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Abstract: Single cell biology has revealed that solid tumors and tumor-derived cell lines typically
contain subpopulations of cancer cells that are readily distinguishable from the bulk of cancer cells
by virtue of their enormous size. Such cells with a highly enlarged nucleus, multiple nuclei, and/or
multiple micronuclei are often referred to as polyploid giant cancer cells (PGCCs), and may exhibit
features of senescence. PGCCs may enter a dormant phase (active sleep) after they are formed, but a
subset remain viable, secrete growth promoting factors, and can give rise to therapy resistant and
tumor repopulating progeny. Here we will briefly discuss the prevalence and prognostic value of
PGCCs across different cancer types, the current understanding of the mechanisms of their formation
and fate, and possible reasons why these tumor repopulating “monsters” continue to be ignored
in most cancer therapy-related preclinical studies. In addition to PGCCs, other subpopulations of
cancer cells within a solid tumor (such as oncogenic caspase 3-activated cancer cells and drug-tolerant
persister cancer cells) can also contribute to therapy resistance and pose major challenges to the
delivery of cancer therapy.

Keywords: cancer therapy; intratumor heterogeneity; polyploid giant cancer cells; senescence;
apoptosis; anastasis; preclinical assays; precision oncology

1. Introduction

The discovery of the DNA damage surveillance network (also called the DNA damage
response) in the 1990’s led to a model in which p53 and other key players in this network
either activate cell cycle checkpoints following anticancer treatment to facilitate the repair
of genomic injury and promote cell survival or eliminate injured cells from the proliferating
population via apoptosis and other genetically-controlled (regulated) cell death pathways
(e.g., [1–4]). This model is still being widely cited and the concepts embodied therein
have been key drivers of innovations in cancer research. In the past decade, however, our
understanding of the complexity of cancer cell responses to therapeutic agents has grown
far beyond this canonical model of repair and survive or die through regulated cell death
pathways. To this end, single cell biology has revealed that different subpopulations of
cancer cells within a solid tumor/tumor-derived cell line can exhibit therapy resistance
via different molecular and cellular processes (Figure 1), a phenomenon referred to as
intratumor heterogeneity [5–12].

A Perspective article has been recently published in Nature Cancer [13] which has
focused on two therapy resistant cancer subpopulations: drug-tolerant persister cells
(characterized as cancer cells without resistance-associated mutations that nonetheless
survive treatment) and, paradoxically, cancer cells undergoing apoptosis and other modes
of regulated cell death (e.g., necroptosis, ferroptosis, and pyroptosis).

In this review, we discuss the importance of another subpopulation of cancer cells that
contributes to therapy resistance and disease recurrence: dormant (proliferation arrested)
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cancer cells exhibiting various manifestations of genome chaos (polyploidy, multinucle-
ation, micronucleation, and/or senescence) (Section 2). In addition, we discuss important
considerations when assessing cancer cell radiosensitivity and chemosensitivity, with the
purpose of clarifying the biological consequence(s) that the term “sensitivity” refers to
(Sections 3 and 4), and possible reasons why the impact of cancer cell dormancy on disease
recurrence continues to be overlooked in most cancer therapy-related preclinical studies
(Section 5).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 2 of 17 
 

 

In this review, we discuss the importance of another subpopulation of cancer cells 

that contributes to therapy resistance and disease recurrence: dormant (proliferation ar-

rested) cancer cells exhibiting various manifestations of genome chaos (polyploidy, mul-

tinucleation, micronucleation, and/or senescence) (Section 2). In addition, we discuss im-

portant considerations when assessing cancer cell radiosensitivity and chemosensitivity, 

with the purpose of clarifying the biological consequence(s) that the term “sensitivity” 

refers to (Sections 3 and 4), and possible reasons why the impact of cancer cell dormancy 

on disease recurrence continues to be overlooked in most cancer therapy-related preclin-

ical studies (Section 5). 

 

Figure 1. Complex heterogeneity within an individual solid tumor (adapted from [8]). 

Terminology Clarification: The Nomenclature Committee on Cell Death (NCCD) [14] 

and others (e.g., [15,16]) have published cautionary articles formulating several caveats 

concerning the misuse of terminology (e.g., cell survival, apoptosis, necrosis, autophagy, 

viability) and concepts that have slowed down progress in the area of cell death research. 

In their 2009 article [14], the NCCD stated that “…cells that are arrested in the cell cycle 

(as it occurs during senescence) should be considered as alive, and the expression ‘repli-

cative cell death’ (which alludes to the loss of clonogenic potential), as it is frequently used 

by radiobiologists, should be abandoned.” Our discussion below will be in keeping with 

the NCCD recommendations. 

Please note: We have used quotation marks for the term “lethality” throughout this 

review because the biological assessment of cancer cell death is largely inferred by the use 

of preclinical assays that do not distinguish dead cancer cells and dying cancer cells that 

have the potential to recover and generate aggressive variants [10,13,16]. In addition, alt-

hough host immune response is crucial in the outcome of cancer therapy, as recently dis-

cussed by us [17] and others (e.g., [18,19]), the main focus of the current review is on re-

sponses measured in preclinical cell-based studies. 

