation for cancer treatment. Bioorgan. Med. Chem. 2020, 28, 115305. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cao, Z.; Sun, P.; Khan, A.; Guo, J.; Sun, Y.; Yu, X.; Fan, K.; Yin, W.; Li, E.; et al. A novel strategy for optimal component formula of anti-PRRSV from natural compounds using tandem mass tag labeled proteomic analyses. BMC Vet. Res. 2022, 18, 179. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Zhao, X.; Bai, X.Y.; Niu, L.; Song, M.Q.; Sun, Y.G.; Jiang, J.B.; Li, H.Q. Anti-PRRSV effect and mechanism of sodium tanshinone IIA sulfonate in vitro. J. Asian Nat. Prod. Res. 2012, 14, 721–728. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017, 45, D362–D368. [Google Scholar] [CrossRef] [Green Version]
- Dennis, G.; Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003, 4, P3. [Google Scholar] [CrossRef] [Green Version]
No. | Gene | Description |
---|---|---|
1 | ACAT1 | Acetyl-CoA acetyltransferase |
2 | ALB | Albumin |
3 | HMOX1 | Heme oxygenase 1 |
4 | HSPA8 | Heat shock cognate 71 kDa protein |
5 | HSP90AB1 | Heat shock protein HSP 90-beta |
6 | PARP1 | Poly [ADP-ribose] polymerase 1 |
7 | STAT1 | Signal transducer and activator of transcription 1-alpha/beta |
Genes | Primer Sequences |
---|---|
PRRSV N | F: AGAAGCCCCATTTCCCTCTA R: CGGATCAGACGCACAGTATG |
β-actin | F: TGGTGGGCATGGGTCAGAAGG R: ATGGGGTACTTCAGGGTGAGGATG |
IL-6 | F: GGTGTTGCCTGCTGCCTTCC R: TGAGATGCCGTCGAGGATGTACC |
IL-8 | F: AGCTGGCGGTGGCTCTCTTG R: TGGGGTGGATAGGTTTGGAGTACG |
IL-1β | F: ACCTATCTTCCTCCACACAAGC R: TCTGCTTGAGAGGTGCTGATG |
TNF-α | F: TGTGTCTGCTGCACTTTGGAGTG R: TTGAGGGTTTGCTACAACATGG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, X.; Cao, Z.; Sun, P.; Zhang, H.; Sun, Y.; Zhong, J.; Yin, W.; Fan, K.; Zheng, X.; Li, H.; et al. Target Discovery of Matrine against PRRSV in Marc-145 Cells via Activity-Based Protein Profiling. Int. J. Mol. Sci. 2023, 24, 11526. https://doi.org/10.3390/ijms241411526
Ling X, Cao Z, Sun P, Zhang H, Sun Y, Zhong J, Yin W, Fan K, Zheng X, Li H, et al. Target Discovery of Matrine against PRRSV in Marc-145 Cells via Activity-Based Protein Profiling. International Journal of Molecular Sciences. 2023; 24(14):11526. https://doi.org/10.3390/ijms241411526
Chicago/Turabian StyleLing, Xiaoya, Zhigang Cao, Panpan Sun, Hua Zhang, Yaogui Sun, Jia Zhong, Wei Yin, Kuohai Fan, Xiaozhong Zheng, Hongquan Li, and et al. 2023. "Target Discovery of Matrine against PRRSV in Marc-145 Cells via Activity-Based Protein Profiling" International Journal of Molecular Sciences 24, no. 14: 11526. https://doi.org/10.3390/ijms241411526
APA StyleLing, X., Cao, Z., Sun, P., Zhang, H., Sun, Y., Zhong, J., Yin, W., Fan, K., Zheng, X., Li, H., & Sun, N. (2023). Target Discovery of Matrine against PRRSV in Marc-145 Cells via Activity-Based Protein Profiling. International Journal of Molecular Sciences, 24(14), 11526. https://doi.org/10.3390/ijms241411526