The Synergistic Effect of Electrical Stimulation and Dermal Fibroblast Cells-Laden 3D Conductive Hydrogel for Full-Thickness Wound Healing
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mechanical Properties of GelMa/ Graphene Hydrogel
2.2. Cell Viability and Proliferation
2.3. Expression of Biomarker in Conductive HDF-Laden Hydrogel
2.4. In Vivo Rabbit Skin Wound Healing
3. Materials and Methods
3.1. Synthesis of GelMa Bioink
3.2. Cell Culture
3.3. Preparation of Conductive Bio-Ink and Scaffold
3.4. Analysis of Scaffold Properties
3.5. Conductivity Measurement and Testing
3.6. Electrical Stimulation
3.7. Cell Proliferation
3.8. Quantification of Secreted Proteins
3.9. In Vivo Wound Healing
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, R.; Liu, K.; Huang, X.; Li, D.; Ding, J.; Liu, B.; Chen, X. Bioactive Materials Promote Wound Healing through Modulation of Cell Behaviors. Adv. Sci. 2022, 9, 2105152. [Google Scholar] [CrossRef]
- Salameh, S.; Tissot, N.; Cache, K.; Lima, J.; Suzuki, I.; Marinho, P.A.; Rielland, M.; Soeur, J.; Takeuchi, S.; Germain, S.; et al. A Perfusable Vascularized Full-Thickness Skin Model for Potential Topical and Systemic Applications. Biofabrication 2021, 13, 035042. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, W.; Ma, H.; Qin, C.; Chen, J.; Wu, C. Spindle-like Zinc Silicate Nanoparticles Accelerating Innervated and Vascularized Skin Burn Wound Healing. Adv. Healthc. Mater. 2022, 11, 2102359. [Google Scholar] [CrossRef]
- Jiang, Y.L.; Wang, Z.L.; Fan, Z.X.; Wu, M.J.; Zhang, Y.; Ding, W.; Huang, Y.Z.; Xie, H.-Q. Human Adipose-Derived Stem Cell-Loaded Small Intestinal Submucosa as a Bioactive Wound Dressing for the Treatment of Diabetic Wounds in Rats. Biomater. Adv. 2022, 136, 212793. [Google Scholar] [CrossRef]
- Levengood, S.L.; Erickson, A.E.; Chang, F.; Zhang, M. Chitosan–Poly(Caprolactone) Nanofibers for Skin Repair. J. Mater. Chem. B 2017, 5, 1822–1833. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.; Chen, X.; Liu, X.; Wen, G.; Yu, Y. Recent Advances in Decellularized Biomaterials for Wound Healing. Mater. Today Bio 2023, 19, 100589. [Google Scholar] [CrossRef]
- Cao, Y.; Cong, H.; Yu, B.; Shen, Y. A Review on the Synthesis and Development of Alginate Hydrogels for Wound Therapy. J. Mater. Chem. B 2023, 11, 2801–2829. [Google Scholar] [CrossRef]
- Chen, Y.S.; Ng, H.Y.; Chen, Y.W.; Cho, D.Y.; Ho, C.C.; Chen, C.Y.; Chiu, S.C.; Jhong, Y.R.; Shie, M.Y. Additive Manufacturing of Schwann Cell-Laden Collagen/Alginate Nerve Guidance Conduits by Freeform Reversible Embedding Regulate Neurogenesis via Exosomes Secretion towards Peripheral Nerve Regeneration. Biomater. Adv. 2023, 146, 213276. [Google Scholar] [CrossRef]
- Shie, M.Y.; Fang, H.Y.; Kan, K.W.; Ho, C.C.; Tu, C.Y.; Lee, P.C.; Hsueh, P.R.; Chen, C.H.; Lee, A.K.X.; Tien, N.; et al. Highly Mimetic Ex Vivo Lung-cancer Spheroid-based Physiological Model for Clinical Precision Therapeutics. Adv. Sci. 2023, 10, 2206603. [Google Scholar] [CrossRef]