2. Therapy-Induced Cancer Cell Polyploidy/Senescence and Disease Recurrence 

Solid tumors are complex systems that contain heterogeneous cancer cells with re-

markably different sizes and genomic contents (reviewed in [20]). These encompass giant 

cells with a highly enlarged nucleus, multiple nuclei, and or multiple micronuclei. A sub-

set of giant cells also exhibit senescence-like features, such as expression of the senescence 

marker p21WAF1 (p21) and positive staining in the senescence-associated β-galactosidase 

(SA β-Gal) assay ([20–26]. We will refer to these giant cells (with or without senescence 

features) as polyploid/senescent giant cancer cells (PGCCs). Although PGCCs constitute 

only a subset of cells within a solid tumor/tumor-derived cell line, their frequency can 

increase markedly under hypoxia or following treatment with genotoxic and non-geno-

toxic anticancer agents [17]. PGCCs represent a numerical “chaotic genome” subtype 

Figure 1. Complex heterogeneity within an individual solid tumor (adapted from [8]).

Terminology Clarification: The Nomenclature Committee on Cell Death (NCCD) [14]
and others (e.g., [15,16]) have published cautionary articles formulating several caveats
concerning the misuse of terminology (e.g., cell survival, apoptosis, necrosis, autophagy,
viability) and concepts that have slowed down progress in the area of cell death research. In
their 2009 article [14], the NCCD stated that “ . . . cells that are arrested in the cell cycle (as
it occurs during senescence) should be considered as alive, and the expression ‘replicative
cell death’ (which alludes to the loss of clonogenic potential), as it is frequently used by
radiobiologists, should be abandoned.” Our discussion below will be in keeping with the
NCCD recommendations.

Please note: We have used quotation marks for the term “lethality” throughout this
review because the biological assessment of cancer cell death is largely inferred by the
use of preclinical assays that do not distinguish dead cancer cells and dying cancer cells
that have the potential to recover and generate aggressive variants [10,13,16]. In addition,
although host immune response is crucial in the outcome of cancer therapy, as recently
discussed by us [17] and others (e.g., [18,19]), the main focus of the current review is on
responses measured in preclinical cell-based studies.

2. Therapy-Induced Cancer Cell Polyploidy/Senescence and Disease Recurrence

Solid tumors are complex systems that contain heterogeneous cancer cells with re-
markably different sizes and genomic contents (reviewed in [20]). These encompass giant
cells with a highly enlarged nucleus, multiple nuclei, and or multiple micronuclei. A subset
of giant cells also exhibit senescence-like features, such as expression of the senescence
marker p21WAF1 (p21) and positive staining in the senescence-associated β-galactosidase
(SA β-Gal) assay ([20–26]. We will refer to these giant cells (with or without senescence
features) as polyploid/senescent giant cancer cells (PGCCs). Although PGCCs constitute
only a subset of cells within a solid tumor/tumor-derived cell line, their frequency can
increase markedly under hypoxia or following treatment with genotoxic and non-genotoxic
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anticancer agents [17]. PGCCs represent a numerical “chaotic genome” subtype [27,28] and
exhibit the potential to promote tumor repopulation and metastasis that can ultimately kill
the patient (reviewed in [29–31]).

Representative images obtained by us [32] for the MDA-MB-231 breast cancer cell line
before and after exposure to chemotherapeutic drugs are presented in Figure 2 to illus-
trate the degree of treatment-response heterogeneity that can occur within a given cancer
cell line.
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2.1. Prevalence and Prognostic Value of PGCCs

In 2014, Coward and Harding published an article in Frontiers in Oncology entitled
“Size does matter: why polyploid tumor cells are critical drug targets in the war on can-
cer” [23]. These authors provided a clear definition of different degrees of ploidy (poly-
ploidy, tetraploidy, aneuploidy, hyperdiploidy) and reviewed the literature involving
preclinical [21,33] as well as clinical [22,33] studies demonstrating the role of giant poly-
ploid cells in therapy resistance and tumor repopulation after therapy. These authors also
reported data, obtained by the application of an improved flow cytometry method [34],
demonstrating that the prevalence of PGCCs in patient tumors may be higher than is
generally appreciated. The study involved low-passage primary cell lines derived from
ten glioblastoma patients; the cells were maintained using the method developed by
Lee et al. [35], which permits in vitro propagation of glioblastoma cells under conditions
that closely mimic the genotype, gene expression profile, and biology of their parental
primary tumors. The lowest frequency of polyploid cells in tumor samples was 1 in 20 cells
(i.e., 5% of total cells), leading the authors to speculate that brain tumors with volumes of
~1 cm3 may contain at least five million polyploid cells.

