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Abstract: Transposable elements constitute one of the main components of eukaryotic genomes. In
vertebrates, they differ in content, typology, and family diversity and played a crucial role in the
evolution of this taxon. However, due to their transposition ability, TEs can be responsible for genome
instability, and thus silencing mechanisms were evolved to allow the coexistence between TEs and
eukaryotic host-coding genes. Several papers are highlighting in TEs the presence of regulatory
elements involved in regulating nearby genes in a tissue-specific fashion. This suggests that TEs are
not sequences merely to silence; rather, they can be domesticated for the regulation of host-coding
gene expression, permitting species adaptation and resilience as well as ensuring human health. This
review presents the main silencing mechanisms acting in vertebrates and the importance of exploiting
these mechanisms for TE control to rewire gene expression networks, challenging the general view of
TEs as threatening elements.
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1. Introduction

Barbara McClintock used Zea mays to provide evidence that genes were physically
located on chromosomes when studying genetic recombination [1]. In particular, she
described the crossing-over phenomenon, consisting of the exchange of genetic material
between homologous chromosomes during meiosis. These studies allowed her to discover
the existence of transposable elements (TEs), i.e., portions of DNA capable of moving from
one chromosome to another (see Section 2). This evidence first suggested that the genome
is not a stationary entity but rather is subject to modifications and reorganization, a concept
that was met with criticism by the scientific community at the time.

Nowadays, the increasing number of sequenced genomes has revealed that the content
of TEs varies among species [2,3]. Overall, vertebrate genomes are largely made up of
TEs that contribute to genome size and architecture [4–6]. Among them, amphibians
and lungfish are the only two taxa having species with the largest genomes due to the
considerable impact of mobile elements. Retroelements are mainly present in jawless fish,
cartilaginous fish, coelacanths, lungfish, birds, and mammals; on the other side, DNA
transposons dominate the genomes of ray-finned fish and anurans. The richness in terms
of transposon diversity is another variable characteristic between lineages: teleosts show
the highest diversity in terms of TE families, differently from mammals. Moreover, the
number of TE copies can be very high in some species and low or even absent in others. For
example, L1 and L2 retroelements were lost in birds, while CR1 retroelements are present
in many copies in these organisms [7].

TEs have long been considered ‘selfish’ or ‘parasite’ elements because of their ability
to replicate themselves. However, it is now recognised that these genetic elements play
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a key role as drivers of genome diversity and, hence, of speciation, contributing to the
evolutionary success of organisms. Indeed, in some cases, TEs can be co-opted or exapted
to benefit the host, for example, by creating key adaptations and being a source of genetic
diversity and regulatory innovations useful for species evolution [8–10]. In many other
cases, TE insertions are neutral, and in others, their transcription and transposition might
be responsible for the alteration of normal genes leading to negative effects, for example,
interrupting coding genes. Diseases like hemophilia, cystic fibrosis, or cancer can be caused
by disrupting or enhancing tumor oncogene suppressor genes [11,12]. In addition, TEs
derived from exogenous sources (ERV) or from mutated internal mobile elements can
invade the host genome. Therefore, TE activity must be regulated by the host genome,
which has evolved “defense” mechanisms to suppress their activity. In this review, the main
TE silencing mechanisms acting in vertebrates are presented. In particular, we focused
on proteins of the Argonaute family (PIWI and AGO) and the small non-coding RNAs
accomplishing piwi-interacting RNAs (piRNAs), short interfering RNAs (siRNAs), and
microRNAs (miRNAs) [13]. piRNAs are loaded by PIWI proteins to transcriptionally and
post-transcriptionally silence transposons in germline cells. siRNAs and miRNAs are
associated with AGO proteins and act as piRNA/PIWI systems to prevent the effects of
TE transposition in somatic tissues. Another interesting mechanism is represented by the
Krüppel-associated box (KRAB) zinc finger (ZNF) proteins (KRAB-ZFPs) [13]. They have
zinc fingers at the C-terminus to bind TE sequences and a KRAB domain at the N-terminus
to recruit the proteins of the nucleosome remodeling deacetylase complex (NuRD). This
system is now known to act at both embryonic and adult stages, not only in sarcopterygians
but also in actinopterygians, probably with the involvement of fish-specific key proteins.
The Human Silencing Hub (HUSH) complex targets full-length, evolutionarily young, and
transcriptionally active L1 retroelements [14]. This system has the ability to recognise
intronless RNAs, a feature of retroelements, avoiding the silence of intron-containing genes.

