Novel Antimicrobial Peptides from Saline Environments Active against E. faecalis and S. aureus: Identification, Characterisation and Potential Usage
Abstract
:1. Introduction
2. Results
2.1. AMPs Sequences Identification
2.2. Antimicrobial Activity of Selected Peptides
2.3. Antimicrobial Activity of Peptides in Combination with Levofloxacin against E. faecalis and MRSA
2.4. Cytotoxicity and Haemolytic Properties
2.5. Molecular Docking Analysis
2.5.1. Molecular Docking Results between E. faecalis 29212 Topoisomerase IV and Levofloxacin as well as E. faecalis 29212 Topoisomerase IV and Peptides P1 and P3
2.5.2. Molecular Docking Results between S. aureus 43300 DNA Gyrase and Levofloxacin as well as S. aureus 43300 DNA Gyrase and Peptide P3
2.5.3. Molecular Docking Results between E. coli 25922 16S rRNA and Gentamicin as well as E. coli 25922 16S rRNA and Peptide P3
3. Discussion
4. Materials and Methods
4.1. Sample Collection and Sequencing
4.2. In Silico Analysis of Selected Organisms
4.3. Antimicrobial Peptide Synthesis and Preparation
4.4. Antimicrobial Activity Assay
4.5. Neutral Red Cytotoxicity of Selected AMPs
4.6. Haemolytic Activity of AMPs
4.7. Molecular Docking
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, Y.; Galinski, E.A.; Grant, W.D.; Oren, A.; Ventosa, A. Halophiles 2010: Life in saline environments. Appl. Environ. Microbiol. 2010, 76, 6971–6981. [Google Scholar] [CrossRef] [Green Version]
- Corral, P.; Amoozegar, M.A.; Ventosa, A. Halophiles and their biomolecules: Recent advances and future applications in biomedicine. Mar. Drugs 2020, 18, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lach, J.; Jęcz, P.; Strapagiel, D.; Matera-Witkiewicz, A.; Stączek, P. The methods of digging for “gold” within the salt: Characterization of halophilic prokaryotes and identification of their valuable biological products using sequencing and genome mining tools. Genes 2021, 12, 1756. [Google Scholar] [CrossRef] [PubMed]
- Larsson, D.G.J.; Flach, C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Hernando-Amado, S.; Coque, T.M.; Baquero, F.; Martínez, J.L. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 2019, 4, 1432–1442. [Google Scholar] [CrossRef]
- Mookherjee, N.; Hancock, R.E.W. Cationic host defence peptides: Innate immune regulatory peptides as a novel approach for treating infections. Cell. Mol. Life Sci. 2007, 64, 922–933. [Google Scholar] [CrossRef]
- Ouertani, A.; Chaabouni, I.; Mosbah, A.; Long, J.; Barakat, M.; Mansuelle, P.; Mghirbi, O.; Najjari, A.; Ouzari, H.I.; Masmoudi, A.S.; et al. Two new secreted proteases generate a casein-derived antimicrobial peptide in Bacillus cereus food born isolate leading to bacterial competition in milk. Front. Microbiol. 2018, 9, 1148. [Google Scholar] [CrossRef]
- Simons, A.; Alhanout, K.; Duval, R.E. Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms 2020, 8, 639. [Google Scholar] [CrossRef]
- Haney, E.F.; Straus, S.K.; Hancock, R.E.W. Reassessing the host defense peptide landscape. Front. Chem. 2019, 7, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, V.; Singh, B.; van Belkum, M.J.; Diep, D.B.; Chikindas, M.L.; Ermakov, A.M.; Tiwari, S.K. Halocins, natural antimicrobials of Archaea: Exotic or special or both? Biotechnol. Adv. 2021, 53, 107834. [Google Scholar] [CrossRef]
- Souza, P.F.N.; Marques, L.S.M.; Oliveira, J.T.A.; Lima, P.G.; Dias, L.P.; Neto, N.A.S.; Lopes, F.E.S.; Sousa, J.S.; Silva, A.F.B.; Caneiro, R.F.; et al. Synthetic antimicrobial peptides: From choice of the best sequences to action mechanisms. Biochimie 2020, 175, 132–145. [Google Scholar] [CrossRef]
