Chitosan–Silica Composites for Adsorption Application in the Treatment of Water and Wastewater from Anionic Dyes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Adsorbents
2.2. The Adsorption Properties of the Chitosan–Silica Composites
2.2.1. The Effect of the Chitosan Component on the Adsorption Process
2.2.2. Effect of Silica Component on the Adsorption Process
2.2.3. The Effect of Cross-Linking on the Adsorption Process
2.2.4. The Effect of pH on the Adsorption Process
2.2.5. The Effect of Temperature on the Adsorption Process
2.2.6. Adsorption Data Optimization
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Synthesis of Chitosan–Silica Composites
3.3. Methods of Characterization of Chitosan–Silica Composites
3.3.1. Small-Angle X-ray Scattering (SAXS)
3.3.2. Other Techniques
3.3.3. Adsorption Equilibrium
3.3.4. Adsorption Kinetics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Chen, L.; Tang, C.Y.; Ning, N.Y.; Wang, C.Y.; Fu, Q.; Zhang, Q. Preparation and properties of chitosan/lignin composite films. Chin. J. Polym. Sci. 2009, 27, 739–746. [Google Scholar] [CrossRef]
- Rahmi, R.; Marlina, M.; Nisfayati, N. Effect of Eggshell on Mechanical Properties of Epichlorohydrin Cross-linked Chitosan/Eggshell Composites. Orient. J. Chem. 2017, 33, 478–482. [Google Scholar] [CrossRef] [Green Version]
- Samie, M.; Khan, A.F.; Rahman, S.U.; Iqbal, H.; Yameen, M.A.; Chaudhry, A.A.; Galeb, H.A.; Halcovitch, N.R.; Hardy, J.G. Drug/bioactive eluting chitosan composite foams for osteochondral tissue engineering. Int. J. Biol. Macromol. 2023, 229, 561–574. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Pires, J.R.A.; Rodrigues, C.; Coelhoso, I.M.; Fernando, A.L. Chitosan Composites in Packaging Industry-Current Trends and Future Challenges. Polymers 2020, 12, 417. [Google Scholar] [CrossRef] [Green Version]
- Vazquez-Hernandez, F.; Lopez-Haro, S.A.; Lira, M.A.M.; Albor-Aguilera, M.D.L.; Altuzar, V.; Mendoza-Barrera, C. Synthesis of HAp/chitosan composites via electrospinning: Preliminary results. In Proceedings of the 5th International Conference on Electrical Engineering, Computing Science and Automatic Control, Mexico City, Mexico, 12–14 November 2008; pp. 238–241. [Google Scholar]
- Wu, Z.G.; Lin, H.B.; Feng, W. Carbon nanotubes/chitosan composites. Prog. Chem. 2006, 18, 1200–1207. [Google Scholar]
- Georgiev, V.; Natova, M. New Method For Sustainable Polymer Composites Processing. In Proceedings of the 14th International Multidisciplinary Scientific Geoconference (SGEM), Albena, Bulgaria, 17–26 June 2014; pp. 129–133. [Google Scholar]
- Karbhari, V.M. New product and process-development methods as applied to polymer matrix composites—A perspective influenced by a jtec study. Int. J. Mater. Prod. Technol. 1995, 10, 46–84. [Google Scholar]