- Wang, Y.; Song, P.; Wu, L.; Su, Z.; Gui, X.; Gao, C.; Zhao, H.; Wang, Y.; Li, Z.; Cen, Y.; et al. In Situ Photo-Crosslinked Adhesive Hydrogel Loaded with Mesenchymal Stem Cell-Derived Extracellular Vesicles Promotes Diabetic Wound Healing. J. Mater. Chem. B 2022, 11, 837–851. [Google Scholar] [CrossRef]
- Kim, N.; Lee, H.; Han, G.; Kang, M.; Park, S.; Kim, D.E.; Lee, M.; Kim, M.J.; Na, Y.; Oh, S.; et al. 3D-printed Functional Hydrogel by DNA-induced Biomineralization for Accelerated Diabetic Wound Healing. Adv. Sci. 2023, 10, 2300816. [Google Scholar] [CrossRef]
- Saha, R.; Patkar, S.; Pillai, M.M.; Tayalia, P. Bilayered Skin Substitute Incorporating Rutin Nanoparticles for Antioxidant, Anti-Inflammatory, and Anti-Fibrotic Effect. Biomater. Adv. 2023, 150, 213432. [Google Scholar] [CrossRef]
- Chen, Y.W.; Wang, K.; Ho, C.C.; Kao, C.T.; Ng, H.Y.; Shie, M.Y. Cyclic Tensile Stimulation Enrichment of Schwann Cell-Laden Auxetic Hydrogel Scaffolds towards Peripheral Nerve Tissue Engineering. Mater. Design 2020, 195, 108982. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Y.; Chen, D.; Su, T.; Chang, Q.; Huang, W.; Lu, F. 3D Bioprinting of a Gradient Stiffened Gelatin–Alginate Hydrogel with Adipose-Derived Stem Cells for Full-Thickness Skin Regeneration. J. Mater. Chem. B 2023, 11, 2989–3000. [Google Scholar] [CrossRef]
- Yeo, M.; Yoon, J.W.; Park, G.T.; Shin, S.C.; Song, Y.C.; Cheon, Y.I.; Lee, B.J.; Kim, G.H.; Kim, J.H. Esophageal Wound Healing by Aligned Smooth Muscle Cell-Laden Nanofibrous Patch. Mater. Today Bio 2023, 19, 100564. [Google Scholar] [CrossRef]
- Tan, B.; Gan, S.; Wang, X.; Liu, W.; Li, X. Applications of 3D Bioprinting in Tissue Engineering: Advantages, Deficiencies, Improvements, and Future Perspectives. J. Mater. Chem. B 2021, 9, 5385–5413. [Google Scholar] [CrossRef]
- Wu, J.; Xiao, J.; Zhu, M.; Yang, H.; Liu, J.; Liu, Y. Study of Physicochemical and Gelation Properties of Fish Gelatin from Different Sources. Appl. Sci. 2023, 13, 5337. [Google Scholar] [CrossRef]
- Chen, Y.W.; Lin, Y.H.; Lin, T.L.; Lee, K.X.; Yu, M.H.; Shie, M.Y. 3D-Biofabricated Chondrocyte-Laden Decellularized Extracellular Matrix-Contained Gelatin Methacrylate Auxetic Scaffolds under Cyclic Tensile Stimulation for Cartilage Regeneration. Biofabrication 2023. [Google Scholar] [CrossRef]
- Chakraborty, J.; Mu, X.; Pramanick, A.; Kaplan, D.L.; Ghosh, S. Recent Advances in Bioprinting Using Silk Protein-Based Bioinks. Biomaterials 2022, 287, 121672. [Google Scholar] [CrossRef]
- Shi, L.; Hu, Y.; Ullah, M.W.; Ullah, I.; Ou, H.; Zhang, W.; Xiong, L.; Zhang, X. Cryogenic Free-Form Extrusion Bioprinting of Decellularized Small Intestinal Submucosa for Potential Applications in Skin Tissue Engineering. Biofabrication 2019, 11, 035023. [Google Scholar] [CrossRef]
