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Abstract: The circadian rhythm-related genes BHLHE40/DEC1 and BHLHE41/DEC2 have various
functions under different cell and tissue conditions. BHLHE41/DEC2 has been reported to be both a
cancer-suppressive and an oncogenic gene during cancer development. The effects of BHLHE41/DEC2
on differentiation have been examined using Bhlhe41/Dec2 knockout mice and/or in vitro differentia-
tion models, and research has been conducted using genetic analysis of tumor cells, in vitro analysis
of cancer cell lines, and immunohistochemical studies of the clinical samples. We summarize some of
these studies, detail several problems, and consider possible reasons for contradictory results and the
needs for further research.
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1. Introduction

BHLHE40/DEC1/STRA13/SHARP2/BHLHB2 and BHLHE41/DEC2/SHARP1/BHLHB3,
which belong to the basic-helix loop helix (BHLH) protein family, function as suppressive
transcription factors and are involved in circadian rhythm regulation. Both are induced
by the principal circadian rhythm-related genes CLOCK and BMAL1 and suppress PER
and CRY expression [1]. Individuals with a variant of BHLHE41/DEC2, in which arginine
replaces proline at amino acid position 384 or histidine substitutes tyrosine at position 362,
exhibit the human short-sleep phenotype [2,3]. BHLHE41/DEC2 can suppress orexin, a
molecule to maintain mammalian arousal, but P384R-mutated BHLHE41/DEC2 has less
binding activity to the prepro-orexin promoter region and decreases the expression of
orexin [4].

2. The Functions of BHLHE41/DEC2 in Differentiation

BHLHE41/DEC2 also plays critical roles in differentiation, mainly in subsets of
cell lineages, including T-helper 2 (Th2), innate-like B lymphocytes 1 (B-1), and alveo-
lar macrophages in vivo models, and myogenesis, adipose cell and chondrocyte lineage-
committed mesenchymal cells in in vitro models [5–11].

Bhlhe41/Dec2-deficient mice lack the expression of interleukin 4 (IL-4), IL-5, IL-13,
and IL-17 in vitro and in vivo in an asthma model and in response to a challenge with a
parasite antigen. Th2 cells express higher level of Bhlhe41/Dec2 than Th1, Th17, inducible
regulatory T cell subsets, and naïve CD4+ and CD8+ T cells. After activation of naïve CD4+
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T cells with plate-bound anti-CD3 and anti-CD28 antibodies in the presence or absence
of IL-25 for 1 to 3 days, Bhlhe41/Dec2 mRNA expression strongly increased in response to
IL-25 stimulation. Differentiation from naïve CD4+ T cells occurs by induction of IL-4, IL-5,
and IL-13 expression through enhancement of JunB and Gata3 expression [5].

Bhlhe41/Dec2 is high in B-1 cells; however, Bhlhe40/Dec1 expression is low and broad
in B-lymphoid lineage cells. B-1 cells provide the first line of defense against pathogens
and are divided into a major subset, B-1a, and a minor subset, B-1b, based on CD5 expres-
sion. Plasma cells derived from B-1 cells are a major source of IgM. In Bhlhe40/Dec1 and
Bhlhe41/Dec2 double-knockout (DKO) mice, B-1a cells were severely reduced compared
to their wild-type (wt) counterparts. B-1a cells from Bhlhe40/Dec1 and Bhlhe41/Dec2 DKO
mice exhibit an abnormal cell surface phenotype and altered B-cell receptor (BCR) reper-
toire. The comparative studies of B-1a cells from wt and Bhlhe40/Dec1 and Bhlhe41/Dec2
DKO mice by RNA-seq, Chip-seq, and ATAC-seq analyses revealed that Bhlhe41/Dec2
directly repressed the expression of cell cycle regulators containing cyclin H (Ccnh), a
cyclin-dependent kinase-like protein (Cdkl1), a regulatory subunit of cyclin-dependent
kinases (Cks2), two helicases (Hells, Recql5), a deubiquitinase (Usp28), and four E2F family
genes (E2f1, E2f2, E2f7, E2f8). Furthermore, it increased expression of IgM heavy chain
(Ighm), inhibitors of BCR signaling (Dusp1, Dusp2, Dusp4, and Dusp6), and survival cytokine
signaling receptor components (Il5ra, Il3ra, Csf2rb, and Csf2rb2). Bhlhe41/Dec2 has crucial
roles in B-1 cell differentiation through regulation of the expression of these molecules [6].