- Kers, J.; Goljandin, D.; Tall, K.; Aruniit, A.; Adoberg, E.; Saarna, M.; Majak, J. Modelling and Testing of the Properties of Recovered Composite Material. In Proceedings of the 10th International Conference on Computational Structures Technology, Valencia, Spain, 14–17 September 2010. [Google Scholar]
- Asensio, J.L.; Arda, A.; Canada, F.J.; Jimenez-Barbero, J. Carbohydrate-Aromatic Interactions. Acc. Chem. Res. 2013, 46, 946–954. [Google Scholar] [CrossRef] [Green Version]
- Kumari, M.; Sunoj, R.B.; Balaji, P.V. Exploration of CH center dot center dot center dot pi mediated stacking interactions in saccharide: Aromatic residue complexes through conformational sampling. Carbohydr. Res. 2012, 361, 133–140. [Google Scholar] [CrossRef]
- Ramirez-Gualito, K.; Alonso-Rios, R.; Quiroz-Garcia, B.; Rojas-Aguilar, A.; Diaz, D.; Jimenez-Barbero, J.; Cuevas, G. Enthalpic Nature of the CH/pi Interaction Involved in the Recognition of Carbohydrates by Aromatic Compounds, Confirmed by a Novel Interplay of NMR, Calorimetry, and Theoretical Calculations. J. Am. Chem. Soc. 2009, 131, 18129–18138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chivrac, F.; Pollet, E.; Averous, L. Progress in nano-biocomposites based on polysaccharides and nanoclays. Mater. Sci. Eng. R Rep. 2009, 67, 1–17. [Google Scholar] [CrossRef]
- Darder, M.; Colilla, M.; Ruiz-Hitzky, E. Chitosan-clay nanocomposites: Application as electrochemical sensors. Appl. Clay Sci. 2005, 28, 199–208. [Google Scholar] [CrossRef]
- Darder, M.; Aranda, P.; Ruiz-Hitzky, E. Bionanocomposites: A new concept of ecological, bioinspired, and functional hybrid materials. Adv. Mater. 2007, 19, 1309–1319. [Google Scholar] [CrossRef]
- Kaushik, M.; Moores, A. Review: Nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem. 2016, 18, 622–637. [Google Scholar] [CrossRef] [Green Version]
- Ling, S.J.; Kaplan, D.L.; Buehler, M.J. Nanofibrils in nature and materials engineering. Nat. Rev. Mater. 2018, 3, 18016. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, M.; John, B. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog. Polym. Sci. 2013, 38, 1487–1503. [Google Scholar] [CrossRef]
- Gowthaman, N.S.K.; Lim, H.N.; Sreeraj, T.R.; Amalraj, A.; Gopi, S. Chapter 15—Advantages of biopolymers over synthetic polymers: Social, economic, and environmental aspects. In Biopolymers and Their Industrial Applications; Thomas, S., Gopi, S., Amalraj, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 351–372. [Google Scholar]
- Amorim, J.D.P.; Nascimento, H.A.; Silva, C.J.G.; Medeiros, A.D.M.; Silva, I.D.L.; Costa, A.F.S.; Vinhas, G.M.; Sarubbo, L.A. Obtainment of bacterial cellulose with added propolis extract for cosmetic applications. Polym. Eng. Sci. 2022, 62, 565–575. [Google Scholar] [CrossRef]
- Kanlayavattanakul, M.; Lourith, N. Cosmetics: Active Polymers. In Encyclopedia of Polymer; CRC Press: Boca Raton, FL, USA, 2019; pp. 705–721. [Google Scholar]