Recently, Trabzonlu, Pienta, Amend, and coworkers [36] have highlighted numer-
ous studies reported since 2013 demonstrating that the presence of giant cancer cells in
the polyploidy/senescence state (called PACCS, for polyaneuploid cancer cells, by these
authors) is associated with worse prognosis, higher tumor grade, poor differentiation,
and/or advanced disease stage across different solid tumor types. These include glioma,
anorectal melanoma, laryngeal cancer, breast cancer, ovarian cancer, colon cancer, and
prostate cancer ([37–46]; see Table 1 for details). These authors [36] also reported the results
of tissue microarrays that were prepared from formalin-fixed, paraffin-embedded blocks
of normal/benign and prostate cancer specimens. The purpose of this study was to sys-
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tematically assess the presence and importance of PGCCs in prostate cancer patients who
underwent radical prostatectomy with curative intent to treat their presumed localized
tumor. The results identified PGCCs as significant prognostic factors for metastasis in
these patients.

Table 1. Prognostic value of polyploid/senescent cancer cells.

Author Date Cancer Type No of Patients Outcome

Wang et al. [22] 2012 Non-small-cell
lung cancer 18

Patients expressing markers of senescence
following neoadjuvant therapy had a

significantly worse prognosis than patients
who did not express these markers.

Qu et al. [37] 2013 Glioma 76 The number of PGCCs increased with the
grade of tumors.

Lv et al. [42] 2014 Serous ovarian cancer 80 The presence of PGCCs in the primary tumor
correlated with metastasis.

Fei et al. [40] 2015
Primary breast tumors,
lymph node metastases,

and benign tissue
167 The number of PGCCs was the highest in

patients with lymph node metastases.

Gerashchenko et al. [41] 2016 Breast cancer 30
Tumors with a higher proportion of
PGCCs showed a poorer response to

neoadjuvant chemotherapy.

Zhang et al. [43] 2017 Colon cancer 169
The presence of PGCCs

with budding increased as tumors became
more dedifferentiated.

Liu et al. [38] 2018 Anorectal melanoma 47 The proportion of PGCCs increased
with tumor size.

Alharbi et al. [46] 2018 Prostate cancer 30
Pleomorphic giant cells were present in all

30 patients with a rare variant of
prostate cancer.

Mannan et al. [45] 2020 Prostate cancer 5

Multiple cells with highly irregular
polylobulated nuclei or multiple

pleomorphic nuclei were present in autopsy
samples of patients who had failed multiple

lines of therapy.

Liu et al. [39] 2021 Laryngeal cancer 102 High numbers of PGCCs correlated
with poor prognosis.

Trabzonlu et al. [36] 2023 Prostate cancer 209

PGCCs were significant prognostic factors for
metastasis in patients who underwent radical

prostatectomy with curative intent to treat
their presumed localized cancer.

2.2. Formation and Fate of PGCCs

The mechanisms that lead to the generation of PGCCs and their fate have been well
documented and extensively reviewed (see, e.g., the Editorial in the recent special issue
on PGCCs in Seminars in Cancer Biology [30]; also see Figure 3). In short, under stressful
conditions, cancer cells within a solid tumor/tumor cell line undergo a complex series of
adaptations, including endoreduplication and cell fusion, that result in the development of
PGCCs that often enter a state of dormancy (durable proliferation arrest). These giant cells
may contribute to tumor repopulation following cancer therapy by at least four mechanisms:
(i) depolyploidization through undergoing a complex genome reduction process, mediated
by key regulators of mitosis, meiosis and self-renewal, ultimately resulting in the emer-
gence of para-diploid progeny (i.e., containing a near-diploid number of chromosomes) that
exhibit recovery of proliferative capability; (ii) depolyploidization by an amitotic processes
called neosis, which involves budding and bursting, similar to prokaryotes and unicel-
lular eukaryotes, to generate tumor initiating cells with cancer stem cell-like properties;
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(iii) horizontal transmission of sub-genomic material via cytoplasmic tunnels, conferring
the recipient (small-sized) cells with cancer stem cell-like properties; and (iv) secretion of
factors that support tumor growth and progression (for details, please see [29,30,47,48]).
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Figure 3. Cartoon illustrating the generation and fate of polyploid/senescent giant cancer cells
(PGCCs). Anticancer treatment triggers the creation of PGCCs that often enter a state of dormancy
(active sleep) and thus might be overlooked or scored as “dead” in conventional preclinical assays.
A subset of PGCCs, however, remain viable, secrete growth promoting factors, and can give rise to
therapy resistant and tumor repopulating progeny through neosis (nuclear budding and bursting),
depolyploidization involving meiosis and self-renewal genes, and sub-genome transmission (transfer
of nuclear material into surrounding cells via cytoplasmic tunnels). For further details, see [20].