- Guan, G.; Lv, Q.; Liu, S.; Jiang, Z.; Zhou, C.; Liao, W. 3D-Bioprinted Peptide Coupling Patches for Wound Healing. Mater. Today Bio 2021, 13, 100188. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.W.; Shen, Y.F.; Ho, C.C.; Yu, J.; Wu, Y.H.A.; Wang, K.; Shih, C.T.; Shie, M.Y. Osteogenic and Angiogenic Potentials of the Cell-Laden Hydrogel/Mussel-Inspired Calcium Silicate Complex Hierarchical Porous Scaffold Fabricated by 3D Bioprinting. Mater. Sci. Eng. C 2018, 91, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.K.X.; Lin, Y.H.; Tsai, C.H.; Chang, W.T.; Lin, T.L.; Shie, M.Y. Digital Light Processing Bioprinted Human Chondrocyte-Laden Poly (γ-Glutamic Acid)/Hyaluronic Acid Bio-Ink towards Cartilage Tissue Engineering. Biomedicines 2021, 9, 714. [Google Scholar] [CrossRef]
- Wu, Y.; Lu, Y.; Wu, C.; Chen, J.; Ning, N.; Yang, Z.; Guo, Y.; Zhang, J.; Hu, X.; Wang, Y. Conductive Dual Hydrogen Bonding Hydrogels for the Electrical Stimulation of Infected Chronic Wounds. J. Mater. Chem. B 2021, 9, 8138–8146. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Yang, M.; Xu, C.; Yang, K.; Su, Y.; Ye, Y.; Dou, L.; Yang, Q.; Ke, W.; Wang, B.; et al. PEDOT:PSS Hydrogels with High Conductivity and Biocompatibility for in Situ Cell Sensing. J. Mater. Chem. B 2023, 11, 3226–3235. [Google Scholar] [CrossRef] [PubMed]
- Ting, M.S.; Vella, J.; Raos, B.J.; Narasimhan, B.N.; Svirskis, D.; Travas-Sejdic, J.; Malmström, J. Conducting Polymer Hydrogels with Electrically-Tuneable Mechanical Properties as Dynamic Cell Culture Substrates. Biomater. Adv. 2022, 134, 112559. [Google Scholar] [CrossRef]
- Lin, Y.H.; Chuang, T.Y.; Chiang, W.H.; Chen, I.W.P.; Wang, K.; Shie, M.Y.; Chen, Y.W. The Synergistic Effects of Graphene-Contained 3D-Printed Calcium Silicate/Poly-ε-Caprolactone Scaffolds Promote FGFR-Induced Osteogenic/Angiogenic Differentiation of Mesenchymal Stem Cells. Mater. Sci. Eng. C 2019, 104, 109887. [Google Scholar] [CrossRef]
- Lee, J.J.; Ng, H.Y.; Lin, Y.H.; Liu, E.W.; Lin, T.J.; Chiu, H.T.; Ho, X.R.; Yang, H.A.; Shie, M.Y. The 3D Printed Conductive Grooved Topography Hydrogel Combined with Electrical Stimulation for Synergistically Enhancing Wound Healing of Dermal Fibroblast Cells. Biomater. Adv. 2022, 142, 213132. [Google Scholar] [CrossRef]
- Panwar, V.; Babu, A.; Sharma, A.; Thomas, J.; Chopra, V.; Malik, P.; Rajput, S.; Mittal, M.; Guha, R.; Chattopadhyay, N.; et al. Tunable, Conductive, Self-Healing, Adhesive and Injectable Hydrogels for Bioelectronics and Tissue Regeneration Applications. J. Mater. Chem. B 2021, 9, 6260–6270. [Google Scholar] [CrossRef]
- Zheng, F.; Li, R.; He, Q.; Koral, K.; Tao, J.; Fan, L.; Xiang, R.; Ma, J.; Wang, N.; Yin, Y.; et al. The Electrostimulation and Scar Inhibition Effect of Chitosan/Oxidized Hydroxyethyl Cellulose/Reduced Graphene Oxide/Asiaticoside Liposome Based Hydrogel on Peripheral Nerve Regeneration in Vitro. Mater. Sci. Eng. C 2020, 109, 110560. [Google Scholar] [CrossRef]