- Appuhamillage, G.A.; Berry, D.R.; Benjamin, C.E.; Luzuriaga, M.A.; Reagan, J.C.; Gassensmith, J.J.; Smaldone, R.A. A biopolymer-based 3D printable hydrogel for toxic metal adsorption from water. Polym. Int. 2019, 68, 964–971. [Google Scholar] [CrossRef] [Green Version]
- Boardman, S.J.; Lad, R.; Green, D.C.; Thornton, P.D. Chitosan hydrogels for targeted dye and protein adsorption. J. Appl. Polym. Sci. 2017, 134, 44846. [Google Scholar] [CrossRef]
- Khan, M.I.H.; An, X.Y.; Dai, L.; Li, H.L.; Khan, A.; Ni, Y.H. Chitosan-based Polymer Matrix for Pharmaceutical Excipients and Drug Delivery. Curr. Med. Chem. 2019, 26, 2502–2513. [Google Scholar] [CrossRef]
- Nguyen, C.K.; Tran, N.Q.; Nguyen, T.P.; Nguyen, D.H. Biocompatible nanomaterials based on dendrimers, hydrogels and hydrogel nanocomposites for use in biomedicine. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 15001. [Google Scholar] [CrossRef] [Green Version]
- Ward, M.A.; Georgiou, T.K. Thermoresponsive Polymers for Biomedical Applications. Polymers 2011, 3, 1215–1242. [Google Scholar] [CrossRef] [Green Version]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Mishra, R.; Militky, J. Nature, nanoscience, and textile structures. In Nanotechnology in Textiles: Theory and Application; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–34. [Google Scholar] [CrossRef]
- Berger, J.; Reist, M.; Mayer, J.M.; Felt, O.; Peppas, N.A.; Gurny, R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur. J. Pharm. Biopharm. 2004, 57, 19–34. [Google Scholar] [CrossRef]
- Chen, S.J.; Tian, H.R.; Mao, J.L.; Ma, F.; Zhang, M.T.; Chen, F.X.; Yang, P.F. Preparation and application of chitosan-based medical electrospun nanofibers. Int. J. Biol. Macromol. 2023, 226, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Cheung, R.C.F.; Ng, T.B.; Wong, J.H.; Chan, W.Y. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Mar. Drugs 2015, 13, 5156–5186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef]
- Ma, X.J.; Zhang, J.; Javed, M.; Wu, J.Y.; Hu, Y.Z.; Yin, S.Y.; Zhu, Y.J.; Wu, W.T.; Liu, F. Chitosan based smart polymer composites: Fabrication and pH-Responsive behavior for bio-medical applications. Environ. Res. 2023, 221, 115286. [Google Scholar] [CrossRef]
- Manna, S.; Seth, A.; Gupta, P.; Nandi, G.; Dutta, R.; Jana, S. Chitosan Derivatives as Carriers for Drug Delivery and Biomedical Applications. Acs Biomater. Sci. Eng. 2023, 9, 2181–2202. [Google Scholar] [CrossRef]
- Sashiwa, H.; Aiba, S.I. Chemically modified chitin and chitosan as biomaterials. Prog. Polym. Sci. 2004, 29, 887–908. [Google Scholar] [CrossRef]
- Sinha, V.R.; Singla, A.K.; Wadhawan, S.; Kaushik, R.; Kumria, R.; Bansal, K.; Dhawan, S. Chitosan microspheres as a potential carrier for drugs. Int. J. Pharm. 2004, 274, 1–33. [Google Scholar] [CrossRef]
- Taherinazam, A.; Entezari, M.; Firouz, Z.M.; Hajimazdarany, S.; Heydargoy, M.H.; Moghadassi, A.H.A.; Moghadaci, A.; Sadrani, A.; Motahhary, M.; Nashtifani, A.H.; et al. Eco-friendly chitosan-based nanostructures in diabetes mellitus therapy: Promising bioplatforms with versatile therapeutic perspectives. Environ. Res. 2023, 228, 115912. [Google Scholar] [CrossRef]