- Dijksteel, G.S.; Ulrich, M.M.W.; Middelkoop, E.; Boekema, B.K.H.L. Review: Lessons Learned from Clinical Trials Using Antimicrobial Peptides (AMPs). Front. Microbiol. 2021, 12, 616979. [Google Scholar] [CrossRef] [PubMed]
- Magana, M.; Pushpanathan, M.; Santos, A.L.; Leanse, L.; Fernandez, M.; Ioannidis, A.; Giulianotti, M.A.; Apidianakis, Y.; Bradfute, S.; Ferguson, A.L.; et al. The value of antimicrobial peptides in the age of resistance. Lancet Infect. Dis. 2020, 20, e216–e230. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.L.; Hsueh, J.Y.; Yip, B.S.; Chih, Y.H.; Peng, K.L.; Cheng, J.W. Antimicrobial peptides display strong synergy with vancomycin against vancomycin-resistant E. Faecium, S. Aureus, and wild-type E. coli. Int. J. Mol. Sci. 2020, 21, 4578. [Google Scholar] [CrossRef]
- Liu, S.; Wang, S.; Liu, X.; Wen, L.; Zou, J. Effects of dietary antimicrobial peptides on intestinal morphology, antioxidant status, immune responses, microbiota and pathogen disease resistance in grass carp Ctenopharyngodon idellus. Microb. Pathog. 2022, 165, 105386. [Google Scholar] [CrossRef] [PubMed]
- Valdez-Miramontes, C.E.; De Haro-Acosta, J.; Aréchiga-Flores, C.F.; Verdiguel-Fernández, L.; Rivas-Santiago, B. Antimicrobial peptides in domestic animals and their applications in veterinary medicine. Peptides 2021, 142, 170576. [Google Scholar] [CrossRef] [PubMed]
- Colombo, M.; Masiero, S.; Rosa, S.; Caporali, E.; Toffolatti, S.L.; Mizzotti, C.; Tadini, L.; Rossi, F.; Pellegrino, S.; Musetti, R.; et al. NoPv1: A synthetic antimicrobial peptide aptamer targeting the causal agents of grapevine downy mildew and potato late blight. Sci. Rep. 2020, 10, 17574. [Google Scholar] [CrossRef]
- Santos, J.C.P.; Sousa, R.C.S.; Otoni, C.G.; Moraes, A.R.F.; Souza, V.G.L.; Medeiros, E.A.A.; Espitia, P.J.P.; Pires, A.C.S.; Coimbra, J.S.R.; Soares, N.F.F. Nisin and other antimicrobial peptides: Production, mechanisms of action, and application in active food packaging. Innov. Food Sci. Emerg. Technol. 2018, 48, 179–194. [Google Scholar] [CrossRef]
- Abdulhussain Kareem, R.; Razavi, S.H. Plantaricin bacteriocins: As safe alternative antimicrobial peptides in food preservation—A review. J. Food Saf. 2020, 40, e12735. [Google Scholar] [CrossRef]
- Rodriguez-Valera, F.; Juez, G.; Kushner, D.J. Halocins: Salt-dependent bacteriocins produced by extremely halophilic rods. Can. J. Microbiol. 1982, 28, 151–154. [Google Scholar] [CrossRef]
- Chhetri, V.; Prakitchaiwattana, C.; Settachaimongkon, S. A potential protective culture; halophilic Bacillus isolates with bacteriocin encoding gene against Staphylococcus aureus in salt added foods. Food Control 2019, 104, 292–299. [Google Scholar] [CrossRef]
- Ying, L.; Zhu, H.; Shoji, S.; Fredrick, K. Roles of specific aminoglycoside–ribosome interactions in the inhibition of translation. RNA 2019, 25, 247–254. [Google Scholar] [CrossRef]
- Fàbrega, A.; Madurga, S.; Giralt, E.; Vila, J. Mechanism of action of and resistance to quinolones. Microb. Biotechnol. 2009, 2, 40–61. [Google Scholar] [CrossRef] [Green Version]
- Frieri, M.; Kumar, K.; Boutin, A. Antibiotic resistance. J. Infect. Public Health 2017, 10, 369–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Castro, I.; Mendo, S.; Caetano, T. Antibiotics from Haloarchaea: What Can We Learn from Comparative Genomics? Mar. Biotechnol. 2020, 22, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Kis-Papo, T.; Oren, A. Halocins: Are they involved in the competition between halobacteria in saltern ponds? Extremophiles 2000, 4, 35–41. [Google Scholar] [CrossRef]