The development of giant cells following anticancer treatment is not always associated
with senescence. In fact, SA β-Gal-positive and -negative giant cells can be present in the
same culture of a cancer cell line [20]. On the other hand, triggering cancer cell senescence
following radio/chemotherapy exposure is not always associated with the presence of a
highly enlarged nucleus, multiple nuclei, or multiple micronuclei. For example, we have
observed that SKNSH neuroblastoma cells have a high propensity to undergo senescence
following exposure to ionizing radiation [49] and that the majority of these (>90%) re-
main in this dormant state for long times (up to three weeks) post-irradiation without
exhibiting manifestations of polyploidy, multinucleation, or micronucleation (unpublished
observations). It is also important to note that cancer cell dormancy is not always associ-
ated with highly enlarged/flatted morphology. Such “small-sized” dormant cells include
drug-tolerant persister (DTP) cancer cells [50], as well as SA β-Gal-positive cells within
some cancer cell lines, including the MDA-MB-435s breast carcinoma cell line ([51]; also
see Figure 4).

It is important to note that most cancer cell lines that were used in senescence-
related studies over a decade ago were subsequently shown to enter the polyploidy-
stemness route. These include the colon carcinoma cell lines HCT116 and SW480 [52]
and the breast carcinoma cell lines MCF7 and MDA-MB-231 [52,53] after treatment with
chemotherapeutic drugs.
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Figure 4. Phase-contrast microscopy images showing features of senescence in the indicated breast
cancer cell lines. Cells were exposed to ionizing radiation (8 Gy) or sham-irradiated (control),
incubated for seven days, and evaluated for morphology and positive (blue) staining in the senescence-
associated β-galactosidase (SA β-Gal) assay. Some regions containing “small-sized” SA β-Gal-positive
cells are marked. Reproduced from Mirzayans et al. [51].

2.3. Contributions of Our Group to the Understanding of the Creation and Fate of PGCCs
following Anticancer Treatment

Our group has focused largely on determining the contribution of PGCCs to radiosensi-
tivity [54] and chemosensitivity [32,55] as measured by cell proliferation (colony formation
and/or direct cell counting) assays, multiwell plate colorimetric/fluorometric assays, and
various single-cell assays. We have shown that the responses measured by these assays
in solid tumor-derived cell lines predominantly reflect proliferation arrest (dormancy)
through the creation of PGCCs, irrespective of the status of p53-p21 signaling. Importantly,
we have shown that cancer cells (including PGCCs) that remain adherent to the culture dish
at any time point (up to 3 weeks) after exposure to clinically relevant doses of anticancer
agents remain viable and metabolically active. This was evaluated by a simple assay that
we have optimized [32,54–56], which is based on the ability of individual cells to convert
the tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT)
to its water-insoluble formazan derivative (the so-called “single-cell MTT” assay). Our
data obtained with chemotherapy-treated MDA-MB-231 breast cancer cells is reproduced
in Figure 5. It shows, for example, that a 3-day exposure to 10 µM cisplatin results in an
almost total proliferation block, which largely reflects the formation of PGCCs that exhibit
the ability to metabolize MTT.
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Figure 5. (A) Bright-field microscopy images showing the ability of MDA-MB-231 cells to convert
the MTT reagent to its formazan metabolite (dark granules and crystals) before (control) and after
incubation with cisplatin (10 µM), oxaliplatin (10 µM), or paclitaxel (20 nM) for 3 days. Images
were acquired after incubation of cells with MTT for ~1 h. (B) Percentages of polyploid/senescent
giant cells and MTT-positive cells in cultures of the MDA-MB-231 cell line before (control) and
after treatment with cisplatin (10 µM), oxaliplatin (10 µM), or paclitaxel (20 nM) for 3 days. Only
adherent cells were evaluated. Bars, standard error (SE). (C) Effect of cisplatin treatment (3 days)
on the extent of cell proliferation (determined by the direct cell counting assay) and cell membrane
integrity (determined by the trypan blue-exclusion assay). Bars, SE. TB, trypan blue. (D) Response
of MDA-MB-231 cells to cisplatin (3-day incubation with the indicated concentrations), evaluated
by the 96-well plate XTT (solid squares) and CellTiter-Blue (open squares) “viability” assays. These
images and data are reproduced from Mirzayans et al. [32,55].

3. Important Considerations When Assessing Cancer Cell Radiosensitivity and
Chemosensitivity? What Does “Sensitivity” Actually Refer to?

Since the 1990′s, our group has contributed to the understanding of the roles played
by ATM, p53, WIP1, p21, and p16INK4a (p16) in the DNA damage response (reviewed
in [51,57–60]). Those early days of the DNA damage response era led to a number of as-
sumptions that have become almost “undisputable facts,” and yet have not been supported
by solid experimental data, or indeed have proven to be untenable. Some of these “hypothe-
ses,” together with discoveries (both old and new) that need to be taken into consideration
when assessing cancer cell response to therapeutic agents, are briefly discussed below.