- Shie, M.Y.; Chiang, W.H.; Chen, I.W.; Liu, W.Y.; Chen, Y.W. Synergistic Acceleration in the Osteogenic and Angiogenic Differentiation of Human Mesenchymal Stem Cells by Calcium Silicate–Graphene Composites. Mater. Sci. Eng. C 2017, 73, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zhang, W.; Zhang, Y.; Yang, Y.; Fang, Z.; Song, J.; Qian, Y.; Yuan, W.-E. Multifunctional Biomimetic Hydrogel Based on Graphene Nanoparticles and Sodium Alginate for Peripheral Nerve Injury Therapy. Biomater. Adv. 2022, 135, 212727. [Google Scholar] [CrossRef] [PubMed]
- Sujan, M.I.; Sarkar, S.D.; Sultana, S.; Bushra, L.; Tareq, R.; Roy, C.K.; Azam, M.S. Bi-Functional Silica Nanoparticles for Simultaneous Enhancement of Mechanical Strength and Swelling Capacity of Hydrogels. Rsc Adv. 2020, 10, 6213–6222. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Peng, B.; Li, X.; Fang, T.; Liu, S.; Liu, J.; Li, B.; Li, F. Stretchable, Conductive, Breathable and Moisture-Sensitive e-Skin Based on CNTs/Graphene/GelMA Mat for Wound Monitoring. Biomater. Adv. 2022, 143, 213172. [Google Scholar] [CrossRef] [PubMed]
- Mendes, A.X.; do Nascimento, A.T.; Duchi, S.; Quigley, A.F.; Aguilar, L.M.C.; Dekiwadia, C.; Kapsa, R.M.I.; Silva, S.M.; Moulton, S.E. The Impact of Electrical Stimulation Protocols on Neuronal Cell Survival and Proliferation Using Cell-Laden GelMA/Graphene Oxide Hydrogels. J. Mater. Chem. B 2022, 11, 581–593. [Google Scholar] [CrossRef]
- Huang, Y.; Li, X.; Poudel, A.J.; Zhang, W.; Xiao, L. Hydrogel-Based Bioinks for 3D Bioprinting Articular Cartilage: A Comprehensive Review with Focus on Mechanical Reinforcement. Appl. Mater. Today 2022, 29, 101668. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Zhang, Y.; Huangfu, H.; Yang, Y.; Qin, Q.; Zhang, Y.; Zhou, Y. 3D Printed Reduced Graphene Oxide-GelMA Hybrid Hydrogel Scaffolds for Potential Neuralized Bone Regeneration. J. Mater. Chem. B 2023, 11, 1288–1301. [Google Scholar] [CrossRef]
- Lai, W.Y.; Lee, T.H.; Chen, J.X.; Ng, H.Y.; Huang, T.H.; Shie, M.Y. Synergies of Human Umbilical Vein Endothelial Cell-Laden Calcium Silicate-Activated Gelatin Methacrylate for Accelerating 3D Human Dental Pulp Stem Cell Differentiation for Endodontic Regeneration. Polymers 2021, 13, 3301. [Google Scholar] [CrossRef]
- Wang, J.; Tian, L.; Chen, N.; Ramakrishna, S.; Mo, X. The Cellular Response of Nerve Cells on Poly-l-Lysine Coated PLGA-MWCNTs Aligned Nanofibers under Electrical Stimulation. Mater. Sci. Eng. C 2018, 91, 715–726. [Google Scholar] [CrossRef]
- Sharma, A.; Gupta, S.; Sampathkumar, T.S.; Verma, R.S. Modified Graphene Oxide Nanoplates Reinforced 3D Printed Multifunctional Scaffold for Bone Tissue Engineering. Biomater. Adv. 2022, 134, 112587. [Google Scholar] [CrossRef]