- Kavitha, P.; Lipton, A.P.; Sarik, A.R.; Aishwarya, M. Growth characteristics and halocin production by a new isolate, Haloferax volcanii KPS1 from Kovalam Solar Saltern (India). Res. J. Biol. Sci. 2011, 6, 257–262. [Google Scholar]
- Ghanmi, F.; Carré-Mlouka, A.; Vandervennet, M.; Boujelben, I.; Frikha, D.; Ayadi, H.; Peduzzi, J.; Rebuffat, S.; Maalej, S. Antagonistic interactions and production of halocin antimicrobial peptides among extremely halophilic prokaryotes isolated from the solar saltern of Sfax, Tunisia. Extremophiles 2016, 20, 363–374. [Google Scholar] [CrossRef]
- Ghanmi, F.; Carré-Mlouka, A.; Zarai, Z.; Mejdoub, H.; Peduzzi, J.; Maalej, S.; Rebuffat, S. The extremely halophilic archaeon Halobacterium salinarum ETD5 from the solar saltern of Sfax (Tunisia) produces multiple halocins. Res. Microbiol. 2020, 171, 80–90. [Google Scholar] [CrossRef]
- Koo, H.B.; Seo, J. Antimicrobial peptides under clinical investigation. Pept. Sci. 2019, 111, e24122. [Google Scholar] [CrossRef]
- Lin, B.; Hung, A.; Li, R.; Barlow, A.; Singleton, W.; Matthyssen, T.; Sani, M.A.; Hossain, M.A.; Wade, J.D.; O’Brien-Simpson, N.M.; et al. Systematic comparison of activity and mechanism of antimicrobial peptides against nosocomial pathogens. Eur. J. Med. Chem. 2022, 231, 114135. [Google Scholar] [CrossRef]
- Barbosa, F.; Pinto, E.; Kijjoa, A.; Pinto, M.; Sousa, E. Targeting antimicrobial drug resistance with marine natural products. Int. J. Antimicrob. Agents 2020, 56, 106005. [Google Scholar] [CrossRef]
- Zhu, Y.; Hao, W.; Wang, X.; Ouyang, J.; Deng, X.; Yu, H.; Wang, Y. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Med. Res. Rev. 2022, 42, 1377–1422. [Google Scholar] [CrossRef]
- Leach, A. Molecular Modelling: Principles and Applications; Pearson Education: London, UK, 2001. [Google Scholar]
- Maden, S.F.; Sezer, S.; Acuner, S.E. Fundamentals of Molecular Docking and Comparative Analysis of Protein–Small-Molecule Docking Approaches. In Molecular Docking—Recent Advances; IntechOpen: Rijeka, Croatia, 2022. [Google Scholar]
- Bearden, D.; Danziger, L. Mechanism of Action of and Resistance to Quinolones. Pharmacotherapy 2001, 21, 224S–232S. [Google Scholar] [CrossRef] [PubMed]
- Borovinskaya, M.A.; Pai, R.D.; Zhang, W.; Schuwirth, B.S.; Holton, J.M.; Hirokawa, G.; Kaji, H.; Kaji, A.; Cate, J.H.D. Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nat. Struct. Mol. Biol. 2007, 14, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Kaur, K.; Kaur, P.; Mittal, A.; Nayak, S.K.; Khatik, G.L. Design and molecular docking studies of novel antimicrobial peptides using autodock molecular docking software. Asian J. Pharm. Clin. Res. 2017, 10, 28–31. [Google Scholar] [CrossRef]
- Aliyu, A.; Ibrahim, Y.; Tytler, B.; Olowo-Okere, A. Antimicrobial Peptide Design, Molecular Docking and ADMET Studies Against the Methicillin-Resistant Staphylococcus aureus and Carbapenem-resistant and Carbapenemase-producing Pseudomonas aeruginosa. Trends Pept. Protein Sci. 2022, 7. [Google Scholar] [CrossRef]
- Roy, A.; D’Annessa, I.; Nielsen, C.J.F.; Tordrup, D.; Laursen, R.R.; Knudsen, B.R.; Desideri, A.; Andersen, F.F. Peptide Inhibition of Topoisomerase IB from Plasmodium falciparum. Mol. Biol. Int. 2011, 2011, 854626. [Google Scholar] [CrossRef] [Green Version]