The expression of BHLHE40/DEC1 in the red pulp, peritoneal, and alveolar macrophages,
and that of BHLHE41/DEC2 in alveolar macrophages and microglia is high. In Bhlhe40/Dec1
and Bhlhe41/Dec2 DKO mice, alveolar macrophages showed decreased expression of epithe-
lial cell adhesion molecule (Epcam), which is a signature molecule of alveolar macrophages,
and reduced proliferation, probably due to the high expression of Maf and Mafb, which
are negative regulators of macrophage proliferation. Genome-wide characterization of
Bhlhe40/Dec1 DNA binding suggested that Bhlhe40/Dec1 and Bhlhe41/Dec2 directly
repress the expression of many specific genes of the other subsets of macrophages, in-
cluding MSR1 and CD93 expressed by peritoneal macrophages, Sox and Zfp69 expressed
by microglia, and Spic and VCAM1, which are master regulator and marker of red pulp
macrophage, respectively. This study indicated that Bhlhe40/Dec1 and Bhlhe41/Dec2 are
key regulators of the self-renewal and identity of alveolar macrophages; however, this
study lacks clear discrimination between the functions of Bhlhe40/Dec1 and Bhlhe41/Dec2
and the specific functions of Bhlhe41/Dec2 are unclear [7].

In a myogenic differentiation model of mouse myofibroblast C2C12 cells, endogenous
Bhlhe41/Dec2 protein levels gradually decreased after the induction of differentiation, and
continuous Bhlhe41/Dec2 expression suppressed differentiation by inhibiting myogenic
regulatory transcription factors MyoD homodimer, E47 homodimer, and MyoD/E47 het-
erodimer, which thoroughly interacted with Bhlhe41/Dec2. Bhlhe41/Dec2 also decreased
cyclin D1 and p21 expression [8]. Based on an in-situ hybridization study of mouse embryos,
Bhlhe41/Dec2 expression was detectable in E10.5 and E11.5 in myotomes in a dorsoventral
stripe and developing limbs in mouse embryos, and thus, it is unlikely that Bhlhe41/Dec2
suppresses the initiation of myogenesis that is regulated by another BHLH family gene,
myogenin (E8.5) and myogenic regulator factor 4 (E9.5) [12]. BHLHE41/DEC2 has been
reported to have a myogenesis-inhibitory function in a human muscle disease. Inclusion
body myositis (IBM) is a slowly progressive disease of unknown etiology, characterized by
asymmetric muscle weakness. Most patients with IBM eventually develop severe motor
impairments, including walking difficulties. Satellite cell-dependent muscle regeneration
occurs in IBM; however, the regenerated muscles do not reach the point where sufficient
strength can be exerted. Mesoangioblasts are stem cells associated with blood vessels
that have the potential to differentiate into a variety of mesoderm-derived cells, includ-
ing skeletal, cardiac, and smooth muscle cells via differentiation-induction conditions.
Mesoangioblasts isolated from patients with IBM highly express BHLHE41/DEC2 and lack
sufficient potency for myogenic differentiation. Silencing BHLHE41/DEC2 could rescue
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mesoangioblasts from myogenic defect and induce them to differentiate into multinucle-
ated myosin-positive myotubes. This study indicates that BHLHE41/DEC2 is a promising
therapeutic target for IBM management [9].

Adipose cell differentiation is induced by the transient expression of C/EBPβ and
C/EBPδ, followed by a self-reinforcing loop between C/EBPα and peroxisome proliferator-
activated receptor γ (PPARγ). C/EBPα directly binds to the PPARγ promoter and PPARγ
also induces C/EBPα expression. In the adipose cell differentiation model of 3T3L1 mouse
fibroblast cell, Bhlhe41/Dec2 could retain histone deacetylase1 (HDAC1) and the histone
methyltransferase G9a in the C/EBPα and PPARγ promoter regions to disrupt this loop
and suppress the differentiation [10].

