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Abstract: Sickle cell disease (SCD) is an inherited hematological disorder associated with high
mortality rates, particularly in sub-Saharan Africa. SCD arises due to the polymerization of sickle
hemoglobin, which reduces flexibility of red blood cells (RBCs), causing blood vessel occlusion and
leading to severe morbidity and early mortality rates if untreated. While sickle solubility tests are
available to sub-Saharan African population as a means for detecting sickle hemoglobin (HbS), the test
falls short in assessing the severity of the disease and visualizing the degree of cellular deformation.
Here, we propose use of holographic cytometry (HC), a high throughput, label-free imaging modality,
for comprehensive morphological profiling of RBCs as a means to detect SCD. For this study, more
than 2.5 million single-cell holographic images from normal and SCD patient samples were collected
using the HC system. We have developed an approach for specially defining training data to improve
machine learning classification. Here, we demonstrate the deep learning classifier developed using
this approach can produce highly accurate classification, even on unknown patient samples.

Keywords: sickle cell disease; flow cytometry; holography; quantitative phase imaging; deep learning;
detection; monitoring

1. Introduction

Sickle cell disease (SCD) is an inherited hemoglobin disorder condition most com-
monly found in sub-Saharan Africa, India, the Mediterranean and the Middle East pop-
ulation [1]. Characteristics of the disease include chronic hemolytic anemia, acute pain,
organ damage and significantly shorter lifespans [2]. The pathophysiology of SCD mainly
involves the rapid polymerization of hemoglobin (HbS) after deoxygenation, causing
deformation of red blood cell (RBC) morphology and disrupting blood circulation [3].
Consequently, vaso-occlusion occurs due to the inflexibility and highly adhesive nature
of sickled RBCs [3]. Organ failures are common complications of SCD from repeated
vaso-occlusive processes and often lead to increased mortality [4,5].

High mortality rates are particularly prevalent in the under-five SCD age group,
constituting 50–90% of newborns in sub-Saharan Africa with the β-globin S gene muta-
tion [6]. In North America, mortality rates for SCD-related complications have nearly been
eliminated due to the availability of comprehensive blood tests and newborn screening
protocols [6,7]. However, access to specialized SCD diagnosis laboratory equipment such
as high-performance liquid chromatography or electrophoresis is extremely limited in
low-resource countries, and thus, a sickle solubility test is the most affordable and available
testing method [8]. The test looks for the presence of deoxygenated HbS precipitate in
phosphate buffer, formed from reactions induced by sodium bisulfite. While a ‘positive’
test result confirms the presence of HbS, it is incapable of providing detailed information
on the percentage of sickling cells in a heterogeneous blood sample and is not effective
for HbS levels lower than 15–20% [9]. More accurate and accessible diagnostic tools are
needed for SCD management.
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Healthy and sickle cell trait (SCT) individuals generally have normal hemoglobin
levels, normal RBC shape, and have no significant clinical or hematologic manifesta-
tions [10,11]. The defining features of SCD on a microscopic level is the gradual morpho-
logical deformation of select sickle cell erythrocytes due to the progressively increasing
polymerization of HbS under low oxygen tension conditions [12]. Morphological and
biomechanical profiling of single sickle cells has been accomplished using quantitative
phase microscopy (QPM), a powerful label-free imaging modality [13,14]. Yet, the applica-
tion of QPM for cytological diagnosis has been limited by low imaging cell counts. Recent
advances in QPM have led to higher imaging cell counts in an effort to provide a more
complete view on overall cell population morphology and, thus, bring more diagnostic
value. For example, high-throughput QPM is achieved via the fast-scanning time-stretch ap-
proach, producing a state-of-the-art throughput of 77,000 cells/second [15]. However, these
results are achieved at the expense of instrument complexity, large amounts of computing
power and lengthy image reconstruction times. As an alternative, we recently introduced
holographic cytometry (HC) as a simple low-cost, high-throughput QPM system, based on
an off-axis Mach–Zehnder configuration that only requires phase reconstruction times in
the order of milliseconds [16,17].

In this study, we seek to evaluate HC’s clinical applicability to SCD screening and
monitoring. Millions of single cell images extracted from just a few drops of blood are
imaged using HC in a few minutes and passed through a machine learning algorithm for
detailed diagnosis. Here, we advance the algorithmic approach to improve identification
of cells from SCD patients. While cells from a given SCD patient sample can exhibit a wide
range in degree of cellular deformation [18,19] due to the heterogeneity in SCD cellular
morphology, here, we define a set of selection criteria to refine a training dataset that only
contain extremely sickled cells. Upon using this filtered dataset for training, we developed
deep learning algorithms that can accurately predict the percentage of severely sickled cells
in unknown patient samples.