- Chandrashekar, S.; Vijayakumar, R.; Chelliah, R.; Daliri, E.B.-M.; Madar, I.H.; Sultan, G.; Rubab, M.; Elahi, F.; Yeon, S.-J.; Oh, D.-H. In Vitro and In Silico Screening and Characterization of Antimicrobial Napin Bioactive Protein in Brassica juncea and Moringa oleifera. Molecules 2021, 26, 80. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Yan, Z.B.; Meng, Y.M.; Hong, X.Y.; Shao, G.; Ma, J.J.; Cheng, X.R.; Liu, J.; Kang, J.; Fu, C.Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil. Med. Res. 2021, 8, 48. [Google Scholar] [CrossRef]
- Li, W.; Separovic, F.; O’Brien-Simpson, N.M.; Wade, J.D. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem. Soc. Rev. 2021, 50, 4932–4973. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.M.; Luo, R.; Sadakane, K.; Lam, T.W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikheenko, A.; Saveliev, V.; Gurevich, A. MetaQUAST: Evaluation of metagenome assemblies. Bioinformatics 2016, 32, 1088–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos-Júnior, C.D.; Pan, S.; Zhao, X.M.; Coelho, L.P. Macrel: Antimicrobial peptide screening in genomes and metagenomes. PeerJ 2020, 8, e10555. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Wang, P.; Lin, W.Z.; Jia, J.H.; Chou, K.C. IAMP-2L: A two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal. Biochem. 2013, 436, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Waghu, F.H.; Barai, R.S.; Gurung, P.; Idicula-Thomas, S. CAMPR3: A database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res. 2016, 44, D1094–D1097. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016, 44, D1087–D1093. [Google Scholar] [CrossRef] [Green Version]
- CLSI Standard M07; Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Clinical and Laboratory Standards Institute: Wayne, NJ, USA, 2018.
- ISO 20776-1:2019; Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices—Part 1: Broth micro-dilution reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases. International Organization for Standardization: Geneva, Switzerland, 2019.
- ISO 16256:2012; Clinical laboratory testing and in vitro diagnostic test systems—Reference method for testing the in vitro activity of antimicrobial agents against yeast fungi involved in infectious diseases. International Organization for Standardization: Geneva, Switzerland, 2012.
- Gabrielson, J.; Hart, M.; Jarelöv, A.; Kühn, I.; McKenzie, D.; Möllby, R. Evaluation of redox indicators and the use of digital scanners and spectrophotometer for quantification of microbial growth in microplates. J. Microbiol. Methods 2002, 50, 63–73. [Google Scholar] [CrossRef]
- Francisco, F.L.; Saviano, A.M.; Pinto, T.d.J.A.; Lourenço, F.R. Development, optimization and validation of a rapid colorimetric microplate bioassay for neomycin sulfate in pharmaceutical drug products. J. Microbiol. Methods 2014, 103, 104–111. [Google Scholar] [CrossRef]
- Sabaeifard, P.; Abdi-Ali, A.; Soudi, M.R.; Dinarvand, R. Optimization of tetrazolium salt assay for Pseudomonas aeruginosa biofilm using microtiter plate method. J. Microbiol. Methods 2014, 105, 134–140. [Google Scholar] [CrossRef]
- Repetto, G.; del Peso, A.; Zurita, J.L. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc. 2008, 3, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 1999, 292, 195–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allouche, A. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2012, 32, 174–182. [Google Scholar] [CrossRef]