During chondrogenic differentiation of human mesenchymal stem cells (MSCs), BHLHE
41/DEC2 mRNA expression increases transiently. Overexpression of BHLHE41/DEC2 does
not inhibit cell proliferation but inhibits an increase in DNA content, and expression of
several chondrocyte-related genes, including aggrecan and type X collagen α1, poten-
tially through attenuation of fibroblast growth factor 18 (Fgf18), which is involved in the
proliferation and differentiation of chondrocytes [13]. In addition, BHLHE41/DEC2 de-
creases cyclin D1 and increases p16INK4 and p21. These data suggest that BHLHE41/DEC2
suppresses the extent of terminal differentiation of chondrocytes, although the direct func-
tion of BHLHE41/DEC2 and its biological meaning are still unclear [11]. In myogenic
differentiation of C2C12 cells, BHLHE41/DEC2 can decrease p21 expression, because
BHLHE41/DEC2 suppresses MyoD, which induces p21 expression [12]. Conversely, in
human MSCs, BHLHE41/DEC2 expression tends to induce p21 expression, although this
change is not significant. BHLHE41/DEC2 has an additional suppressive effect on FGF18
expression and p21 was assumed to be suppressed under the FGF18-FGFR3-STAT1-p21
cascade [13]. However, there is no clear explanation for this discrepancy in this report [11].
There is a possibility of moderate stabilization of TP53 by BHLHE41/DEC2 expression,
although there is no clear evidence. These effects of BHLHE41/DEC2 on differentiation are
summarized in Table 1.

Table 1. Summary of effects on differentiation of BHLHE41/DEC2.

Phenotype Cells Spices Model Effect
Gegens Which Receive
Direct and/or Indirect
Effects

REF

Th2 differentiation
promotion Th2 mouse

Bhlhe41
knockout
mouse

induce JunB, Gata3 [5]

B-1a cell
differentiation
promotion

B-1a mouse
Bhlhe41
knockout
mouse

suppress Ccnh, Cdkl1, Cks2, Usp28
et al.

[6]
induce

Ighm, Dusp1, cytokine
signal receptor component
et al.

alveolar macrophage
differentiation
promotion

Alveolar
macrophages mouse

Bhlhe40 and
Bhlhe41 double
knockout mice

suppress specific genes of other
subtypes of macrophage [7]

induce Epcam

myogenesis
inhibition C2C12 mouse in vitro

induction suppress MyoD, E47 [8]

myogenesis
inhibition

Mesoangioblasts
of inclusion

body myositis
human in vitro

induction suppress MyoD [9]

adipose cell
differentiation
inhibition

3T3L1 mouse in vitro
induction suppress C/EBPα, PPAR γ [10]

chondrogenic
differentiation
inhibition

human
mesenchymal

stem cells

human in vitro
induction

suppress
Cyclin D1, several
chondrocyte-related genes
possibly thorough Fgf18 [11]

induce p16INK4, p21
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3. Oncogenic and Tumor-Suppressive Functions of BHLHE40/DEC1 and BHLHE41/DEC2

This sounds paradoxical; however, BHLHE41/DEC2 is a tumor-suppressive and onco-
genic molecule [14,15]. BHLHE41/DEC2 has been reported to act as a tumor suppressor in
several types of cancers. Its function is pivotal, especially in triple-negative breast cancers
(TNBCs). TNBCs lack the expression of estrogen receptors (ER), progesterone receptors,
and human epidermal growth factor receptor-2, and have highly aggressive characteristics;
therefore, patients with TNBCs have poorer prognoses than those with other types of
breast cancer. Hypoxia-inducible factor (HIF)-1 expression is high in TNBC cells, which
can induce invasion, metastasis, and chemotherapy resistance, and is associated with unfa-
vorable prognoses in patients with TNBC [16]. Both BHLHE40/DEC1 and BHLHE41/DEC2
expressions are induced by HIF-1 stabilization under hypoxic conditions [17]. In TNBC
cells, BHLHE41/DEC2 can bind and inhibit HIF-1α and HIF-2α functions by promoting
their proteasomal degradation that is independent of the von Hippel–Lindau tumor sup-
pressor, which is an E3 ligase of HIF-1α and HIF-2α proteins, and suppress tumor invasion
and metastasis in an in vivo model [18]. In addition to HIF-1, the expression of X-Box
Binding Protein 1 (XBP1), an endoplasmic reticulum stress-regulating transcription factor,
also increases and plays a crucial role in TNBC cells, because XBP1 supports tumor stem
cell proliferation in TNBC. Based on genome-wide mapping of the XBP1 transcriptional
regulatory network, the XBP1 and HIF-1 assembly transcriptional complex recruits RNA
polymerase II to HIF-1-target genes containing Vascular Endothelial Growth Factor A
(VEGFA), Pyruvate Dehydrogenase Kinase 1 (PDK1), GLUT1/SLC2A1 and DNA Damage
Inducible Transcript 4 (DDIT4) and enhances these genes even under normoxic condi-
tions [19]. In TNBC, BHLHE41/DEC2 is a crucial tumor-suppressing molecule, since it can
inhibit HIF-1 and possibly XBP1 functions and cancer stem cells. Also, in mouse fibroblast
NIH3T3 cells and mouse sarcoma 180 cells, under hypoxic conditions, BHLHE41/DEC2 in-
teracted with HIF-1α and decreased the binding of HIF-1α to the hypoxia response element
in the VEGF promoter [20]. BHLHE41/DEC2 also suppresses the growth of thyroid cancer
cell lines and their expression of HIF-1α [21]. These data suggest that BHLHE41/DEC2
plays a crucial role in suppressing HIF-1 functions.