2. Results

Example box plots and histograms are shown in Figure 1 for two selected morpho-
logical parameters. Overall, the trends show that the SCD samples have a higher average
eccentricity ratio and slightly lower average mean phase than normal samples. The his-
tograms show that there is great overlap in eccentricity and mean phase between the two
different cell types even though there is a statistically significant difference (p < 0.001) at
the population level. It is observed that a small proportion of the morphological parameter
distributions for the SCD population do not overlap with the normal dataset. A dataset re-
finement selection criterion is developed based on the differences found in this population
distribution mismatch. We implement a selection criterion that automatically generates an
accurately labeled training dataset (error rate less than 5%). For the training of the machine
learning models below, we present a side-by-side comparison between models trained by
the refined and unrefined datasets.
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Figure 1. Example morphological parameters box plots and histograms. p-values < 0.001 for param-
eters shown here. Eccentricity refers to the ratio of the distance between the foci of the ellipse and 
its major axis length. Mean phase refers to the mean of the phase values obtained from single cell 
phase image. SCD: samples from sickle cell disease patients. NOR: samples from normal subjects. 
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phological parameters. All SCD sample data and all normal sample data were grouped 
and randomly scrambled forming two different data pools. Initially, the model was 
trained using 10,000 SCD morphological parameters and 10,000 normal morphological 
parameters randomly selected from the data pools. In Table 1, the logistic regression–all 
(LR–ALL) model presents the training performance of this approach, achieving ~76% ac-
curacy (77% sensitivity and 75% specificity). In a second approach, a smaller training da-
taset containing only data meeting the selection criteria described in Section 3.5 is used to 
train the LR model. In Table 1, the logistic regression–selected (LR–SEL) model presents 
the training performance of this approach, achieving 99.28% accuracy (99.53% sensitivity 
and 99.03% specificity). To calculate these performance metrics, 90% of the input data was 
used for training the model, while 10% of the data was used for validation. In comparison, 
the LR-SEL model significantly outperformed LR-ALL model in training sensitivity, spec-
ificity and accuracy. 

Table 1. Logistic regression–selected (LR–SEL) and logistic regression–all (LR–ALL) training accu-
racy. Averaged training sensitivity, specificity and accuracy of 5 trained logistic regression (LR) 
models, based on unrefined SCD datasets and refined SCD dataset. 

Model Sensitivity (%) Specificity (%) Accuracy (%) Training Size (#) 
LR-ALL 77.01 ± 0.21 75.14 ± 0.39 76.08 ± 0.20 200,000 
LR-SEL 99.53 ± 0.17 99.03 ± 0.14 99.28 ± 0.09 37,850 

To further evaluate the models’ performance, we constructed a test dataset consisting 
of archived normal RBC data from a previous study [16] and one additional SCD patient 
sample that was not included in the training. The testing dataset contains more than 1.6 
million cells’ morphological parameters, which are passed through both LR–SEL and LR–
ALL, with the results shown in Tables 2 and 3. While normal subjects accuracy levels for 
LR–ALL ranged from 33.33% (sample D) to 99.64% (sample A), LR–SEL exhibited higher 
accuracy ranging from 83.77% (sample B) to 98.66% (sample A). The LR–ALL model’s ac-
curacy level for the one SCD patient is indistinguishable from normal subjects; unfortu-
nately, the model predicted sample D (66.67%) and sample E (43.25%) to have higher dis-
eased cell counts than sample 3 (40.84%). In comparison, LR-SEL predicts sample 3 to have 
significantly higher diseased cell counts than all healthy subject samples, and all healthy 
subject samples have >83% predictions of normal, as shown in Table 3. Overall, the LR–

Figure 1. Example morphological parameters box plots and histograms. p-values < 0.001 for parame-
ters shown here. Eccentricity refers to the ratio of the distance between the foci of the ellipse and its
major axis length. Mean phase refers to the mean of the phase values obtained from single cell phase
image. SCD: samples from sickle cell disease patients. NOR: samples from normal subjects.