In general, these mechanisms determine an increase in the compactness of chromatin
structure through the deposition of epigenetic markers at the DNA and histone levels.
In particular, DNA (cytosine-5-)-methyltransferase 1 (DNMT1) and DNA (cytosine-5-)-
methyltransferase 3 alpha (DNMT3a) are responsible for transferring methyl groups to CpG
residues to establish DNA methylation patterns. At the histone level, proteins involved in
heterochromatin formation are SET domain bifurcated histone lysine methyltransferase
1 (SETDB1), the chromobox homolog 5 (CBX5 is also named heterochromatin 1a), the
chromobox homolog 1 (CBX 1 is also named heterochromatin 1b), and the chromobox
homolog 3 (CBX 3 is also named heterochromatin 1g). SETDB1 trimethylates Lys-9 of
histone H3 and this epigenetic mark serves to recruit the CBX proteins. SETDB1 is targeted
to histone H3 by TRIM28/KAP1, a factor recruited by KRAB zinc-finger proteins but also
by the HUSH complex to favor higher levels of chromatin compactness.

The host genome can fine-tune these mechanisms to allow the coexistence between
mobile elements and eukaryotic host-coding genes, avoiding negative effects due to transpo-
sition. Moreover, evidence suggests that TEs can be responsible for rewiring tissue-specific
regulatory networks and modifying epigenetic patterns. This challenges the general notion
that TEs are constitutively silenced; on the contrary, they can be domesticated for the
regulation of host-coding gene expression, permitting species adaptation and resilience as
well as ensuring human health.

2. Classification of Transposable Elements

TEs are repetitive elements interspersed in the genome and they are able to move from
one region to another by a transposition mechanism using RNA or DNA molecules as inter-
mediates (Figure 1). In the former case, TEs are called retrotransposons and constitute Class
I, while in the latter case, they are named DNA transposons and are part of Class II. Class
I elements are characterised by a copy-and-paste transposition mechanism. Their RNA
intermediate is reverse transcribed into its complementary DNA by a reverse transcriptase
(RT) encoded by the mobile element. After this step, the new copy is integrated into the
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host genome. Due to their transposition mode, retroelements increase their copy number,
and thus they have an impact on genome size. Class I mobile elements are composed of
long terminal repeat (LTR) and non-LTR subclasses. LTR retrotransposons present long
direct terminal repeats useful for transposition. Their structure, similarly to exogenous
retroviruses, includes the gag gene that encodes viral structural particles and the pol gene
that encodes the complete retrotranscription machinery (reverse transcriptase, ribonuclease
H, and integrase). In addition to these two genes, exogenous retroviruses possess the env
gene, which is responsible for the formation of proteins that are part of the viral envelope.
However, traces of the env gene have also been found in LTR retrotransposons. Dictyostelium
Intermediate Repeat Sequence (DIRS) are LTR retroelements structurally characterized
by a tyrosine recombinase (YR) instead of an integrase and by inverted terminal repeats.
Non-LTR retroelements include Long Interspersed Nuclear Elements (LINEs) and Short
Interspersed Nuclear Elements (SINEs). The former are autonomous retroelements consti-
tuted by two open reading frames (ORFs), of which ORF2 encodes a reverse transcriptase
and an endonuclease, and a poly A tail at the 3′ end [15]. SINE retroelements are not
autonomous and need RT encoded by autonomous elements to make transposition [16].
Penelope retroelements are part of Class I and present a wide diversity of structures com-
pared to the other elements. The common components are pseudo-LTRs (pLTRs), an RT,
and an endonuclease. Class II mobile elements use a DNA intermediate to transpose their
copies into a novel chromosomal position. These elements can be divided into subclasses I
and II. Subclass I mainly includes TIR and Crypton. TIRs are autonomous elements charac-
terized by terminal inverted repeats (TIRs) and encode a transposase through which they
move via a cut-and-paste mechanism in which both DNA strands are cleaved. The DNA
transposons hAT, Merlin, Mutator, PiggyBac, PIF-Harbinger, Tc1-Mariner, and Transib are
part of this subclass. Crypton elements use a YR in the transposition mechanism, probably
involving recombination between a circular intermediate and a DNA target. Helitrons
and Mavericks are the two major representative elements of subclass II. They transpose
via a copy-and-paste mechanism. In particular, helitrons replicate using a rolling-circle
mechanism and encode a replication initiation (Rep) and a DNA helicase (Hel), while
Maverick elements encode an integrase, an ORF, and a polymerase B. Miniature Inverted
Transposable Elements (MITEs) are non-autonomous elements of Class II, and thus they
use transposases encoded by autonomous TEs for transposition [17].
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3. Regulatory Mechanisms of Transposon Silencing
3.1. Argonaute Protein Family and Small Non-Coding RNAs