In contrast, several studies support that BHLHE41/DEC2 has the functions in the de-
velopment of renal cell cancer (RCC). Stage-specific activation of HIF-1α and HIF-2α plays
an essential role in RCC development [22,23]. The fact that HIF plays a critical role in both
TNBC and RCC development is not coincidental, although the effects of BHLHE41/DEC2
on TNBC and RCC appear to be opposed. The alignment of polymorphisms related to
RCC susceptibility and HIF-1 binding sites was observed in a genome-wide association
study using chromatin immunoprecipitation sequencing (CHIP-Seq), in which it was found
that rs12814794 single nucleotide polymorphisms (SNP) at chr 12p12.1 were related to
RCC susceptibility. A chromatin conformation assay, Capture-C, identified interaction with
the polymorphic HIF binding site at chr 12p12.1 and the promoter of the BHLHE41/DEC2
gene. RCC is derived from renal tubular epithelial cells which express HIF-1α. The change
from A to G rs12814794 can create a new HIF-1α binding site and enhance BHLHE41/DEC2
expression in normal human primary renal tubular cells in the presence of the HIF-1α
protein [24] (Figure 1). This genetic change can induce BHLHE41/DEC2 expression during
cancer development under HIF-1α expression; however, in this study the direct effects of
BHLHE41/DEC2 were not examined. In another study, clear cell RCC (ccRCC) develop-
ment was strongly associated with rs7132434. This SNP could become an additional AP-1
binding site and induce BHLHE41/DEC2 expression, which, in turn, induces IL-11, but not
HIF-1α expression in RCC cells (Figure 1). Genomic database analysis did not reveal any
relationship between BHLHE41/DEC2 mRNA expression and adverse pathogenic factors in
clinical RCC samples or the prognosis of patients with RCC. However, in a xenograft model
with ACHN cells, but not in-vitro models of several RCC cell lines, BHLHE41/DEC2 pro-
moted cell growth without HIF-1 expression [15]. A specific increase in BHLHE41/DEC2
protein expression in ccRCC was observed in an immunohistochemical study [25]. These
data suggest that BHLHE41/DEC2 directly affects tumor development without HIF. In
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contrast, in another study, BHLHE41/DEC2 expression increased, possibly due to DNA
hypomethylation in the 3′ untranslated region of BHLHE41/DEC2 in human ccRCC cells
(Figure 1). The knockdown of BHLHE41/DEC2 in A498 and CAKI-1 RCC cell lines reduced
cell proliferation and migration with attenuation of phosphorylation of p70S6kinase and
increased E-cadherin expression. The results of this study also indicated an increase in
BHLHE41/DEC2 expression using quantitative PCR of 50 clinical samples and immunoblot-
ting of five pairs of RCC-positive and adjacent normal kidneys [26]. This report implies
that BHLHE41/DEC2 induces the activation of the mTOR cascade and promotes epithelial-
mesenchymal transition (EMT). The authors assumed that BHLHE41/DEC2 can positively
regulate EMT transcription factors; however, this result is inconsistent with other reports
on epithelial cancer cells as described later.
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in ccRCC development. BHLHE41/DEC2 expression via SNP rs7132434, rs12814794, and hypomethy-
lation of BHLHE41/DEC2-3′UTR in ccRCC development. The red arrows indicate the transcription fac-
tors can bind around the SNPs. The red dashed lines show to induce expression of BHLHE41/DEC2
by these changes.