- Auta, M.; Hameed, B.H. Chitosan-clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. Chem. Eng. J. 2014, 237, 352–361. [Google Scholar] [CrossRef]
- Blackburn, R.S. Natural polysaccharides and their interactions with dye molecules: Applications in effluent treatment. Environ. Sci. Technol. 2004, 38, 4905–4909. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Chatterjee, B.P.; Guha, A.K. Adsorptive removal of congo red, a carcinogenic textile dye by chitosan hydrobeads: Binding mechanism, equilibrium and kinetics. Colloids Surf. A Physicochem. Eng. Asp. 2007, 299, 146–152. [Google Scholar] [CrossRef]
- Sadiq, A.C.; Olasupo, A.; Ngah, W.S.W.; Rahim, N.Y.; Suah, F.B.M. A decade development in the application of chitosan-based materials for dye adsorption: A short review. Int. J. Biol. Macromol. 2021, 191, 1151–1163. [Google Scholar] [CrossRef]
- Crini, G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 2005, 30, 38–70. [Google Scholar] [CrossRef]
- Cheung, W.H.; Szeto, Y.S.; McKay, G. Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresour. Technol. 2007, 98, 2897–2904. [Google Scholar] [CrossRef]
- Chiou, M.S.; Li, H.Y. Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere 2003, 50, 1095–1105. [Google Scholar] [CrossRef] [PubMed]
- Ngah, W.S.W.; Endud, C.S.; Mayanar, R. Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React. Funct. Polym. 2002, 50, 181–190. [Google Scholar] [CrossRef]
- Vakili, M.; Rafatullah, M.; Salamatinia, B.; Abdullah, A.Z.; Ibrahim, M.H.; Tan, K.B.; Gholami, Z.; Amouzgar, P. Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohydr. Polym. 2014, 113, 115–130. [Google Scholar] [CrossRef]
- Varma, A.J.; Deshpande, S.V.; Kennedy, J.F. Metal complexation by chitosan and its derivatives: A review. Carbohydr. Polym. 2004, 55, 77–93. [Google Scholar] [CrossRef]
- Wilson, L.D.; Tewari, B.B. Chitosan-Based Adsorbents: Environmental Applications for the Removal of Arsenicals. Chitosan-Based Absorbents Wastewater Treat. 2018, 34, 133–160. [Google Scholar] [CrossRef]
- Phasuphan, W.; Praphairaksit, N.; Imyim, A. Removal of ibuprofen, diclofenac, and naproxen from water using chitosan-modified waste tire crumb rubber. J. Mol. Liq. 2019, 294, 111554. [Google Scholar] [CrossRef]
- Wang, J.L.; Chen, C. Chitosan-based biosorbents: Modification and application for biosorption of heavy metals and radionuclides. Bioresour. Technol. 2014, 160, 129–141. [Google Scholar] [CrossRef]
- Zhang, Y.; Mei, B.Y.; Shen, B.H.; Jia, L.Y.; Liao, J.; Zhu, W.K. Preparation of biochar@chitosan-polyethyleneimine for the efficient removal of uranium from water environment. Carbohydr. Polym. 2023, 312, 120834. [Google Scholar] [CrossRef]