3.1. Significance of p53-p21-WIP1 signaling in Suppressing Cancer Cell Death and Triggering
(Reversible) Senescence

In numerous (thousands of) articles, wild-type p53 is assumed to be pro-apoptotic.
This is somewhat surprising because by 2008 it was already well established that under
physiological conditions (e.g., absence of ectopic gene expression) wild-type p53 in fact
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suppresses apoptotic cell death in certain cell types (e.g., solid tumor-derived cell lines)
by regulating approximately forty anti-apoptotic proteins, including p21 and WIP1 [61].
As expected, the list of p53-regulated pro-survival factors has grown over the years (see,
e.g., [58,62,63]). Thus, although ectopic expression of wild-type p53 can induce some
aspects of apoptosis, activation of p53-p21-WIP1 signaling serves primarily to suppress
cell death and instead triggers (prolonged but reversible) proliferation arrest through
premature senescence.

The reversibility of cancer cell senescence following chemotherapeutic exposure was
established in the early 2000’s and was suggested to be associated with the absence of p16
function (see, e.g., landmark studies reported by Igor Roninson’s group, reviewed in [64]).
Paradoxically, there is now evidence that cell cycle re-entry (reversal of the proliferation
arrested state of senescent cancer cells) can be accelerated by ectopic expression of caspase
3 or treatment with apoptosis-triggering anticancer drugs such as camptothecin and the
BCL2 inhibitor ABT-737, and that this re-entry produces aggressive variants [65]. (The
cancer cell lines used in the latter study are known to be p16-suppressed through epigenetic
gene silencing, although this was not mentioned by the authors.)

3.2. Pro-Survival Properties of Cancer Cells Triggered to Undergo Apoptosis

In 2013, Malathy Shekhar published a comprehensive book chapter entitled “The
Dark Side of Apoptosis” in which she discussed accumulating clinical evidence for the
paradoxical role of apoptosis in tumor progression [66]. Since then, the oncogenic functions
of caspase 3 [17,67,68], together with the ability of cancer cells to return from the brink
of apoptotic and other modes of cell death through anastasis [16,17], have all been well
established and extensively reviewed (also see Figure 6). Recently, Khatib et al. [69] have
provided further evidence supporting the pro-survival features of apoptotic cancer cells.
By analyzing a large number of hepatocarcinoma tumor samples by a variety of single-cell
assays, these authors identified densely populated caspase 3-positive regions (apoptosis
islands) within an individual tumor, and further demonstrated that higher levels of apopto-
sis led to increased therapy resistance, reflecting the therapeutic implications of intratumor
heterogeneity. In an Editorial entitled “Treacherous apoptosis . . . ” Dhanasekaran sum-
marized these discoveries and concluded that this phenomenon (pro-survival apoptotic
islands) provides an explanation for the observation that tumors with a high apoptotic
index tend to have a poor prognosis [12].
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Figure 6. Cartoon illustrating the dark side of apoptosis. Cancer cells with molecular, biochemical,
and morphological features of apoptosis are capable of promoting tumor repopulation via different
routes, including: (i) secretion of pro-survival factors that is regulated by caspase 3 and involves various
signaling pathways, including JNK (c-Jun N-terminal kinase); and (ii) the ability to return from the
brink of apoptotic death, resulting in the emergence of progeny with increased numbers of micronuclei
and chromosomal abnormalities that can lead to increased aneuploidy, a driving force of aggressive
cancer (reviewed in [17]). These various oncogenic functions associated with “dying” (apoptotic) cancer
cells include phoenix rising, failed apoptosis, and anastasis. “Treacherous apoptosis” refers to regions
within a tumor that are enriched with caspase 3-positive cells (see text for details).
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3.3. Danger of Relying on High Content Multiwell Plate Assays for Cancer Cell “Lethality” Assessment

In numerous articles it is assumed that high content multiwell plate cell “viability” or
“cytotoxicity” assays can be used to assess cancer cell death. However, when performed
with proliferating cultures, these assays are highly non-specific. In 2017, Eastman [15]
provided detailed evaluations of treatment-induced responses measured by such assays,
and concluded that these assays primarily measure proliferation arrest rather than loss
of cell viability (which is often misinterpreted to reflect cell death). As we have recently
pointed out [10], various responses (mostly long-term pro-survival) contribute to the IC50
values (drug concentrations resulting in 50% inhibitory effect) when measured by multiwell
plate colorimetric (e.g., tetrazolium-based; crystal violet-based) and fluorometric (resazurin-
based, such as CellTiter-Glo) assays. These responses include: (i) a decrease in the metabolic
activity of individual cells (this effect will not influence the IC50 values measured by the
crystal violet staining assay); (ii) transient cell cycle checkpoint activation, which promotes
survival by facilitating DNA repair; (iii) short-term proliferation arrest reflecting anastasis
(return journey from the brink of death) that might ultimately lead to the emergence
of aggressive variants; (iv) short-term proliferation arrest reflecting transient loss of cell
membrane integrity (e.g., as a result of chemotherapy exposure, commonly detected by
large dye uptake assays) which can be rapidly restored; (iv) long-term proliferation arrest
(dormancy via creation of PGCCs, which includes senescence) that may or may not be
reversible, but is often not associated with loss of viability; and (v) bona fide loss of viability
(cell death). In short, to assume that the effect measured by such colorimetric/fluorometric
assays reflects cancer cell “lethality” can be highly misleading. Furthermore, the emerging
complexity of the cellular response to therapeutic agents underscores the significance of
single-cell (versus population-averaged) observation methods for the assessment of cancer
cell viability and metabolic activity (also see Section 3.5).