There are some discrepancies between the studies by Bigot and Shen, which may be
due to differences in the experimental conditions [15,26]. For example, in the study by Bigot,
BHLHE41/DEC2 expression was introduced into RCC cell lines without BHLHE41/DEC2
expression. In the study by Shen, the authors used BHLHE41/DEC2-expressing cells and
knockdown of BHLHE41/DEC2. Cells lacking endogenous BHLHE41/DEC2 expression
may lack other proteins that interact with BHLHE41/DEC2 and induce in vitro proliferation
and migration. However, neither study indicated that BHLHE41/DEC2 expression is
related to pathological grade or the overall survival rate in patients with ccRCC from
TCGA database analysis. These results suggest that BHLHE41/DEC2 might be involved
in the development of ccRCC, but is not strongly associated with cancer progression.
This hypothesis is compatible with HIF-1α protein expression, only in an early phase
of RCC development; some RCC cells lack expression of HIF-1α and express HIF-2α.
BHLHE41/DEC2 might have a critical function in cancer development but may not always
be required for maintaining advanced tumors. It might, however, be useful as a stratifying
marker gene of early diagnosis. Although the oncogenic functions of BHLHE41/DEC2
and its relationship with HIF in RCC have not yet been completely elucidated, all reports
indicate that BHLHE41/DEC2 is involved in the development and progression of renal
cell cancer development. Based on analyses of the functions of BHLHE41/DEC2 in TNBC
and ccRCC, it is expected that BHLHE41/DEC2 interacts with HIF-1 to either activate
or suppress the hypoxia response element, possibly dependent on additional partner
molecules. HIFs are also activated by BHLHE41/DEC2, as Bhlhe41/Dec2 has been reported
to enhance JunB and Gata3 expression during the differentiation of Th2 cells [5].
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In addition to RCC, BHLHE41/DEC2 promotes the development of a type of acute
myelogenous leukemia (AML) with mixed lineage leukemia (MLL) gene rearrangement by
the t(6;11) (q27;p23) translocation, named MLL-AF6. The MLL gene at 11q23 encodes a nu-
clear protein with multiple functional domains, many of which can bind to several proteins
containing PSIP1/LEDGF and MEN1, and regulate epigenetically defined developmental
genes. During hematopoiesis, MLL activates HOXC8, HOXC6, and HOXA9. MLL has been
reported to fuse with more than 80 partner genes containing six common partner genes.
The common partner genes are ALL1-fused gene chromosome (AF) 4, AF6, AF9, AF10,
eleven-nineteen leukemia (ENL), and elongation factor for RNA polymerase II (ELL) [27].
MLL rearrangements are detected in 80% of infant acute leukemia cases, approximately
15% of children with AML, and 10–15% of adults with chemotherapy-related leukemia.
AF6/AFDN, also known as afadin, is a cytoplasmic and nuclear protein with a single PDZ
and two RAS-association domains. MLL-fusion proteins, including MLL-AF6, can interact
with DOT1L, an H3K79 methyltransferase, and link the di- or tri-methylation of H3K79 to
MLL-AF6 target genes. DOT1L is indispensable to sustaining MLL-AF6 leukemia cells [28].
In addition, MLL-AF6 sequesters AF6 from the cytoplasm to the nucleus and triggers
RAS activation. RAS activation in MLL-AF6 AML may explain the poorer prognosis of
the patients with MLL-AF6 leukemia [29]. BHLHE41/DEC2 is specifically overexpressed
in MLL-AF6 AML cells. BHLHE41/DEC2 interacts with the oncogenic chimeric fusion
protein MLL-AF6, which activates chromatin abnormalities by interacting with Dot1L.
MLL-AF6 and DOT1L directly upregulates BHLHE41/DEC2 expression in MLL-AF6 AML
cells. Suppression of BHLHE41/DEC2 expression induces apoptosis in human MLL-AF6
AML cells. MLL-AF6-expressing hematopoietic stem cells derived from mice with a ge-
netic deletion of Bhlhe41/Dec2 delay leukemia development and decrease the potential for
leukemia initiation. Mechanistically, BHLHE41/DEC2 binding sites in MLL-AF6 leukemia
cells were enriched with H3K4me3 and H3K27ac transcriptionally active markers across
the genome and activates genes related to the cell cycle, TGF-β signaling, FoxO signaling,
HIF-1 signaling, and cancer [30].

Cyclin D1 is thought to be a target of BHLHE41/DEC2 during myogenic and chon-
drogenic differentiation, as described above. In human mammary epithelial (HME) cells,
BHLHE41/DEC2 and bexarotene, which is a vitamin A analog that induces BHLHE41/DEC2,
suppress cyclin D1 expression and the cell growth, but not in ER-positive breast cancer
MCF-7 cells [31]. In contrast, overexpression of BHLHE41/DEC2, but not BHLHE40/DEC1,
increased the proliferation of MCF-7 under normoxic and hypoxic conditions, via AKT phos-
phorylation and c-MYC expression [32]. In glioblastoma U87 and U251 cells, BHLHE41/DE
C2 overexpression induces ERK phosphorylation and cyclin D1 and D3 expression [33].
Thus, the functions of BHLHE41/DEC2 in proliferation are not always consistent among
reports, possibly because we do not have sufficient information regarding the interacting
proteins under specific conditions, which vary depending on the background of the cells.