- Fujiwara, K.; Ramesh, A.; Maki, T.; Hasegawa, H.; Ueda, K. Adsorption of platinum(IV), palladium(II) and gold(III) from aqueous solutions onto L-lysine modified crosslinked chitosan resin. J. Hazard. Mater. 2007, 146, 39–50. [Google Scholar] [CrossRef]
- Ali, D.J.; Al-Bayati, R.A.; Alani, R.R. Adsorption–Desorption and Theoretical Study of Propranolol Hydrochloride Drug on Chitosan and Cellulose Acetate Surfaces. Br. J. Pharm. Res. 2016, 10, 1–8. [Google Scholar] [CrossRef]
- Denkbas, E.B.; Odabasi, M.; Kilicay, E.; Ozdemir, N. Human serum albumin (HSA) adsorption with chitosan microspheres. J. Appl. Polym. Sci. 2002, 86, 3035–3039. [Google Scholar] [CrossRef]
- Shen, J.W.; Li, J.C.; Dai, J.H.; Zhou, M.D.; Ren, H.; Zhang, L.; Hu, Q.; Kong, Z.; Liang, L.J. Molecular dynamics study on the adsorption and release of doxorubicin by chitosan-decorated graphene. Carbohydr. Polym. 2020, 248, 116809. [Google Scholar] [CrossRef]
- Caroni, A.; de Lima, C.R.M.; Pereira, M.R.; Fonseca, J.L.C. Tetracycline adsorption on chitosan: A mechanistic description based on mass uptake and zeta potential measurements. Colloids Surf. B Biointerfaces 2012, 100, 222–228. [Google Scholar] [CrossRef]
- Xue, Z.X.; Yang, G.P.; Zhang, Z.P.; He, B.L. Application of chitosan microspheres as carriers of LH-RH analogue TX46. React. Funct. Polym. 2006, 66, 893–901. [Google Scholar] [CrossRef]
- Saharan, Y.; Singh, J.; Goyat, R.; Umar, A.; Algadi, H.; Ibrahim, A.A.; Kumar, R.; Baskoutas, S. Nanoporous and hydrophobic new Chitosan-Silica blend aerogels for enhanced oil adsorption capacity. J. Clean. Prod. 2022, 351, 131247. [Google Scholar] [CrossRef]
- Zulfikar, M.A.; Setiyanto, H.; Wahyuningrum, D.; Mukti, R.R. Peat Water Treatment using Chitosan-Silica Composite as an Adsorbent. Int. J. Environ. Res. 2014, 8, 687–710. [Google Scholar]
- Diosa, J.; Guzman, F.; Bernal, C.; Mesa, M. Formation mechanisms of chitosan-silica hybrid materials and its performance as solid support for KR-12 peptide adsorption: Impact on KR-12 antimicrobial activity and proteolytic stability. J. Mater. Res. Technol. 2020, 9, 890–901. [Google Scholar] [CrossRef]
- Pang, Y.; Zeng, G.M.; Tang, L.; Zhang, Y.; Li, Z.; Chen, L.J. Laccase biosensor using magnetic multiwalled carbon nanotubes and chitosan/silica hybrid membrane modified magnetic carbon paste electrode. J. Cent. South Univ. Technol. 2011, 18, 1849–1856. [Google Scholar] [CrossRef]
- Marega, C.; Causin, V.; Saini, R.; Marigo, A. A Direct SAXS Approach for the Determination of Specific Surface Area of Clay in Polymer-Layered Silicate Nanocomposites. J. Phys. Chem. B 2012, 116, 7596–7602. [Google Scholar] [CrossRef]
- Chrzanowska, A.; Nosach, L.V.; Voronin, E.F.; Derylo-Marczewska, A.; Wasilewska, M. Effect of geometric modification of fumed nanoscale silica for medical applications on adsorption of human serum albumin: Physicochemical and surface properties. Int. J. Biol. Macromol. 2022, 220, 1294–1308. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Yu, D.; Yu, Z.; Zhang, L.; Xia, W. Thermally-induced crosslinking altering the properties of chitosan films: Structure, physicochemical characteristics and antioxidant activity. Food Packag. Shelf Life 2022, 34, 100948. [Google Scholar] [CrossRef]