3.4. Danger of Relying on the Clonogenic “Survival” Assay for Assessment of Cancer Cell Death

As recently pointed out by Brix et al. [70], “the clonogenic assay is widely used
to test reproductive cell survival in vitro. Developed already in the 1950s by Puck and
Marcus, it has proven a powerful methodology to assess sensitivity towards radiotherapy,
chemotherapy, as well as molecularly targeted therapy, and undoubtedly represents the
in vitro gold standard in this regard.” Indeed, this so-called clonogenic “survival” assay,
first used by Puck and Marcus in 1956 [71] to determine the response of HeLa cervical
carcinoma cells to ionizing radiation, has been widely used for decades as the key biological
indicator of cancer cell death by radiation/cancer biologists in general, and by the synthetic
“lethality” community in particular (reviewed in, e.g., [56]).

Critically, a seminal discovery of Puck and Marcus that was also reported in their 1956
article [71] was not mentioned by Brix et al. [70], and has previously been overlooked by
us (reviewed in [20]) and others (too many to cite). Namely, detailed evaluation of HeLa
cells that failed to produce macroscopic colonies (aggregates of at least 50 cells) within
~10 days after irradiation showed two important observations regarding the fate of HeLa
cells that were ostensibly “killed” following radiation exposure. First, a large proportion of
cells that lost the ability to form a colony after exposure to any dose of radiation gave rise
to one or more giant cells with extremely enlarged morphology and nuclear content; the
phase-contrast microscopy image showing the morphology of giant cells and small-sized
(colony-forming) HeLa cells presented by Puck and Marcus is reproduced in Figure 7A.
(Our data obtained with HeLa and other solid cancer-derived cell lines are presented in
Figure 7B.) Second, these giant cells metabolized at a high rate (as judged by their ability
to change the pH of the growth medium) and could be maintained in the metabolically
active state for long times (e.g., three weeks) if the medium was regularly replenished. As
we noted previously [20], these critical observations prompted the development of the
feeder layer colony formation assay, in which heavily irradiated feeder (giant) cells are
seeded in culture dishes at a relatively high density to promote the proliferation of test
cells via secreted factors. These remarkable observations reported some 67 years ago have
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raised a key question that unfortunately most of us in the field have overlooked: if the
majority of 9 Gy-irradiated cancer cells remain adherent to the culture dish, retain cell
viability, and secrete a myriad of factors for long times (weeks) post-irradiation, how can
they be considered to be dead (as still appears to be the case in most preclinical cancer
therapy-related publications)?
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Figure 7. (A) A phase-contrast microscopy image reproduced from the original work of Puck and
Marcus that was published in 1956 [71], reporting the effect of ionizing radiation (9 Gy) on the
colony-forming ability of HeLa cell cultures. The image shows remarkable (~10 times) size differences
between proliferating (colony forming) cells and proliferation arrested polyploid giant cells. (B) Data
obtained by us [54] with HeLa and the indicated cell lines that were exposed to ionizing radiation
and incubated for 3 days.

Take home message: When the “gold standard” colony formation and other pre-
clinical assays (e.g., high content cell “viability”) are used to evaluate radiosensitivity
and chemosensitivity, for some cell types (notably, solid tumor-derived cell lines), this
sensitivity predominantly reflects the treatment-induced conversion of dangerous (prolif-
erating) cancer cells to potentially even more dangerous (dormant) tumor repopulating
cells that exhibit various manifestations of genome chaos (e.g., polyploidy, multinucleation,
micronucleation, senescence, apoptosis-associated DNA strand breaks), rather than dead
cancer cells.

3.5. Single Cell Biology: A Step towards Generating Clinically Relevant Information

In 2014, Robert Weinberg published a Leading Edge Essay in Cells [72] in which he
discussed the danger of merely relying on information-generating approaches to cancer
research. He wrote, “ . . . we have come full circle, beginning in a period when vast amounts
of cancer research data yielded little insight into underlying mechanisms to a period
(1980–2000) when a flurry of molecular and genetic research gave hope that cancer really
could be understood through simple and logical reductionist thinking, and finally to our
current dilemma. Once again, we can’t really assimilate and interpret most of the data
that we accumulate.” Unfortunately, this information generating approach continues to
dominate the various aspects of cancer research (too many to cite).

Unlike the majority of cancer researchers who rely heavily on conventional anti-
cancer assays, a handful of scientists, our group included (e.g., [56]), have published
research/review articles to highlight the importance of single cell biology in obtaining
preclinical information of clinical relevance. Zaitceva et al. [16], for example, published
a comprehensive review entitled “Anastasis: Return Journey from Cell Death” in which
they concluded that “ . . . the live single cell analysis is the most precise way to determine
the real efficacy of anti-cancer treatment and allow the prediction of relapse because of
surviving subpopulations. Unfortunately, single-cell assays are more complicated methods
compared to cell-based population assays and not very affordable, which discourages their
widespread use as preclinical tests for the evaluation of treatment cytotoxicity. Therefore,
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as cells recovered from death are more aggressive and genomically unstable, it is extremely
important to distinguish dead from dying cells.”