However, the EMT appears to be more consistent. The EMT frequently contributes
to cancer cell invasion and metastasis, and worsens prognosis of the patients with can-
cers [34,35]. In human pancreatic cancer BxPC-3 cells, the knockdown of BHLHE41/DEC2
increased the nuclear expression of an EMT transcription factor, SNAI2, in the presence
of TGF-β. BHLHE41/DEC2 inhibited EMT by regulating SNAI2 [36]. The colon cancer
cell lines HCT116 and Lovo showed lower expression of BHLHE41/DEC2 than normal
colon epithelial cells. These cells increased migration and proliferation under hypoxic
conditions, with increasing HIF-1α, N-cadherin, vimentin, and MMP9 but reduced ep-
ithelial marker protein E-cadherin, while BHLHE41/DEC2 alleviated the EMT cascade
protein and increased E-cadherin expression under hypoxic conditions. BHLHE41/DEC2
expression also suppressed HCT116 xenograft tumor growth [37]. Comparison of the
mRNA levels of BHLHE41/DEC2 between 20 normal endometrial tissue specimens (NEM)
and 37 primary huma endometrial cancer (HEC) specimens showed that HEC had a sig-
nificantly higher expression of BHLHE41/DEC2. The mRNA levels of BHLHE40/DEC1
and BHLHE41/DEC2 were significantly higher in tumors at stage IA than in those at
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stage IB. Expressions of BHLHE41/DEC2 and TWIST1 were inversely correlated with each
other. In an immunohistochemical study of surgical samples from 86 clinical HEC cells,
BHLHE40/DEC1 and BHLHE41/DEC2 expression was limited to non-invasive samples.
BHLHE40/DEC1 and BHLHE41/DEC2 suppress the expression of the EMT transcription
factors, SNAI1, SNAI2, and TWIST1. In particular, during TWIST1 transcription, both
BHLHE40/DEC1 and BHLHE41/DEC2 compete with SP1 for DNA binding, leading to
reduced TWIST1 transcription [38]. These studies suggest that BHLHE41/DEC2 inhibits EMT
transcription factors.

4. BHLHE41/DEC2 as a Tumor Suppressor Protein in NSCLC Development

According to recent statistical data, cancer-related mortality rates in the USA have
been declining due to a steady decrease in incidence, likely due to the decreasing num-
ber of smokers, and the progression of molecular targeted therapies and immune check-
point inhibitors. Nevertheless, lung cancer remains the leading cause of cancer-related
deaths (21%) [39]. Several oncogenes and tumor suppressor genes have been identified as
molecules associated with the development of non-small cell lung cancer (NSCLC). How-
ever, similar to the multistep model of colorectal cancer, the stages of cancer development
in NSCLC remain unknown. Therefore, it is critical to understand the developmental pro-
cesses in lung cancer to identify further therapeutic targets. Previously, BHLHE41/DEC2
has been reported to function as a tumor suppressor by downregulation of cyclin D in
NSCLS [14]. We found that BHLHE41/DEC2 plays a crucial role in NSCLC development
and hypothesized that the loss of BHLHE41/DEC2 expression may be an early step in the
development of NSCLC. BHLHE41/DEC2 expression is associated with better prognosis
in patients with lung adenocarcinoma (LUAD). Induction of BHLHE41/DEC2 expression
resulted in autophagic cell death in huma lung cancer cells [40]. The Cancer Genome Atlas
data, cBioPortal, provides information on genetic changes containing gene amplification,
truncated mutation of BHLHE41/DEC2 in lung squamous cancer (LUSC), and data on
amplification, point mutation, and SHROOM2-BHLHE41 gene fusion in LUAD; however,
there are no data on mutation in small cell lung cancer (SCLC). This might reflect the
difference in cancer development background between NSCLC and SCLC, although the
meaning of these genetic changes of BHLHE41/DEC2 is still unclear. Immunohistochemical
studies showed that BHLHE41/DEC2 expression is almost exclusively limited to the lepidic
growth part of LUAD, in situ adenocarcinoma, very early LUSC cells, and normal lung
epithelial cells. Our observations indicated that most surgically resected LUSC samples
lost BHLHE41/DEC2 expression. In addition, early LUSC can be effectively removed
using radiofrequency ablation. Therefore, it is difficult to obtain information regarding
BHLHE41/DEC2 function in LUSC. BHLHE41/DEC2 is expected to be an early inactivated
molecule in NSCLC, possibly because BHLHE41/DEC2 is vulnerable to protein stability
and epigenetic regulation of mRNA expression. Identifying partner molecules is expected
to be an important step in understanding the functions of BHLHE41/DEC2 in NSCLC
development. Clearly, reproducible models of cancer development are required.