2.1. Logistic Regression Training and Testing

Initially, the logistic regression (LR) model was trained on the entire dataset of mor-
phological parameters. All SCD sample data and all normal sample data were grouped
and randomly scrambled forming two different data pools. Initially, the model was trained
using 10,000 SCD morphological parameters and 10,000 normal morphological parameters
randomly selected from the data pools. In Table 1, the logistic regression-all (LR-ALL)
model presents the training performance of this approach, achieving ~76% accuracy (77%
sensitivity and 75% specificity). In a second approach, a smaller training dataset containing
only data meeting the selection criteria described in Section 3.5 is used to train the LR
model. In Table 1, the logistic regression-selected (LR-SEL) model presents the training
performance of this approach, achieving 99.28% accuracy (99.53% sensitivity and 99.03%
specificity). To calculate these performance metrics, 90% of the input data was used for
training the model, while 10% of the data was used for validation. In comparison, the
LR-SEL model significantly outperformed LR-ALL model in training sensitivity, specificity
and accuracy.

Table 1. Logistic regression-selected (LR-SEL) and logistic regression-all (LR-ALL) training accuracy.
Averaged training sensitivity, specificity and accuracy of 5 trained logistic regression (LR) models,
based on unrefined SCD datasets and refined SCD dataset.

Model Sensitivity (%) Specificity (%) Accuracy (%) Training Size (#)

LR-ALL 77.01 ± 0.21 75.14 ± 0.39 76.08 ± 0.20 200,000
LR-SEL 99.53 ± 0.17 99.03 ± 0.14 99.28 ± 0.09 37,850

To further evaluate the models’ performance, we constructed a test dataset consisting
of archived normal RBC data from a previous study [16] and one additional SCD patient
sample that was not included in the training. The testing dataset contains more than
1.6 million cells’ morphological parameters, which are passed through both LR-SEL and
LR-ALL, with the results shown in Tables 2 and 3. While normal subjects accuracy levels
for LR-ALL ranged from 33.33% (sample D) to 99.64% (sample A), LR-SEL exhibited
higher accuracy ranging from 83.77% (sample B) to 98.66% (sample A). The LR-ALL
model’s accuracy level for the one SCD patient is indistinguishable from normal subjects;
unfortunately, the model predicted sample D (66.67%) and sample E (43.25%) to have
higher diseased cell counts than sample 3 (40.84%). In comparison, LR-SEL predicts sample
3 to have significantly higher diseased cell counts than all healthy subject samples, and all
healthy subject samples have >83% predictions of normal, as shown in Table 3. Overall, the
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LR-SEL model presents an average accuracy of 93.17% across samples A–E, where four out
of the four normal subjects samples are >94%.

Table 2. LR-ALL testing accuracy. LR model was trained using unrefined SCD dataset and unrefined
normal dataset. Ground truth of the cells is labelled under column name ‘Type’.

Name Type Predicted: Normal (%) Predicted: SCD (%) #Cells

Sample A Normal 99.64 0.36 483,975
Sample B Normal 92.43 7.57 337,440
Sample C Normal 99.21 0.79 283,996
Sample D Normal 33.33 66.67 322,709
Sample E Normal 56.75 43.25 133,990
Sample 3 SCD 59.16 40.84 93,060

Table 3. LR-SEL testing accuracy. LR model was trained using 18,925 selected SCD cell images and
18,925 normal cell images. Ground truth of the cells is labelled under column name ‘Type’.

Name Type Predicted:
Normal (%)

Predicted: SCD
(%) #Cells

Sample A Normal 98.66 1.34 483,975
Sample B Normal 83.77 16.23 337,440
Sample C Normal 96.77 3.23 283,996
Sample D Normal 94.17 5.83 322,709
Sample E Normal 97.46 2.54 133,990
Sample 3 SCD 70.74 29.26 93,060

2.2. Convolutional Neural Network Training and Testing

Table 4 summarizes the convolutional neural network (CNN) testing accuracy results,
including convolutional neural network-all (CNN-ALL) model trained on the entire body
of cell images in the unrefined SCD and unrefined normal datasets. A total of 100,000 SCD
images and 100,000 normal images were randomly selected from the data pool for the
training of CNN-ALL. Similarly to LR-ALL, while the CNN-ALL model showed great
success in correctly predicting normal samples (92–95%) for samples A to C, it performed
poorly for samples D, E and 3 (48–53%). In comparison, switching to the use of a more
selective dataset greatly improves performance. Table 5 summarizes the testing accuracy of
the convolutional neural network-selected (CNN-SEL) model trained by the refined SCD
and refined normal dataset. CNN-SEL achieved high accuracy levels for all normal samples
(92–99%). Only less than 8% of cell images from samples A to E were mistakenly counted
as diseased, clearly distinct from sample 3′s diseased cell count of 25.96%. This model
predicts a slightly higher prediction of normal cells for the SCD sample from sample 3 but
still remains distinct from the other samples.