The main tool used by eukaryotic cells and genomes to counter TE activity is the
RNA interference (RNAi) system. The RNAi phenomenon was first discovered in the
nematode Caenorhabditis elegans [18] and uses short RNA duplexes in which one of the
strands is complementary to the mRNA of the target gene to post-transcriptionally silence
it. In general, RNAi may act through two modalities: it suppresses transcription by
transcriptional gene silencing (TGS) or it activates a sequence-specific RNA degradation
process by post-transcriptional gene silencing (PTGS) [19]. The canonical RNAi pathways
act at the gene level but also participate in transposon and foreign DNA silencing [20–22].
The three key components involved in the RNAi system are the proteins of the Argonaute
family (AGO and PIWI), dicer-like proteins, and RNA dependent RNA polymerase (RdRP).
By analysing these proteins, it is possible to understand their prokaryotic origin given the
presence of archaeal, bacterial, and even viral compositions. The defence function of RNAi
against viruses and transposons was present in the last eukaryotic common ancestor [23].

The RNAi system is differentiated between germinal and somatic cells and is mediated
by piRNA and siRNA/miRNA, respectively [22]. The structure of eukaryotic Argonaute
family proteins is highly conserved and presents four characteristic domains: N-terminal,
PIWI-Argonaute-Zwilli (PAZ), Middle (MID), and the RNase H catalytic domain named
PIWI. The N-terminal domain participates in the unwinding of the RNA duplex and plays
an auxiliary role in targeting RNA cleavage. The PAZ domain is required for binding
the 3′ end of the RNA guide, while the MID domain, with its pocket, accommodates the
5′-terminal nucleotide of the RNA guide. The PIWI domain contains the catalytic centre
(DEDH/D) and is an endonuclease that allows cutting RNA targets complementary to the
small RNA guide [24].

The members of the Piwi and Ago subfamilies are present in all eukaryotes, while
in worms and trypanosomes, lineage-specific duplication events occurred, leading to the
worm-specific WAGO subfamily and the Trypanosome AGO family, respectively [25]. In
vertebrates, the Piwi subfamily includes Piwil1 and Piwil2 in all gnathostomes, Piwil4 in
both cartilaginous fish and sarcopterygians (it is absent in actinopterygians), and Piwil3
is present only in mammals. Microsyntenic analyses have shown that these genes are
located on different chromosomes. In vertebrates, the Ago subfamily comprises four
members: Ago1/3/4, organised in tandem at the same chromosome locus, and Ago2, located
in a different genomic region. Phylogenetic analyses considering the major evolutionary
lineages have revealed that the evolution of the Argonaute family was shaped by whole
genome duplications and lineage-specific gains and losses [26].

3.1.1. piRNA and PIWI Proteins: Small RNA Biogenesis and TE Silencing Activity

piRNA/PIWI complexes drive a defence system that silences TEs during germinal
development [27,28] through two mechanisms: one in the nucleus, where piRNAs silence
TE transcriptional activity by recruiting chromatin remodelers such as DNA methyltrans-
ferases (DNMTs) and histone methyltransferases (HMTs); the other in the cytoplasm, where
TE-derived piRNAs are recognised and degraded [13]. At the same time, it is important
to consider that although germline protection against transposon activity is conserved,
piRNA genes have undergone rapid evolution, and their mechanism of biogenesis shows
strong phylogenetic diversity. This suggested a co-evolution between TEs and piRNA
pathways [29].

piRNAs are the most heterogeneous small noncoding RNAs in animals [30–33]. They
are generated from longer RNA transcripts originating in specific genomic loci, named
“clusters” [21,32,34–36]. These regions contain a large number and various types of TEs,
and thus, the piRNAs generated from them are homologous not only to TEs in the clusters
but also to TEs located elsewhere, allowing the repression of TEs in trans. Transcription of
piRNA precursor RNAs can occur from a single strand of DNA, uni-strand clusters gener-
ating piRNA precursors by canonical unidirectional transcription, or from both strands of
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DNA, double-strand clusters, identified mainly in some invertebrates as dipterans [21,37,38]
and lepidopterans [21,39].

Based on the different mechanisms of 5′ end formation during biogenesis, piRNAs
can be classified as primary or secondary piRNAs. In the first mechanism, after tran-
scription, piRNA precursor transcripts move from the nucleus to the cytoplasm by the
shuttling protein HMG protein Maelstrom (Mael). Here, they are concentrated in the
“nuage,” where they are also protected from nucleases. In addition, this compartmentali-
sation can also prevent mRNAs and lncRNAs from entering the piRNA pathway. In the
nuage, piRNA precursors are processed in close association with mitochondria. In mice,
MOV10L1 RNA helicase produces shorter RNAs, and mitoPLD endonuclease transforms
precursor piRNAs into intermediate fragments [40]. In the last step, piRNAs are trimmed
by PNLDC1/Trimmer localized to the outer membrane of mitochondria [41–49], and
2′-O-methylation at the 3′ end is added by mouse Hua Enhancer 1 Homolog 1 (mHen1).
The secondary piRNA biogenesis, also known as the “Ping-Pong” amplification loop, is
limited by the availability of piRNA precursors [21]. Indeed, this cycle consumes TE tran-
scripts, given that TEs are silenced during the amplification of the primary and secondary
piRNA pools [50].