- Woźniak, A.; Biernat, M. Methods for crosslinking and stabilization of chitosan structures for potential medical applications. J. Bioact. Compat. Polym. 2022, 37, 151–167. [Google Scholar] [CrossRef]
- Kopplin, G.; Lervik, A.; Draget, K.I.; Aachmann, F.L. Alginate gels crosslinked with chitosan oligomers—A systematic investigation into alginate block structure and chitosan oligomer interaction. RSC Adv. 2021, 11, 13780–13798. [Google Scholar] [CrossRef]
- Christ, H.-A.; Menzel, H. Electrospinning and Photocrosslinking of Highly Modified Fungal Chitosan. Macromol. Mater. Eng. 2023, 308, 2200430. [Google Scholar] [CrossRef]
- Derylo-Marczewska, A.; Blachnio, M.; Marczewski, A.W.; Seczkowska, M.; Tarasiuk, B. Phenoxyacid pesticide adsorption on activated carbon—Equilibrium and kinetics. Chemosphere 2019, 214, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Blachnio, M.; Derylo-Marczewska, A.; Seczkowska, M. Influence of pesticide properties on adsorption capacity and rate on activated carbon from aqueous solution. In Sorption in 2020s; Kyzas, G., Lazaridis, N., Eds.; IntechOpen: London, UK, 2019. [Google Scholar]
- Derylo-Marczewska, A.; Blachnio, M.; Marczewski, A.W.; Swiatkowski, A.; Buczek, B. Adsorption of chlorophenoxy pesticides on activated carbon with gradually removed external particle layers. Chem. Eng. J. 2017, 308, 408–418. [Google Scholar] [CrossRef]
- Blachnio, M.; Derylo-Marczewska, A.; Charmas, B.; Zienkiewicz-Strzalka, M.; Bogatyrov, V.; Galaburda, M. Activated Carbon from Agricultural Wastes for Adsorption of Organic Pollutants. Molecules 2020, 25, 5105. [Google Scholar] [CrossRef] [PubMed]
- Blachnio, M.; Budnyak, T.M.; Derylo-Marczewska, A.; Marczewski, A.W.; Tertykh, V.A. Chitosan–Silica Hybrid Composites for Removal of Sulfonated Azo Dyes from Aqueous Solutions. Langmuir 2018, 34, 2258–2273. [Google Scholar] [CrossRef]
- Zienkiewicz-Strzalka, M.; Blachnio, M. Nitrogenous Bases in Relation to the Colloidal Silver Phase: Adsorption Kinetic, and Morphology Investigation. Appl. Sci. 2023, 13, 3696. [Google Scholar] [CrossRef]
- Budnyak, T.M.; Błachnio, M.; Slabon, A.; Jaworski, A.; Tertykh, V.A.; Deryło-Marczewska, A.; Marczewski, A.W. Chitosan Deposited onto Fumed Silica Surface as Sustainable Hybrid Biosorbent for Acid Orange 8 Dye Capture: Effect of Temperature in Adsorption Equilibrium and Kinetics. J. Phys. Chem. C 2020, 124, 15312–15323. [Google Scholar] [CrossRef]
- Blachnio, M.; Derylo-Marczewska, A.; Winter, S.; Zienkiewicz-Strzalka, M. Mesoporous Carbons of Well-Organized Structure in the Removal of Dyes from Aqueous Solutions. Molecules 2021, 26, 2159. [Google Scholar] [CrossRef]