The single-cell MTT assay that we have optimized is particularly useful in distin-
guishing dead cancer cells from dormant cancer cells (i.e., cells that remain viable and
metabolically active but fail to generate macroscopic colonies) and dying (apoptotic) cancer
cells that have the ability to return from the brink of death [56]. It simply involves adding
the MTT solution to the culture medium and incubating the cells for ~1 h. Viable and
metabolically active cells, irrespective of their morphology and proliferation state, rapidly
convert MTT to its water insoluble purple formazan metabolite, which can be visualized as
purple intracellular granules and crystals under a light microscope (see, e.g., Figure 5A).

4. Possible Reasons Why PGCCs and Their Tumor Repopulating Properties Continue
to Be Overlooked in Most Preclinical Anticancer Studies
4.1. Misleading Assumption That PGCCs Represent Dead or Dying Cells That Will Be Eventually
Eliminated via Apoptosis and Other Means

Giant cancer cells with massive nuclear contents have been described by physi-
cians and scientists since over a century ago [73]. However, as recently pointed out by
Pienta et al. [73], the “majority of the cancer research and treatment development communi-
ties have disregarded these cells as irreversibly senescent or destined for mitotic catastrophe
and death. A small number of pioneering scientists, including Erenpreisa, Cragg, Illidge,
Liu, Walen . . . (and others) . . . have now made it clear that these cells . . . (PGCCs) . . . are
important mediators of tumorigenesis, metastasis, and therapeutic resistance.” In addition
to these scientists, and Pienta and Amend for their recent remarkable contributions to this
field ([36,48,73]), we wish to acknowledge Henry Heng [27,28] for bringing to our attention,
about a decade ago, the importance of genome chaos (various manifestations of “mitotic
catastrophe”) in therapy resistance and disease recurrence.

4.2. Misleading/Inappropriate Preclinical Assays?

It is also possible that PGCCs continue to be ignored by the majority of cancer re-
searchers because conventional preclinical assays that are widely used to identify novel
anticancer agents and therapeutic strategies are not designed to incorporate the hetero-
geneity and complexity that exists within a tumor ([10]). Furthermore, the time required
between therapeutic exposure and the emergence of tumor repopulating progeny of cancer
cells that are triggered to undergo dormancy through polyploidy/senescence is much
longer (weeks to months) than the time span of multiwell plate cell “viability” (e.g., MTT,
CellTiter-Glo, etc.), colony formation, and other widely used preclinical anticancer assays
for cell “killing” (reviewed in [10]; also see Figure 3), such that these assays would not be
informative for these longer-term responses.

4.3. Dishonesty in Data Reporting?

Some of the caveats regarding progress in cancer research that were pointed out by
the Nobel Prize Laureate William Kaelin [74,75] and others (e.g., [76]) may also help to
explain why PGCCs are widely overlooked (reviewed in [17]). These include the pressure
to “publish or perish” that may result in exaggerations about the significance or certainty
of research findings, and sometimes may even lead to publishing massaged or falsified
results. This might appear to be a harsh statement, but major journals do retract exagger-
ated/falsified papers that are published in various fields, including DNA repair (e.g., [77]),
p53 signaling (e.g., [78]), and synthetic “lethality” (e.g., [79,80]). In fact, some journals have
introduced several data screening checks before accepting manuscripts for publication in
an attempt to reduce the number of post-publication retractions (e.g., [81]). The increasing
frequency of dishonesty in cancer therapy-related manuscripts was highlighted in an Edi-
torial entitled “Figure errors, sloppy science, and fraud: keeping eyes on your data” that
was published in Journal of Clinical Investigations in 2019 [81]. The authors stated that “on
the journal side, we are limited to catching obvious errors after they are committed. The
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scientific community as a whole needs to be steadfast in guarding against unreliable data
at all stages of planning, acquiring, interpreting, and publishing data.”

We performed online searches to see if there are any updates regarding retracted
papers since our last review on this subject [17]. Shockingly, over FIFTY p53/cancer-
related articles have been retracted since 2021! We also came across a blog on “retraction
watch” [82] which highlights five major papers retracted from a reputable laboratory. In this
blog, the important question is raised: has anyone, or organization, “started to audit meta-
analyses, systematic reviews, practice guidelines, etc—to determine the impact of these
retractions?” This is a profound question, which illustrates the negative impact of sloppiness
in biomedical research. We have a similar concern about the majority (thousands) of authors
who have published cancer cell “lethality” articles by merely relying on measuring cell
“viability” (by high content multiwell plate assays), some ambiguous manifestations of
apoptosis (e.g., caspase 3 activation), and/or proliferation arrest (“mitotic catastrophe”) as
markers of cancer cell death. Like the retracted papers, how are these highly biased articles
going to impact “meta-analysis, systematic reviews, practice guidelines, etc?”