5. Post-Translational Modifications Regulate the Functions of BHLHE40/DEC1
and BHLHE41/DEC2

SUMOylation is a post-translational modification that regulates several important
cellular functions. In the SUMOylation process, a small ubiquitin-like modifier (SUMO)
protein is covalently attached to a lysine residue in a consensus sequence, by enzymes
consistent with E1-activating enzyme (AOS1/UBA2), E2-conjugating enzyme (UBC9),
and sometimes E3 ligases, RAnBP2 and PIAS. In contrast, SUMOylation is negatively
regulated by deSUMOylation with sentrin-specific protease (SENP) proteins, which are
SUMO-specific isopeptidases comprising six cysteine proteases. Under hypoxic conditions,
the activities of SENP1 and SENP3 were fully and reversibly suppressed, and SUMOylation
was enhanced. SUMOylation can be recognized as another mechanism of adaptation to
hypoxic conditions, rather than HIF-1 stabilization. From searches of hypoxia-induced
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SUMO1 targeting proteins using comparative mass spectrometry of HeLa cell extract, 48
SUMOylation proteins were defined, with more than twice as many in hypoxia than in
normoxia. These proteins include SUMO ligases, RanBP2 and PIAS2, glucose transporter
1, several transcriptional regulators, and chromatin regulators. BHLHE40/DEC1 was
identified as one of the more than five-fold SUMOylated target proteins belonging to a
subgroup, which is composed of the other transcriptional repressors, FSBP, NAB1, KCTD1,
KCTD15, or ETV6. Expression of PGC-1α, a master regulator of metabolism, was more
strongly suppressed in wt BHLHE40/DEC1 than in the SUMOylated lysine-deficient
mutant BHLHE40 under hypoxia [41].

Starvation conditions increased SUMOylation of BHLHE40/DEC1 at two major SUMOy-
lation sites, K159 and K279, in MCF-7 cells, and SENP1 reduced SUMOylation. SUMOylation
of BHLHE40/DEC1 promotes the repression of CLOCK/BMAL1-heterodimer-mediated tran-
scriptional activity by interacting with HDAC1. The authors’ results also suggested that
SUMOylation of BHLHE40/DEC1 inhibits ubiquitination and ubiquitin-proteasome degra-
dation [42]. BHLHE40/DEC1 overexpression suppresses the proliferation of NIH3T3 mouse
fibroblast cells and embryonic fibroblasts from Bhlhe40/Dec1 knockout mice via SUMOyla-
tion of BHLHE40/DEC1. SUMOylation of BHLHE40/DEC1 enhances its interaction with
HDAC1. In turn, HDAC1 decreases the SUMOylation of BHLHE40/DEC1 and attenuates
the cyclin D1 suppressive effect of BHLHE40/DEC1 [43]. One observation from this study,
that HDAC1 expression suppressed the attenuation effect of BHLHE40/DEC1 on cyclin
D1, is inconsistent with results from other studies. Further studies are needed to clarify the
biological effects of SUMOylation of Bhlhe40/Dec1 and exogenous HDAC1.

The mouse Bhlhe41/Dec2 protein has two SUMOylation consensus sequences, OQKLE
and IKQE, containing SUMOylation sites K240 and K255, as does Bhlhe40/Dec1. In the
C2C12 myogenesis model, Bhlhe41/Dec2 suppressed terminal differentiation. SUMOy-
lation of Bhlhe41/Dec2 enhances the recruitment of the corepressor G9a and histone H3
lysine 9 demethylations (H3K9me2) to the MyoD promoter. Mutant Bhlhe41/Dec2, with
arginine instead of lysine at positions 240 and 255, decreased the suppressive function,
and SENP1 almost abolished the suppression of myogenesis by Bhlhe41/Dec2 [44]. Also,
in 3T3L1 cells, induction of adipose cell differentiation could increase SENP1 expression
and coincide with attenuation of SUMOylation of Bhleh41/Dec2. This observation is con-
sistent with the deSUMOylation of Bhleh41/Dec2 upon Senp1 expression. Compared to
Senp1-expressing mouse embryonic fibroblasts, embryonic fibroblasts derived from Senp1
knockout mice with adipose cell induction had lower RRARγ promoter activity, with low
expression of its target genes including adipocyte Protein 2 (aP2), adiponectin, and lipopro-
tein lipase (Lpl), which increase in the differentiated adipocyte. Mutant Bhleh41/Dec2,
without the main SUMOylation lysine residues had lower suppressor activity of RRARγ
promoter [45]. These observations of SUMOylation and deSUMoylation demonstrate how
interacting with other proteins has crucial effects on the functions of BHLHE40/DEC1 and
BHLHE41/DEC2.