The produced piRNAs are loaded into PIWI proteins to form the mature piRNA-PIWI
complex called the piRNA-induced silencing complex (piRISC) [40] (Figure 2A). These
complexes use piRNAs to guide PIWI proteins to target RNAs and cleave them or suppress
TEs through DNA methylation and histone modifications. In particular, piRNA/PIWI
proteins recruit DNMTs and HMTs to TEs. Through the deposition of methyl groups
onto DNA cytosines and at specific residues of histone tails, the chromatin structure is
compacted, and the target regions are silenced.
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Figure 2. RNA interfering silencing mechanisms. (A) action of the piRNA-induced silencing complex
(piRISC) at the transcriptional level (TGS) in the nucleus and post-transcriptional level (PTGS) in
the cytoplasm. piRISC and piRNAs are coloured in green. (B) action of the RNA-induced initiation
of transcriptional gene silencing (RITS) complex acting on nascent RNAs in the nucleus and of the
miRNA-induced silencing complex (miRISC) that cleaves the mRNA or blocks mRNA translation in
the cytoplasm. RITS and endo-siRNAs are coloured orange; miRISC and miRNAs are coloured in
blue. Purple stars indicate epigenetic marks deposited by DNMTs and HMTs. For more details, see
the main text.

In vertebrates, the TE silencing system mediated by piRNA/PIWI complexes has been
investigated in several organisms. In teleosts, Houwing and colleagues [51] have shown
the activity of Piwil1 and the presence of piRNAs both in the ovary and testis of zebrafish.
Moreover, the involvement of Dicer in the production of these small RNAs suggests that
this pathway is widely conserved. In coelacanths, the activity of Piwi and that of proteins
involved in piRNA biogenesis have been recorded in gonadal and somatic tissues, while in



Int. J. Mol. Sci. 2023, 24, 11591 6 of 16

lungfish, it was limited to gonadal tissues [26]. The lower activity of these genes and others
involved in TE silencing mechanisms compared to coelacanth suggested that this finding
might be in relation to the presence of old TE copies in the giant genome of lungfish. A
different condition was recorded in the newt Cynops orientalis, in which a higher activity of
TEs and silencing mechanisms was detected, probably due to the presence of younger TE
copies [52]. In addition, the expression of piRNAs and TEs has been investigated in other
vertebrate species, such as those belonging to amphibians, birds, teleosts, reptiles, and
mammals, with a wide range of genome sizes evidencing an action in both the ovaries and
testes [53–55]. Pasquesi and colleagues [56] have tested the activity of TEs and the PIWI
pathway not only in gonadal tissues but also in seven somatic tissues of 12 vertebrates.
Similarly, Galton and colleagues [57] have reported that in chickens, piRNAs and Piwil1 are
present in the somatic cells of the neural tube and are required for neural crest specification
and emigration. Indeed, PIWIL1 targets ERNI, a transposon-derived gene that in turn
inhibits Sox2, which is involved in neural crest specification and epithelial-to-mesenchymal
transition. These findings indicate that the piRNAs/PIWI pathway can also be involved in
the regulation of somatic development in vertebrates. Vandewege et al. [58] have compared
the piRNA/PIWI and TE dynamics in squirrels, organisms characterised by the absence of
mobilization of LINE and SINE retroelements, with rabbits and mice. Their data suggested
that PIWI proteins act weakly on TEs that do not represent a threat.

3.1.2. miRNA/siRNA and AGO Proteins: Small RNA Biogenesis and TE Silencing Activity

The partners of AGO proteins are miRNA (~22 nt) and endo-siRNA (20–26 nt). The
biogenesis of miRNA begins in the nucleus, where they are transcribed by RNA polymerase
II as a long transcript called primary miRNA (pri-miRNA) containing hairpin structures
with a terminal loop of ~10 nt. The molecules are processed using the microprocessor
complex composed of Drosha and DiGeorge Syndrome Critical Region Gene 8 (DGCR8).
This latter protein binds the pri-miRNAs through a double-stranded RNA binding domain
and facilitates their cleavage by Drosha. The miRNAs precursors obtained move to the
cytoplasm thanks to exportin 5 and Ran GTP. Here, the endonuclease Dicer cuts a shorter
double-stranded fragment that is incorporated into the miRNA-induced silencing complex
(miRISC) that acts as an effector in the miRNA pathway [30] (Figure 2B). On the basis of the
complementarity between miRNA and the target, miRISC degrades mRNA or represses
mRNA translation [59]. Unlike miRNA, endo-siRNA biogenesis is not strictly related to
the nuclear microprocessor, and it is processed starting from long double-stranded RNAs
(dsRNAs) [60]. They are produced by Dicer and loaded onto AGO proteins, forming the
RNA-induced initiation of transcriptional gene silencing complex (RITS) (Figure 2B). The
small RNA is used to target nascent RNAs still attached to RNA polymerase and DNA.
These transcripts are cleaved, and heterochromatin in these DNA regions increases through
methylation at lysine 9 of histone H3 and at the DNA level.