5. Relevance to the Future Direction of Precision Oncology: A Personal Perspective

The transition from the one-size-fits-all approach to the treatment of solid tumors to
patient-individualized precision oncology based on the molecular profiling of their tumors
has been regarded as a powerful and compelling strategy. Unfortunately, as discussed by
us [17] and other groups (e.g., [83–85]), progress in this area has been rather slow. Here
we have discussed some of the reasons for this lack of progress, such as the failure of
many researchers to recognize that achieving the “Holy Grail” of cancer cell death using
conventional and experimental therapies alike remains largely unfulfilled. In fact, rather
than promoting cancer cell “death”, these therapies commonly drive cancer cells into a
state of dormancy that can involve potentially aggressive and treatment-resistant entities
such as PGCCs, which have been largely ignored by the cancer research community. Some
questions that will need to be answered if this field is to start moving forward include:

• Classical DNA-damaging cancer therapeutics (e.g., ionizing radiation, cisplatin) have
been shown to induce significant PGCC formation (reviewed in [20]). Do more recent
cancer mutation-targeted strategies such as exploiting synthetic–“lethal” partnerships
also cause the generation of PGCCs?

• Can we develop reliable and high throughput imaging-based versions of the currently
cumbersome and expertise-dependent assays for entities such as PGCCs that will be
accepted/taken up by the scientific community such that screening these responses to
therapy in tissue culture can be done in a time- and cost-effective manner?

• With such assays in hand, can we identify drugs/combinations (with or without
radiation) that either circumvent the generation of these treacherous PGCCs or trigger
their demise?

• Given that PGCCs are highly atypical in many regards, such as their size, shape, and
ploidy, can we devise strategies that will harness the full power of the immune system
to eradicate these potentially harmful aberrant cells?

In addition to addressing these questions, to realize the monumental goal of com-
bating cancer, it is important to take into account not only the mutational basis of the
intrinsic/acquired therapy resistance of cancer cells, such as the many examples high-
lighted in most reviews on targeted therapies (e.g., [81–83]) as well as the dark side of
apoptosis (e.g., [12,16]), but also the non-mutational events discussed previously [10,17],
which include the creation of PGCCs via cell fusion (e.g., [86–89]).

6. Conclusions

We have previously discussed the multifactorial nature of cancer cell resistance to
DNA-damaging therapeutic agents, far beyond the simplistic model of “repair and survive
or die through apoptosis or other regulated cell death pathways” [10]. In the current review,
we have provided an update on PGCCs, a root cause of therapy resistance and disease
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recurrence, with an emphasis on the prognostic value of PGCCs across different cancer
types, and possible reasons why these tumor repopulating giants continue to be overlooked
by most cancer researchers.

Our current understanding of the (literally) mind-numbing complexity and hetero-
geneity that exists within a solid tumor (see, e.g., Figure 1) should be considered a huge
step forward in terms of the metaphor of the “war on cancer” because, at the very least, we
have learned a great deal as to who the various subsets of “enemies” are. In this context,
it is important to note that one such “enemy” does not reside in the tumor (Figure 1),
but rather pertains to experimental design, with a widespread use of highly simplistic
and non-specific preclinical assays that, in our opinion, has derailed cancer research for
~50 years, as discussed above.

Food for thought: As we suggested previously [17], “ . . . perhaps efforts of cancer
researchers should be primarily directed towards prevention, rather than employing the
same misleading preclinical assays and wishy-washy interpretations (to quote William
Kaelin [75]) with “novel” anticancer drugs and catchy names for treatment strategies
(e.g., “synthetic lethality”) to expect different outcomes...” There might be an exception
to this conclusion with potential clinical relevance. Given the various mechanisms by
which different subsets of cancer cells within an individual tumor escape death post-
therapy, together with challenges encountered in cancer immunotherapy (e.g., cytokine
“storms” that can cause severe toxicity and even death [90]), modern therapies should
be largely ineffective in patients with a solid tumor. But there are cases where even
conventional radio/chemotherapy seems to result in long-term (over 5 years) remission,
and may even lead to cancer cure. This raises a fundamental question. What are the reasons
that some cancer patients do well even after undertaking conventional therapies? Is it
possible that their immune system is capable of destroying tumor repopulating “outliers”
within a tumor (e.g., PGCCs, oncogenic caspase 3-acivated cells) before they will have the
opportunity to promote tumor progression (through secretory factors) and to give rise
to tumor repopulating progeny, or perhaps such “outliers” are not present at significant
frequencies in the tumors of these patients (before and after therapy) in the first place? In
other words, what fundamental factors underlie inter-tumor heterogeneity (heterogeneity
between patients with the same type/stage of cancer) in terms of therapy response? We
wouldn’t pretend to know the answer, and assume that addressing it will involve decades
of work and investment. But it may be worth the effort!
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