BHLHE40/DEC1 stability is controlled through SCFβTrCP, which mediates the ubiquitin-
proteasome system dependent on the phosphorylation of BHLHE40/DEC1 by casein kinase
I. BHLHE40/DEC1 protein increases by suppressing ubiquitination in an ATM/ATR-
dependent manner by USP17 ubiquitin protease, after exposure to anticancer agents,
etoposide or doxorubicin, in huma osteosarcoma U2OS cells and huma colon cancer HCT116
cells, both of which have wt TP53 [46]. BHLHE41/DEC2 may be similarly regulated
because they have similar casein kinase 1 consensus sequences. Therefore, the stability of
BHLHE41/DEC2 may be regulated by the ubiquitin-proteasome system.

To understand the precise role of BHLHE41/DEC2 in a specific context, it is necessary
to interpret its effects carefully. Therefore, it is necessary to identify the interacting proteins
that suppress gene expression to suppress cancer development.
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6. Discussion

Our previous study has three main limitations [40]. First, the number of early LUSQ
samples was limited. It is difficult to detect early LUSQ on chest radiographs, and even if
detected, early lesions may be radiologically resected. Therefore, a long-term systematic
collection of specimens for understanding LUSQ development is essential. Second, it
is unclear how BHLHE41/DEC2 can induce autophagic cell death in early cancer cells.
Finally, it is unclear how BHLHE41/DEC2 discriminates between cancer and normal cells,
that is why autophagic cell death happens only in cancer cells. Reproducible models of
oncogenesis are needed to answer the other two questions.

So far, genetic changes of BHLHE41/DEC2 have not been studied well; however,
GEPIA (http://gepia.cancer-pku.cn/) (accessed on 6 July 2023) indicates high expression of
BHLHE41/DEC2 in ovarian serous adenocarcinoma (OV), stomach adenocarcinoma (STAD),
thyroid cancer, ccRCC, and so on. In addition, cBioPortal indicates genetic changes include
gene amplification, missense mutation, deep deletion of BHLHE41/DEC2, and fusion genes
ABHD17C-BHLHE41 in STAD, ITPR2-BHLHE41 in OV, and BHLHE41-RERGL in low-grade
glioma. In FusionGDB (https://compbio.uth.edu/FusionGDB2/index.html) (accessed on
6 July 2023), an additional four fusion genes are registered, as BHLHE41-NOMO1, IGL-
BHLHE41, KHSRP-BHLHE41, and SEL1L3-BHLHE41, although it is not known if they have
these functions. The accumulation of genetic changes in several types of cancer suggests
that these changes are associated with some specific process of cancer development

In conclusion, we have summarized the reasons for the complexity of BHLHE41/DEC2
functions. BHLHE41/DEC2 primarily functions as a suppressive transactivating factor
that binds to E-boxes of genes. E-box is one of the most common sequences in huma
genes. More than 30 BHLH proteins bind to E-boxes [47]. Both BHLHE40/DEC1 and
BHLHE41/DEC2 are induced by the same proteins, including BMAL1/CLOCK, HIF-1,
and TNFα [48]. BHLHE41/DEC2 suppresses transcription in different ways [49]. Ad-
ditionally, BHLHE40/DEC1 and BHLHE41/DEC2 suppress each other [50], miR-16 can
bind BHLH41/DEC2 mRNA and inhibit expression [51], epigenetic change of RNA and
N6-methyladenosine can promote BHLHE41/DEC2 translation [52], and their protein ex-
pression is regulated by post-translational modifications [43]. Therefore, BHLHE41/DEC2
could induce protein degradation [18], as BHLHE41/DEC2 also works as a transcription
inducer [5,30]. In addition, we could not detect BHLHE41/DEC2 expression in most
of the LUSQ samples. However, the transcriptional database of LUSQ indicates some
BHLHE41/DEC2 expression in advanced LUSQ, and we carefully considered mRNA ex-
pression data in these databases. The functions of BHLHE40/DEC1 and BHLHE41/DEC2
and their interactions with other proteins are likely complex. However, we are confident
that our approach will lead to significant advances in the analysis of NSCLC and BHLH
transcription factors.
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