- Jin, L.; Hu, B.; Li, Z.; Li, J.; Gao, Y.; Wang, Z.; Hao, J. Synergistic Effects of Electrical Stimulation and Aligned Nanofibrous Microenvironment on Growth Behavior of Mesenchymal Stem Cells. Acs Appl. Mater. Inter. 2018, 10, 18543–18550. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Yildiz, E.; Kaleli, H.N.; Karaz, S.; Eren, G.O.; Dogru-Yuksel, I.B.; Senses, E.; Şahin, A.; Nizamoglu, S. Tissue-like Optoelectronic Neural Interface Enabled by PEDOT:PSS Hydrogel for Cardiac and Neural Stimulation. Adv. Healthc. Mater. 2022, 11, 2102160. [Google Scholar] [CrossRef] [PubMed]
- Ying, H.; Zhou, J.; Wang, M.; Su, D.; Ma, Q.; Lv, G.; Chen, J. In Situ Formed Collagen-Hyaluronic Acid Hydrogel as Biomimetic Dressing for Promoting Spontaneous Wound Healing. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 101, 487–498. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.S.; Lee, J.J.; Lee, A.K.X.; Ho, C.C.; Liu, Y.T.; Shie, M.Y. Calcium Silicate-Activated Gelatin Methacrylate Hydrogel for Accelerating Human Dermal Fibroblast Proliferation and Differentiation. Polymers 2020, 13, 70. [Google Scholar] [CrossRef]
- Abalymov, A.; Parakhonskiy, B.; Skirtach, A.G. Polymer- and Hybrid-Based Biomaterials for Interstitial, Connective, Vascular, Nerve, Visceral and Musculoskeletal Tissue Engineering. Polymers 2020, 12, 620. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Li, H.; Wang, J.; Yao, M.; Peng, Y.; Liu, T.; Li, Z.; Luo, G.; Deng, J. Engineering Bacteria-Activated Multifunctionalized Hydrogel for Promoting Diabetic Wound Healing. Adv. Funct. Mater. 2021, 31, 2105749. [Google Scholar] [CrossRef]
- Bashiri, Z.; Fomeshi, M.R.; Hamidabadi, H.G.; Jafari, D.; Alizadeh, S.; Bojnordi, M.N.; Orive, G.; Dolatshahi-Pirouz, A.; Zahiri, M.; Reis, R.L.; et al. 3D-Printed Placental-Derived Bioinks for Skin Tissue Regeneration with Improved Angiogenesis and Wound Healing Properties. Mater. Today Bio. 2023, 20, 100666. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-H.; Liu, E.-W.; Lin, Y.-J.; Ng, H.Y.; Lee, J.-J.; Hsu, T.-T. The Synergistic Effect of Electrical Stimulation and Dermal Fibroblast Cells-Laden 3D Conductive Hydrogel for Full-Thickness Wound Healing. Int. J. Mol. Sci. 2023, 24, 11698. https://doi.org/10.3390/ijms241411698
Lin Y-H, Liu E-W, Lin Y-J, Ng HY, Lee J-J, Hsu T-T. The Synergistic Effect of Electrical Stimulation and Dermal Fibroblast Cells-Laden 3D Conductive Hydrogel for Full-Thickness Wound Healing. International Journal of Molecular Sciences. 2023; 24(14):11698. https://doi.org/10.3390/ijms241411698
Chicago/Turabian StyleLin, Yen-Hong, En-Wei Liu, Yun-Jhen Lin, Hooi Yee Ng, Jian-Jr Lee, and Tuan-Ti Hsu. 2023. "The Synergistic Effect of Electrical Stimulation and Dermal Fibroblast Cells-Laden 3D Conductive Hydrogel for Full-Thickness Wound Healing" International Journal of Molecular Sciences 24, no. 14: 11698. https://doi.org/10.3390/ijms241411698
APA StyleLin, Y. -H., Liu, E. -W., Lin, Y. -J., Ng, H. Y., Lee, J. -J., & Hsu, T. -T. (2023). The Synergistic Effect of Electrical Stimulation and Dermal Fibroblast Cells-Laden 3D Conductive Hydrogel for Full-Thickness Wound Healing. International Journal of Molecular Sciences, 24(14), 11698. https://doi.org/10.3390/ijms241411698