Sample | Porod Approximation | SSAXS e [m2/g] | Surface Area (SBET) [m2/g] | Pore Volume [cm3/g] | pHPZC | |||||
---|---|---|---|---|---|---|---|---|---|---|
KP a | Q b [Å−1] | C0 c | S/V d [Å−1] | SBET_Total f | SMIC g | VTotal h | VMIC i | |||
ChNS_05 | 1.59 | 88 | −28 | 0.072 | 277 | 244 | 3.6 | 0.93 | 0.001 | - |
ChNS_1 | 1.05 | 67 | −23 | 0.062 | 219 | 209 | 26.0 | 0.84 | 0.013 | 5.2 |
ChNS_1_GA | 1.35 | 69 | −35 | 0.078 | 227 | 214 | 9.5 | 0.71 | 0.003 | 5.8 |
ChSG_05 | 1.59 | 81 | −27 | 0.078 | 269 | 257 | - | 0.83 | - | - |
ChSG_1 | 1.40 | 77 | −27 | 0.072 | 239 | 201 | 8.0 | 0.70 | 0.003 | 6.2 |
ChSG_1_GA | 1.32 | 78 | −23 | 0.067 | 190 | 188 | 27.7 | 0.65 | 0.01 | 6.5 |
Adorbent | % C | % H | % N | % N/C | % N/H | % N/C + H |
---|---|---|---|---|---|---|
ChNS_05 | 2.04 | 0.51 | 0.28 | 0.14 | 0.55 | 0.11 |
ChNS_1 | 3.14 | 0.68 | 0.57 | 0.18 | 0.84 | 0.15 |
ChNS_1_GA | 4.33 | 0.48 | 0.51 | 0.12 | 1.06 | 0.11 |
ChSG_05 | 2.31 | 0.58 | 0.29 | 0.13 | 0.50 | 0.10 |
ChSG_1 | 4.36 | 0.82 | 0.65 | 0.15 | 0.79 | 0.13 |
ChSG_1_GA | 4.63 | 0.77 | 0.51 | 0.11 | 0.66 | 0.09 |
Adsorbent (T) | ΔG [kJ/mol] | ΔS [kJ/mol × K] | ΔH [kJ] | R2 |
---|---|---|---|---|
ChNS_1 (278K) | −14.00 | 0.0270 | −6.50 | 0.995 |
ChNS_1 (288K) | −14.21 | 0.0268 | ||
ChNS_1 (298K) | −14.54 | 0.0270 | ||
ChNS_1 (308K) | −14.78 | 0.0269 | ||
ChNS_1 (318K) | −15.06 | 0.0269 | ||
ChNS_1_GA (278K) | −14.14 | 0.0294 | −5.97 | 0.992 |
ChNS_1_GA (288K) | −14.50 | 0.0296 | ||
ChNS_1_GA (298K) | −14.72 | 0.0294 | ||
ChNS_1_GA (308K) | −15.03 | 0.0294 | ||
ChNS_1_GA (318K) | −15.34 | 0.0295 |
Adsorbent (Fit) | am [mmol/g] | m | n | log K | R2 | SD (a) |
---|---|---|---|---|---|---|
ChNS_05 (L) | 0.28 | 1 | 1 | 2.19 | 0.73 | 0.051 |
ChNS_1 (LF) | 0.51 | 0.69 | 0.69 | 2.45 | 0.96 | 0.024 |
ChNS_1_GA (L) | 0.43 | 1 | 1 | 2.46 | 0.98 | 0.020 |
ChSG_1_05 (GF) | 0.19 | 0.39 | 1 | 1.85 | 0.98 | 0.008 |
ChSG_1 (T) | 0.31 | 1 | 0.64 | 2.23 | 0.99 | 0.010 |
ChSG_1_GA (T) | 0.19 | 1 | 0.54 | 2.26 | 0.96 | 0.008 |
ChNS_1, pH 2 (LF) | 0.75 | 0.51 | 0.51 | 2.17 | 0.96 | 0.038 |
ChNS_1_GA, pH 2 (LF) | 0.72 | 0.37 | 0.37 | 1.99 | 0.99 | 0.015 |
ChNS_1_GA, pH 4 (GF) | 0.46 | 0.18 | 1 | 1.81 | 0.98 | 0.012 |
ChNS_1_GA, pH 6 (GF) | 0.45 | 0.17 | 1 | 1.73 | 0.97 | 0.013 |
ChNS_1_GA, pH 8 (GF) | 0.41 | 0.14 | 1 | 1.38 | 0.96 | 0.015 |
ChNS_1_GA, pH 10 (GL) | 0.37 | 0.18 | 0.81 | 1.64 | 0.94 | 0.016 |
ChNS_1, 5 °C (LF) | 0.57 | 0.84 | 0.84 | 2.34 | 0.92 | 0.046 |
ChNS_1, 15 °C (LF) | 0.53 | 0.94 | 0.94 | 2.43 | 0.92 | 0.041 |
ChNS_1, 25 °C (LF) | 0.51 | 0.69 | 0.69 | 2.45 | 0.96 | 0.024 |
ChNS_1, 35 °C (LF) | 0.50 | 0.49 | 0.49 | 2.56 | 0.98 | 0.019 |
ChNS_1, 45 °C (LF) | 0.49 | 0.45 | 0.45 | 2.52 | 0.99 | 0.010 |
ChNS_1_GA, 5 °C (L) | 0.48 | 1 | 1 | 2.11 | 0.90 | 0.053 |
ChNS_1_GA, 15 °C (L) | 0.46 | 1 | 1 | 2.34 | 0.88 | 0.054 |
ChNS_1_GA, 25 °C (L) | 0.43 | 1 | 1 | 2.46 | 0.98 | 0.020 |
ChNS_1_GA, 35 °C (L) | 0.41 | 1 | 1 | 2.55 | 0.87 | 0.050 |