In vertebrates, the activity of Ago genes in relation to TEs has been investigated
in teleosts and sarcopterygians in both gonadal and somatic tissues [26,52,56,61,62] as
well as in the germline in mammals [63,64]. A role for AGO2 as a genome-defence sys-
tem against young TEs has been reported in the nucleus of quiescent cells in mice [65].
Piriyapongsa et al. [66] have evidenced that miRNAs derived from TEs are co-opted for the
regulatory systems leading to lineage-specific phenotypes contributing to species diver-
gence. In zebrafish, miRNAs target V-SINEs (vertebrate SINEs) inserted in the 3′ UTR of
mRNAs and play a role in modulating cell responses to different stimuli. Moreover, the
presence of these TEs and related miRNAs in the genome of fish could have favoured the
radiation of this taxon [67]. Similarly, in bats, a burst of DNA transposons and derived
miRNAs has been proposed as responsible for the diversification of Vespertilionidae [68].

3.2. KRAB System

The Krüppel-type C2H2 zinc finger (ZNF) proteins present an N-terminal KRAB
domain and a variable number of zinc finger repeats at the C-terminus. The KRAB domain
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was originally defined as a “heptad repeat of leucines” [69] and was first described in
human ZNF10/Kox1 identified in T cells. Because of its occurrence with the Krüppel-type
C2H2 zinc finger motifs, this domain was then named “KRAB” [70]. The KRAB domain
may have evolved from PRDM9/Meisetz, which has an ancestral KRAB-like domain at the
N-terminus, a central Suvar3–9, Enhancer-of-zeste, Trithorax (SET) domain, which catalyses
the trimethylation of lysine 4 in the histone H3, and an array of tandem zinc finger motifs at
the C-terminus [71]. This KRAB-like domain is related to the divergent KRAB motif found
in the members of the Synovial sarcoma, X breakpoint (SSX) family that do not present zinc
fingers [72].

Analyzing more than 200 vertebrate genomes, Imbeault and colleagues [73] have
reported KRAB-ZFPs in coelacanths, lungfish, and tetrapods, dating the origin of these
sarcopterygian-specific genes to 420 million years ago. In humans, most of the genes
encoding KRAB-ZFPs are organised in clusters on 19q, and others are located on both
autosomes and sex chromosomes [74].

The KRAB domain, consisting of 75 amino acids, is subdivided into two subdomains
that are usually encoded by separate exons (apart from coelacanths, in which it is en-
coded by a single exon): the KRAB-A subdomain (40–50 amino acids) and the KRAB-B
subdomain (20–25 amino acids), which also exists in various forms called B, b, BL, and
C [75]. A small subset of members of this family contains other domains such as the SCAN
domain, responsible for oligomerization with other SCAN-containing proteins [74,76,77],
Broad-Complex, Tramtrack, and Bric-a-brac/POxvirus and Zinc Finger (BTB/POZ) do-
mains acting as dimerization motif, the SET domain, and DUF3669, whose function is still
unknown [78] (Figure 3).
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Figure 3. Schematic representation of KRAB-ZFPs and associated domains. For simplicity, only
four zinc fingers are shown. KRAB (Krüppel-associated box); ZF (zinc finger); SCAN (SREZBP,
CTfin51, AW-1, and Number 18 cDNA); DUF3669 (domain of unknown function 3669); BTB/POZ
(Broad-Complex, Tramtrack, and Bric-a-brac/POxvirus and Zinc finger); SET (Suvar3–9, Enhancer-of-
zeste, Trithorax).