Table 4. Convolutional neural network-all (CNN-ALL) testing accuracy. Convolutional neural
network (CNN) performance table shows the percentage of cells predicted in different categories.
The ground truth of the cells is labelled under column name ‘Type’. CNN model was trained using
an unrefined dataset consisting of 100,000 SCD cell images and 100,000 normal cell images.

Name Type Predicted: Normal (%) Predicted: SCD (%) #Cells

Sample A Normal 95.53 4.47 483,975
Sample B Normal 92.40 7.6 337,440
Sample C Normal 92.14 7.86 283,996
Sample D Normal 46.93 53.07 322,709
Sample E Normal 47.72 52.28 133,990
Sample 3 SCD 51.13 48.87 93,060
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Table 5. Convolutional neural network-selected (CNN-SEL) testing accuracy. The ground truth of the
cells is labelled under column name ‘Type’. CNN model was trained using refined dataset consisting
of 18,925 SCD and 18,925 normal cell images.

Name Type Predicted: Normal (%) Predicted: SCD (%) #Cells

Sample A Normal 99.27 0.73 483,975
Sample B Normal 98.34 1.66 337,440
Sample C Normal 98.96 1.04 283,996
Sample D Normal 92.62 7.38 322,709
Sample E Normal 94.37 5.63 133,990
Sample 3 SCD 74.04 25.96 93,060

We observe that the dataset refinement process greatly improved the diagnostic ability
of the models when analyzed using a receiver operator curve (ROC). The area under curve
(AUC) increased from 0.84026 (Figure 2A) for LR-ALL to 0.99897 (Figure 2B) for LR-SEL.
Similarly, we report an increase in AUC from 0.9657 (Figure 3A) for CNN-ALL to 0.9996
(Figure 3B) for CNN-SEL. The switch in training dataset to a more selective SCD subset has
significantly increased the models’ class separation capacity.
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3. Materials and Methods
3.1. System

The experimental setup consists of the HC imaging system [20] accompanied by
artificial intelligence algorithms to realize SCD diagnosis. Shown in Figure 4, the imaging
system is a Mach–Zehnder interferometer that consists of pathlength-matched sample and
reference arms, where images of RBCs flowing within microfluidic channels are captured
in the form of single-cell holograms. The overall magnification of the system is 33×, and
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the field of view covers 16 channels at once. The camera (Dalsa HS-40-04K40-00-R) acquires
300 frames per second synchronized to an acousto-optic modulator that pulses a 640 nm
wavelength laser (PicoQuant Fast Switched Diode Laser FSL 500). The 350µs pulses prevent
streaking effects by minimizing the blurring due to motion of the flowing cells.
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3.2. Image Reconstruction

Single-cell phase images are reconstructed from interferograms using Fourier trans-
form, phase unwrapping, digital refocusing and segmentation algorithms, at rates up to
150 ms/cell [20]. Twenty-five morphological parameters are extracted from each single-cell
image. Customized exclusion parameters are used to eliminate images of cell clumps and
debris from the dataset. Normal cell images with mean phase values below 0.4 rad and
SCD cell images with mean phase values below 0.3 rad are excluded from the final dataset.
In total, 1981 SCD images and 5552 healthy images were excluded from our analysis.

3.3. Microfluidics

Customized lithographic patterns are fabricated onto blank Si wafer disks through
SU-8 etching process. The finished Si mold is used to form microfluidic channels (Figure 4)
using polydimethlsiloxane (PDMS), mixed at a 10:1 ratio with PDMS curing agent. The
mixture is baked in an oven at 85 ◦C for two hours, allowing the channels to cure and
solidify. Subsequently, the cured PDMS slabs are then plasma bonded to glass coverslips
in a reactive ion etcher chamber. Entry and exit ports to the channels are punctured onto
PDMS slab prior to bonding. During each data acquisition session, flow rate is set to
10 µL/min.

3.4. Blood Samples

Fresh packed RBCs (pRBCs) from 2 healthy donors and 3 SCD donors (Table 6) were
purchased from an external vendor (BioIVT) for the purpose of this study. An amount of
50 µL of pRBCs was suspended in 5 mL of 20% bovine serum albumin (BSA) solution and
pumped into the microfluidic channel using a syringe pump. Archived RBC HC imaging
data (Table 7) from our 2021 study, which were analyzed here, were also processed under
the same protocol [17].