ChNS_1_GA, 45 °C (L) | 0.40 | 1 | 1 | 2.67 | 0.87 | 0.049 |
Adsorbent | log kavg | t0.5 [min] | t75%/t90% [min] | ueq | SD(c/co) [%] | 1 − R2 |
---|---|---|---|---|---|---|
ChNS_1 | −0.22 | 1.14 | 4/35 | 0.99 | 0.25 | 2.00 × 10−4 |
ChNS_1_GA | −0.24 | 1.20 | 6/120 | 0.98 | 0.59 | 1.16 × 10−3 |
ChSG_1 | −1.67 | 33 | 640/-- | 0.89 | 0.65 | 1.20 × 10−3 |
ChSG_1_GA | −1.94 | 61 | --/-- | 0.43 | 0.52 | 3.04 × 10−3 |
ChNS_1_GA, pH 2 | 0.20 | 0.43 | 16/125 | 0.98 | 0.45 | 7.58 × 10−4 |
ChNS_1_GA, pH 4 | 0.20 | 0.44 | 7/71 | 0.99 | 0.31 | 4.92 × 10−4 |
ChNS_1_GA, pH 6 | −0.19 | 1.08 | 3.5/41 | 0.99 | 0.37 | 7.69 × 10−4 |
ChNS_1_GA, pH 8 | −0.27 | 1.28 | 19/125 | 0.99 | 0.61 | 1.80 × 10−3 |
ChNS_1_GA, pH 10 | −0.28 | 1.31 | 228/-- | 0.82 | 0.31 | 7.20 × 10−4 |
ChNS_1_GA, 15 °C | −0.50 | 2.17 | 41/173 | 0.99 | 0.37 | 4.46 × 10−4 |
ChNS_1_GA, 25 °C | −0.24 | 1.20 | 6/120 | 0.98 | 0.59 | 1.16 × 10−3 |
ChNS_1_GA, 35 °C | −0.08 | 0.83 | ~2/20 | 0.99 | 0.26 | 5.00 × 10−4 |
ChNS_1_GA, 45 °C | −0.05 | 0.77 | ~2/14 | 0.99 | 0.22 | 3.17 × 10−4 |
Name of Sample | Composition | Bulk Density, db, (g/dm3) |
---|---|---|
ChNS_05 | A-300 – 25 g Chitosan (0.5 layer) – 1.5 g water – 18 g | 260 |
ChNS_1 | A-300 – 25 g Chitosan (1 layer) – 3 g water – 18 g | 282 |
ChNS_1_GA | A-300 – 25 g Chitosan (1 layer) – 3 g water – 18 g 25% wt. solution of GA – 2 g | 344 |
ChSG_05 | C-35 – 25 g Chitosan (0.5 layer) – 1.5 g water – 18 g | 290 |
ChSG_1 | C-35 – 25 g Chitosan (1 layer) – 3 g water – 18 g | 301 |
ChSG_1_GA | C-35 – 25 g Chitosan (1 layer) – 3 g water – 18 g 25% wt. solution of GA – 2 g | 354 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blachnio, M.; Zienkiewicz-Strzalka, M.; Derylo-Marczewska, A.; Nosach, L.V.; Voronin, E.F. Chitosan–Silica Composites for Adsorption Application in the Treatment of Water and Wastewater from Anionic Dyes. Int. J. Mol. Sci. 2023, 24, 11818. https://doi.org/10.3390/ijms241411818
Blachnio M, Zienkiewicz-Strzalka M, Derylo-Marczewska A, Nosach LV, Voronin EF. Chitosan–Silica Composites for Adsorption Application in the Treatment of Water and Wastewater from Anionic Dyes. International Journal of Molecular Sciences. 2023; 24(14):11818. https://doi.org/10.3390/ijms241411818
Chicago/Turabian StyleBlachnio, Magdalena, Malgorzata Zienkiewicz-Strzalka, Anna Derylo-Marczewska, Liudmyla V. Nosach, and Eugeny F. Voronin. 2023. "Chitosan–Silica Composites for Adsorption Application in the Treatment of Water and Wastewater from Anionic Dyes" International Journal of Molecular Sciences 24, no. 14: 11818. https://doi.org/10.3390/ijms241411818
APA StyleBlachnio, M., Zienkiewicz-Strzalka, M., Derylo-Marczewska, A., Nosach, L. V., & Voronin, E. F. (2023). Chitosan–Silica Composites for Adsorption Application in the Treatment of Water and Wastewater from Anionic Dyes. International Journal of Molecular Sciences, 24(14), 11818. https://doi.org/10.3390/ijms241411818