KRAB-A is involved in the repressive activity that is enhanced by the KRAB-B domain
(Figure 4). The KRAB-A interacts with Tripartite Motif protein 28 (TRIM28, also named
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KRAB-Associated Protein 1 (KAP1) or Transcription Intermediary Factor 1-Beta (TIF1b)),
which in turn acts as a scaffold for recruiting proteins involved in heterochromatin for-
mation such as histone H3K9 methyltransferase SETDB1, heterochromatin protein HP1,
and the NuRD complex. TRIM28 dimerizes and binds a single KRAB-ZFP through the
RING, B-box zinc finger, and Coiled-Coil (RBCC) domains located at the N-terminus. Some
residues have been identified as crucial for KRAB binding and transcriptional silencing
activity [79,80]. The PxVxL motif of TRIM28 recruits HP1 and the DNA Methyltransferases
(DNMT1 and DNMT3A). In the C-terminal region, TRIM28 presents a PHD bromodomain
that binds the SUMO E2 ligase Ubc9 to post-translationally SUMOylate lysine residues in
the bromodomain to recruit and activate the histone methyltransferase SETDB1 and the
NuRD complex [79]. The former adds the H3K9me3 mark, while the latter is a chromatin
remodeling complex that contains the histone deacetylases 1 and 2 (HDAC1 and HDAC2),
the chromatin helicase DNA binding protein 4 (CHD4), the retinoblastoma-binding proteins
4 and 7 (Rbbp4 and Rbbp7), the zinc-finger proteins GATA Zinc Finger Domain Containing
2A or 2B (GATAD2a and GATAD2b), two Metastasis-associated Proteins (MTA1, MTA2,
and/or MTA3), and the Methyl-CpG Binding Domain Protein 2 or 3 (MBD2 or MBD3).
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Figure 4. TE silencing mechanism based on KRAB-ZFPs. Purple stars represent the methylation of
DNA sequences and histone tails.

The zinc finger motifs of KRAB-ZFPs are involved in binding DNA sequences by
interacting with three nucleotides of the primary DNA strand (via amino acids at positions
1, 3, and 6 of the C2H2 helix) and some nucleotides on the secondary strand (via amino
acid 2). The amino acids contacting DNA are under positive selection to evolve rapidly to
efficiently target mutable DNA sequences such as TEs or viruses [81].

Indeed, KRAB-ZFPs have been reported to be implicated in several biological events
such as embryonic development, cell differentiation, cell proliferation, cell cycle regulation,
and TE silencing [82,83]. They act mainly on retrotransposons and endogenous retroviruses
in early embryonic development [73,84,85]. Indeed, during this developmental window,
methylation is reduced and the chromatin state is reprogrammed to allow the acquisition
of totipotency by the zygote [86]. The low level of methylation and chromatin compactness
may allow TE transposition, with consequent effects due to new insertions. Recent papers
have reported that the KRAB-related TE silencing mechanism seems to be active in adult
tissues as well. Ecco and colleagues [87] have demonstrated that this system acts in murine
differentiated tissues, with effects also on the expression of genes located close to TEs. This
suggested that KRAB-ZFPs and TEs might be involved in regulating many physiological
events, and thus the KRAB system is not only a silencing mechanism but also a tool
for TE domestication for the benefit of the host [88,89]. This has also been proposed by
Grassi et al. [90] to fine-tuning regulate the expression of coding genes in the brain. Indeed,
in primates, the presence of lineage-specific TEs might have contributed to the complexity
of this organ.
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The transcriptional activity of TEs and genes involved in NuRD complex composition
and recruitment was also detected in the gonads of adult specimens of two basal sarcoptery-
gians (coelacanths and lungfish) and the urodele C. orientalis (having a giant genome as
dipnoans) [52]. Wang and colleagues [53] have investigated the relationship between TE
activity and silencing mechanisms in 15 vertebrate species with giant genomes. Their data
suggested that differences in the expression of genes involved in these systems are related
to the evolutionary phase in which the genome is: TE silencing is active during genome
contraction while it is reduced during genome expansion. The patterns of expression of
both TEs and genes involved in NuRD complex composition and recruitment were also
investigated in somatic and gonadal tissues of 12 vertebrate species belonging to the major
lineages, revealing variations across species and tissues [56].

KRAB-ZFPs and TEs coevolve as a result of the “arms race” model, according to
which TEs change by acquiring mutations to escape the repression made by KRAB-ZFPs.
Consequently, some of these KRAB-ZFPs evolve rapidly, modifying their zinc fingers to
be able to recognise the escaped TEs [91]. This should have determined the expansion in
the number of KRAB-ZFPs in higher vertebrates [92]. In humans, KRAB-ZPFs represent
one-third of about 800 different zinc finger proteins and are one of the largest families of
transcriptional regulators [93].