- Kozakov, D.; Hall, D.R.; Xia, B.; Porter, K.A.; Padhorny, D.; Yueh, C.; Beglov, D.; Vajda, S. The ClusPro web server for protein-protein docking. Nat. Protoc. 2017, 12, 255–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halgren, T.A. MMFF VII. Characterization of MMFF94, MMFF94s, and Other Widely Available Force Fields for Conformational Energies and for Intermolecular Interaction Energies and Geometries. J. Comput. Chem. 2000, 20, 730–748. [Google Scholar]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
ID | GenBank Accession | Source | Sequence | Number of Residues/Total Net Charge | Hydrophobic Amino Acids | Molecular Weight (g) | AMP Probability | Target Organism |
---|---|---|---|---|---|---|---|---|
P1 | OR326674 | Brine graduation tower—Botanik Residential | LAAIDALARACLKVKPDTTKIQNTARYPSVTSGT | 34 (Total net charge + 3) | 13/34 (38%) | 3575.142 | 76.2% | Bacteria |
P2 | OR326675 | Brine well—The Bochnia Salt Mine | AAALCVRAAVFKRGESNGYDPKPGDLRVGKVKRAERRVEAC | 41 (Total net charge + 5) | 17/41 (41%) | 4445.154 | 72.3% | Fungi |
P3 | OR326676 | Brine graduation tower—Podolski Park | NHFKNIGRVNYLGQPMLQRVSHCFGYPRPVIGSKSKPA | 38 (Total net charge + 6.5) | 12/38 (32%) | 4298.023 | 71.3% | Bacteria |
Strain | Reference Antibiotic | Receptor |
---|---|---|
E. faecalis 29212 | Levofloxacin | Topoisomerase IV |
S. aureus 43300 | Levofloxacin | DNA gyrase |
E. coli 25922 | Gentamicin | 16S rRNA |
Strain | P1 | P2 | P3 | Reference Antibiotic (MIC µg/mL) |
---|---|---|---|---|
A. baumannii 19606 | >256 | >256 | >256 | 0.5 |
C. albicans 10231 | >256 | >256 | >256 | 1 |
E. coli 25922 | >256 | >256 | 256 | 4 |
E. faecalis 29212 | 32 | >256 | 32 | 1 |
K. pneumoniae 700603 | >256 | >256 | >256 | 4 |
S. aureus 43300 (MRSA) | >256 | >256 | 32 | 0.25 |
P. aeruginosa 27853 | >256 | >256 | >256 | 1 |
Treatment Group | Mean Percentage Haemolysis (±SEM) |
---|---|
Untreated cells | 7.53 ± 0.61 |
Saponin | 100 ± 5.74 |
P1 | 6.81 ± 0.45 |
P2 | 7.65 ± 0.10 |
P3 | 7.29 ± 0.43 |
Agent | Hydrogen Bonds |
---|---|
Levofloxacin | Asn650 |
P1 | His511, Glu512, Tyr514, Lys534, Leu540, Arg572, Glu575, Ile576, Glu578, Ile589, Ile594, Val596, Glu647, Thr649, Asn650, Asn702 and Glu807 |
P3 | Leu540, Asp590, Tyr597, Lys606, Lys613, Gln645, Asn650, Val651, Leu653, Asp656, Asp658, Asn702, Glu805, Glu808 and Glu815 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lach, J.; Krupińska, M.; Mikołajczyk, A.; Strapagiel, D.; Stączek, P.; Matera-Witkiewicz, A. Novel Antimicrobial Peptides from Saline Environments Active against E. faecalis and S. aureus: Identification, Characterisation and Potential Usage. Int. J. Mol. Sci. 2023, 24, 11787. https://doi.org/10.3390/ijms241411787
Lach J, Krupińska M, Mikołajczyk A, Strapagiel D, Stączek P, Matera-Witkiewicz A. Novel Antimicrobial Peptides from Saline Environments Active against E. faecalis and S. aureus: Identification, Characterisation and Potential Usage. International Journal of Molecular Sciences. 2023; 24(14):11787. https://doi.org/10.3390/ijms241411787
Chicago/Turabian StyleLach, Jakub, Magdalena Krupińska, Aleksandra Mikołajczyk, Dominik Strapagiel, Paweł Stączek, and Agnieszka Matera-Witkiewicz. 2023. "Novel Antimicrobial Peptides from Saline Environments Active against E. faecalis and S. aureus: Identification, Characterisation and Potential Usage" International Journal of Molecular Sciences 24, no. 14: 11787. https://doi.org/10.3390/ijms241411787
APA StyleLach, J., Krupińska, M., Mikołajczyk, A., Strapagiel, D., Stączek, P., & Matera-Witkiewicz, A. (2023). Novel Antimicrobial Peptides from Saline Environments Active against E. faecalis and S. aureus: Identification, Characterisation and Potential Usage. International Journal of Molecular Sciences, 24(14), 11787. https://doi.org/10.3390/ijms241411787