Table 6. Current dataset patient demographics.

Type Age Gender BMI #Cells

Sample 1 SCD 39 Male 52.69 236,032
Sample 2 SCD 39 Male 24.09 235,760
Sample 3 SCD 39 Male 25.22 93,060
Sample 4 Normal 53 Female 18.71 31,118
Sample 5 Normal 38 Male 32.61 192,409
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Table 7. Archive dataset patient demographics.

Type Age Gender

Sample A Normal 35 Male
Sample B Normal 20 Female
Sample C Normal 32 Male
Sample D Normal 56 Female
Sample E Normal 65 Male

3.5. Selective Search and Training Set Refinement

In order to construct an automatically labelled ground truth training set, with minimal
errors, a search criterion has been established to define features which differ at a ratio of
21:1 for the percentage of SCD population that shows this characteristic versus percentage
of normal population above/below the searched threshold value. Previous studies have
shown that the logistic regression achieves the highest training accuracy levels when
trained with datasets with minimum size of 5000 images [17]. The cutoff ratio is set based
on finding the balance point where there is a high selectivity yet maintains a reasonable
diseased cell count (at least 5000 cells) in the final combined dataset. We term these tails as
critically sickled cells. The final training set consists of sample 1 and sample 2 data that are
filtered using the search criteria.

For each morphological parameter, a population-wide search is conducted to find
the histogram tail threshold where the search criteria can be satisfied (Figure 5). As an
example, 0.8118 radians is the threshold calculated for the maximum phase histograms. For
every 21 sickle cells that are below this maximum phase threshold, only 1 healthy cell will
exist in the same regime. Several of the morphological parameters, including max phase,
standard deviation of phase, top 25% optical path length, max phase gradient, eccentricity
and elongation ratio all had tail distributions that satisfied the search criterion. These tail
subsets are grouped together, and the union of the sets yielded 18,925 SCD cell images
for training. Another 18,925 normal cell images were randomly selected from Sample 4
and Sample 5 to add to the training set. Test datasets consist of all archived data shown
in Table 7 and Sample 3 SCD data. Figure 5 presents a graphical overview of the tail
selection process.
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3.6. Logistic Regression and Deep Learning

Two different training sets were used for constructing two different variants, each of
LR and CNN models. LR-ALL and CNN-ALL models were trained using unrefined data
from SCD and normal samples, whereas LR-SEL and CNN-SEL models were trained using
refined data from the above-described selective search process.
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Morphological parameters extracted from samples 1, 2, 4 and 5 were used for training
the LR algorithms to distinguish between SCD and normal. The testing dataset consisted
of morphological parameters extracted from samples A–E and sample 3. In total, the
LR-ALL model was trained by an unrefined dataset of 2 × 100,000 × 25 parameters
(#classes × #cells × #parameters), and the LR-SEL model was trained by a refined dataset
of 2 × 18,925 × 25 parameters.

Rather than first extracting morphological parameters, single-cell images from sam-
ples 1, 2, 4 and 5 were used for training the deep learning neural networks. Single-cell
images from samples A–E and sample 3 were used for testing the deep learning neu-
ral network’s performance. Overall, CNN-ALL was trained on an unrefined dataset of
2 × 100,000 (#classes × #cells) cell images, and CNN-SEL was trained on a refined dataset
of 2 × 18,925 cell images to make inferences on 6 unknown patient samples.

4. Discussion

We observe that the sickle sample and normal sample morphological parameters
histograms are mostly overlapped; however, a nontrivial number of the sickle cells in
the distribution exhibit nearly no phenotypic similarities to healthy cells. This unique
subset of sickle cells can be extracted from the distribution through implementing a 21:1
SCD-to-normal ratio thresholding criterion. As described above, this means that each
criterion is defined by the region in the histogram where the population of SCD cells
have 21× greater incidence of that chosen parameter than the normal cell population. The
extraction of morphological parameters that uniquely identify sickling cells is a necessary
step to constructing a meaningful, pure SCD ground truth set. Without thresholding, the
large overlap between the morphological parameters of sickle and normal cells sample will
confound the discrimination capacity of a classification algorithm. Furthermore, through
refining the training set, we have narrowed down the focus of the classification algorithm
to specifically differentiate SCD cells from healthy cells and greatly increase accuracy. The
near ideal ROC curves (Figures 2B and 3B) for LR and CNN algorithms when trained on
the refined data, indicates that the algorithm practically predicted no false positives and
would excel at identifying critically sickled cells. Overall, we have developed a group of
metrics that can delineate critically sickling cells in a heterogeneous SCD sample.