Although zinc finger proteins encoding the KRAB domain and TRIM28 are absent in
fish, Carotti and colleagues [61,62] proposed the presence of a zinc finger protein showing a
KRAB-like domain in teleosts and suggested TRIM33 as a functional substitute for TRIM28.
Indeed, in actinopterygians, KRAB-like proteins in concert with TRIM33 may recruit the
NuRD complex and other proteins involved in heterochromatin formation, functioning as
KRAB-related TE silencing mechanisms in sarcopterygians. The activity of TEs and that of
this system in organisms whose physiology is strongly influenced by abiotic factors such as
temperature and salinity suggest that a cross-talk between TEs and the KRAB system might
exist and might represent a regulatory tool used by the genome to face environmental
changes and allow organism adaptation.

3.3. Human Silencing Hub Complex

Despite the fact that invading pathogens represent a constant threat to eukaryotic
genomes, DNA derived from the integration of genetic parasites can also be beneficial
for the host genome. Indeed, it represents raw genetic material that can be co-opted
and contribute to the host genome’s evolution through domestication [94]. As recently
reviewed by Seczynska and Lenher [95], how the immune system can distinguish between
foreign and self-nucleic acids remains unclear. The discovery of the Human Silencing
Hub (HUSH) complex started to answer open questions concerning how the host genome
can discriminate between retroelement-derived DNA from its own genome and control
its activity (Figure 5). The HUSH complex was first discovered in the Lehner laboratory
while performing studies on position-effect variegation, i.e., how an identical gene can
be differently expressed as a result of its position due to epigenetic silencing [96]. This
phenomenon can be found from fish to mammals [97].

The HUSH complex is a stable system composed of three main proteins: transcription
activation suppressor (TASOR), M-phase phosphoprotein 8 (MPP8), and Periphilin. In
addition, two effectors are present: MORC family CW-type zinc finger 2 (MORC2), an
ATP-dependent chromatin remodeler that increases its compactness, and SETDB1, which
acts in the deposition of histone 3 lysine 9 trimethylation at the target loci [97]. The
recruitment of the HUSH complex starts with the binding of Periphilin to the nascent RNA.
MPP8 then recruits SETDB1 thanks to an interaction with the nuclear chaperone Activating
Transcription Factor 7 Interacting Protein (ATF7IP) [95]. A delicate equilibrium regulates
the reading activity of MPP8 and the writing activity of SETDB1. Recognizing preexistent
trimethylations, MPP8 recruits ATF7IP-SETDB1 at the target locus to allow the deposition
of further epigenetic markers by SETDB1 [97–99].
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Figure 5. RNA- and DNA-mediated Human Silencing Hub (HUSH) recruitment. On the left, RNA-
mediated HUSH recruitment is reported. The HUSH complex, composed of transcription activation
suppressor (TASOR), Periphilin, and M-phase phosphoprotein 8 (MPP8), is able to silence retroviruses,
retrotransposons, and retrotransposons carrying cellular mRNA (as indicated by green thick). Host
genes, characterised by the presence of introns, are able to overcome HUSH-mediated silencing
(as indicated by the red cross). On the right, DNA-mediated HUSH recruitment via DNA-binding
nuclear protein 220 (NP220) is shown. This system acts on retroviral DNA, preventing its integration
into the host genome.

However, MPP8 is not essential for repression. MPP8 contributes to maintaining in
a stable manner the HUSH complex at the locus [14] as well as the binding of Periphilin
to the target RNA. Mimicking long interspersed nuclear element 1 (LINE1, L1) invasion
with reporter transgenes, the Lehner laboratory discovered that the key role of the HUSH
complex is to target specifically full-length, evolutionarily young, and transcriptionally
active L1s. Moreover, this complex avoids the repression of host genes thanks to its ability
to recognise the presence of introns [14]. Indeed, the lack of introns is an intrinsic feature of
retroelements. What enables HUSH to distinguish intronless invading elements from intron-
containing genes is the specific binding between Periphilin and nascent RNA. “Specific”
refers to the selective binding of HUSH to L1 transcripts, KRAB-ZF genes, and HUSH-
sensitive loci [14]. Only active, full-length, and evolutionarily recent L1 can be silenced
using the HUSH complex [100] and represent RNA-mediated HUSH silencing (Figure 5).

Beside this canonical silencing method, DNA-mediated HUSH recruitment can also
be found, in which the nuclear protein 220 (NP220) acts as an intermediate. NP220 is a
dsDNA-binding protein and is characterised by a DNA-binding domain and a single C-
terminal ZNF motif. Zhu and colleagues [101] have evidenced that MLV DNA was bound
by NP220, marked with histone deacetylation, and thus silenced by the HUSH complex.

HUSH is not only involved in the control of the reverse flow of genetic information [95].
Recently, cooperation between HUSH and Nuclear Exosome Targeting (NEXT) complexes
has been reported by Garland and colleagues [102]. The NEXT complex components are
the zinc finger CCHC-type containing 8 (ZCCHC8) and the RNA-binding RBM7 proteins.
The NEXT complex cooperates with HUSH to restrict transposon expression. Elevated
TE levels resulted from the knockout of ZCCHC8 in mouse embryonic stem cells. The
authors highlighted an interaction between ZCCHC8 of NEXT and the MPP8 protein
that is fundamental for the recruitment of NEXT by the HUSH complex to chromatin at
MPP8-bound TE loci [102].
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4. TE Silencing Mechanisms as Controlling Tools for Vertebrate Adaptation

TEs differ in total content as well as in TE typology and family diversity between
vertebrate lineages [6,103]. They strongly contributed to the evolution of this taxon, creating
crucial innovations that allowed vertebrate diversification and adaptation [8–10,104]. In-
deed, TE transposition might create raw genetic material on which natural selection can act,
contributing to the evolution of species-specific traits. However, in many cases, TEs cause
genome instability, and consequently, protective mechanisms were evolved to prevent TE
transposition and allow the coexistence of TEs and eukaryotic host-coding genes. On the
other side, an increasing number of papers attribute to these mobile elements a role as a
source of genetic and epigenetic variability with adaptive potential. This implies that TEs
are not elements merely to silence but to include in the regulatory pathways of the host. The
co-option of TEs as cis-regulatory elements, such as promoters or enhancers, of host genes is
becoming increasingly apparent [105–107]. Indeed, TEs may contain sequences involved in
regulating themselves but also nearby genes in a tissue-specific fashion [8,108–110]. Xie and
colleagues [111] have shown that TEs are not constitutively silenced, but their repression
differs between human cell types. Moreover, their data suggested that hypomethylated
TEs gain enhancer signatures, indicating that these elements can mediate gene regulation
in relation to epigenetic silencing systems. Several TE-derived promoters and enhancers
have been reported in embryonic stem cells of mice [112], as well as in rodent placenta [8],
in the innate immune system in humans [105], and in the mammalian brain [90]. Moreover,
old TEs are more likely to present transcription factor binding sites or CTCF-binding sites
to reorganize the 3D chromatin structure since they escape DNA methylation silencing
due to CpG deamination [113]. TEs can regulate the gene expression of host-coding genes,
considering their position and the mechanisms involved in their silencing. Chen and
colleagues [114] have demonstrated that the KRAB system also has an activation function
for neighboring genes involved in adipogenesis by targeting a retroelement located up-
stream that functions as an enhancer. Therefore, the coevolution between KRAB-ZFPs and
TEs is not only the result of the arms race model but probably also the domestication of
TE-derived regulatory sequences, which has had an important impact [89,110]. In somatic
tissues, this ability of TEs to rewire gene expression networks could represent a tool to cope
with environmental changes, allowing species adaptation. Organisms are continuously
threatened by changes in environmental factors, with a consequent increase in selection
pressure and evolutionary rate. In the context of species adaptation, this leads to the onset
of new phenotypes that are well-adapted to the new conditions and able to improve the
fitness of organisms. It is known that TEs are environmentally sensitive molecular elements
whose activity can be triggered by numerous environmental stressors [115]. Recently, in
vertebrates, several papers have reported variations in TE transcriptional levels in response
to changes in biotic and abiotic factors accompanied by the activation of genes involved in
TE silencing mechanisms [61,62]. This relationship suggests that controlling systems and
TEs cooperate to create an epigenetic regulatory pathway that modulates physiological
events in response to environmental changes to allow species adaptation. Therefore, the
genome might be able to balance the action of these mechanisms to exploit the TE activity
for host advantage and not merely silence it.

Understanding the biological functions of TEs is also important for human health, as
variations in the activity of these elements and of their controlling mechanisms have been
reported in association with disease and cancer [116–118].

5. Conclusions

TEs have contributed to vertebrate diversification by creating innovations, for example,
in immune system, placental formation, and brain development. Moreover, these mobile
elements are one of the most intriguing components of the genome, given their potential
role in the genome responsiveness to external stimuli. As here reviewed, TEs and related
silencing systems can mediate gene regulation by modulating physiological functions
that allow organisms to cope with environmental variations. Indeed, sequences derived
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from TEs can be regulatory elements (such as enhancers and promoters) that rewire gene
expression networks in a tissue-specific manner. This view suggests that TEs are not
constitutively silenced, but are regulated by the host genome. In line with these new
insights, research efforts are focusing on the evaluation of the TE impact as a key molecular
tool for adaptation and resilience. In the framework of climate change, results in this field
acquire greater importance, considering endangered species or organisms more susceptible
to environmental changes. Moreover, to get more information on this topic as well as
uncover additional TE regulation modes, high-throughput sequencing techniques, and
bioinformatic pipelines have to improve to produce long reads that contain large repetitive
regions together with their flanking regions, useful for better TE annotation [119].
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