When training is switched from the unrefined to refined dataset, significant improve-
ments in sensitivity, specificity and accuracy are observed in the machine learning models’
performance. The ROC graph shown for refined dataset (Figures 2B and 3B) has a greater
AUC than the unrefined dataset (Figures 2A and 3A), indicating that enforcement of the
selection criterion greatly improved the models’ class separation capacity between positive
and negative class points. Between LR and CNN, CNN-SEL’s AUC (0.9996) is greater
than LR-SEL’s AUC (0.99897), and CNN-SEL has an overall higher average normal sample
accuracy level than LR-SEL (96.71% > 93.17%); thus, it is evident that CNN performed
better at classifying the SCD class. Implementation of the search criterion is critical for
the realization of an accurate depiction of a heterogeneous cytological blood sample for
clinical settings.

While it is possible to produce classification decisions by simply evaluating the ab-
solute number of critically deformed cells in any unknown patient sample, it would be
difficult to analyze a sample with a large number of cells with this approach in real-time
clinical settings. Out of the 471,792 sickle cells analyzed, only 18,925 cells matched our
critically sickled cell criterion, equating to less than 5% of overall population. To ensure
that quick, accurate classification decisions can be provided in clinical care settings, where
a priority is placed on receiving quick, actionable results, it would be likely that smaller
sample sizes such as ~5000 cells are used for analysis. Under such circumstances, deep
learning models are superior to simply using a threshold to analyze a large population
dataset approach because they can provide rapid decisions with much smaller sample sizes.
Despite the fact that regular thresholding deemed that less than 5% of the population is
critically sickled, deep learning found more than 25% of the cell population had sufficient
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differences to be identified as diseased. Deep learning potentially has the capacity to make
a more nuanced decision than regular thresholding. Cells exhibiting slightly less severe
yet still sickled deformation can be captured by the deep learning model, while traditional
thresholding would fail to do so.

Both LR and CNN produced extremely high accuracy rates in identifying healthy
subject samples yet lower counts of critically sickled cells in a SCD patient sample. Although
only 25–29% of SCD patient cells were identified as SCD, this is within the expectation
that not all RBCs in a given sample may be critically sickled and that only a portion of the
RBCs are sufficiently altered to appear distinct from healthy RBCs. Since the deep learning
network showed the worst performance on Sample D, resulting in 92.62% accuracy, we can
suggest the prediction of 8% diseased cell count as the lower bound and 25% as the upper
bound for a decision model. For patient samples which the deep learning model inferred
to have more than 8% critically sickled cells, the decision model would recognize the
entire sample as SCD. Potentially, the sample-to-sample variation in percentages (8–25%)
could be used as a metric to evaluate the overall disease severity of a given patient and
possibly provide information that could be used to predict sickling crisis and response to
therapeutic treatments.

While SCD individuals are homozygous for HbS, SCT has a heterozygous genotype
and is often considered a benign condition, with morbidity and mortality rates similar to
the general population [21]. We predict that the diseased cell count for SCT individuals
would present at less than 8%. Future work should be focused on incorporating SCT
data into the selective training algorithm. A side-by-side comparison of morphological
parameter histograms may aid in the development of a set of additional selection criteria
for differentiating SCT individuals from healthy subjects and SCD patients. At the other
end of the spectrum, we would predict that some SCD individuals will have diseased cell
counts above 25%. Patients with different SCD severity may exhibit different levels of
diseased cell count. Additional SCD patient data may help fill the upper gaps in the current
decision model.

One limitation of our approach is that other types of morphology-altering blood
diseases have not been considered in this study. Previous studies have demonstrated QPM
as a useful tool for detecting RBC anomalies such as changes in sphericity due to storage
and water content changes due to mechanical compression [22,23]. The selective training
methods presented in this paper can further enhance QPM’s sensitivity to RBC morphology
changes. With further model development, the HC modality may potentially be used to
detect blood disorders that cause RBC deformation, such as hereditary spherocytosis and
beta thalassemia.

5. Conclusions

We present our findings in utilizing HC as a high-throughput screening tool for SCD
based on analysis of single RBC images. Two models, one based on logistic regression and
one based on deep learning, have been developed and shown capable of distinguishing
normal patient samples from SCD patient samples. We also report a method to identify
critically sickled cells in SCD samples, which shows potential for being developed into a
metric for disease severity assessment. Future work should consider expanding the current
RBC data library to including sickle cell trait and other types of morphology-altering
blood diseases.
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