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Abstract: Cancer cells show several metabolic phenotypes depending on the cancer types and the
microenvironments in tumor tissues. The glycolytic phenotype is one of the hallmarks of cancer cells
and is considered to be one of the crucial features of malignant cancers. Here, we show glycolytic
oscillations in the concentrations of metabolites in the glycolytic pathway in two types of cancer cells,
HeLa cervical cancer cells and DU145 prostate cancer cells, and in two types of cellular morphologies,
spheroids and monolayers. Autofluorescence from nicotinamide adenine dinucleotide (NADH) in
cells was used for monitoring the glycolytic oscillations at the single-cell level. The frequencies of
NADH oscillations were different among the cellular types and morphologies, indicating that more
glycolytic cancer cells tended to exhibit oscillations with higher frequencies than less glycolytic cells.
A mathematical model for glycolytic oscillations in cancer cells reproduced the experimental results
quantitatively, confirming that the higher frequencies of oscillations were due to the higher activities
of glycolytic enzymes. Thus, glycolytic oscillations are expected as a medical indicator to evaluate
the malignancy of cancer cells with glycolytic phenotypes.

Keywords: glycolytic oscillations; cancer cells; glycolytic phenotype; malignancy; mathematical
model; feedback inhibition

1. Introduction

Cancer cells are metabolically reprogrammed and enhance pathways of nutrient
acquisition and metabolism to sustain replication and metastasis during tumorigenesis
and development [1,2]. This altered metabolism is one of the hallmarks of cancer [3].
The classical example of reprogrammed metabolism in cancer cells is to enhance the
glycolytic pathway, known as the Warburg effect or aerobic glycolysis [4]. Warburg and
coworkers in the 1920s observed that rat-liver carcinoma tissues had an approximately
tenfold increase in glucose to lactate conversion as compared to normal tissues, even in the
presence of oxygen. Warburg originally hypothesized that the enhancement of glycolysis
was due to mitochondrial dysfunction in cancer cells [5]. However, it is now realized that
cancer cells have active and functional mitochondria, contrary to Warburg’s hypothesis [6].
Nonetheless, aerobic glycolysis has been observed in a variety of cancer types, including
liver cancers [7], lung [8], breast [9], and high-grade glial tumors [10]. In addition, studies
of glycolysis-related gene analysis have revealed that several types of cancers, including
kidney renal clear-cell carcinoma (KIRC), head and neck squamous-cell carcinoma (HNSC),
and lung squamous-cell carcinoma (LUSC) defined the glycolytic cancer group [11].

Although aerobic glycolysis has been observed in many cancer cells, most cancer
cells do not use aerobic glycolysis alone. A significant role of oxidative phosphorylation
(OXPHOS) has been highlighted in cancer metabolism in the past two decades [12–14].
The hybrid enhancement of glycolysis and OXPHOS has also been addressed in cancer
progression and metastasis [12–14]. Evidence shows that the mitochondrial pathways are
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also reprogrammed to meet the high energy demands and biomass synthesis in cancer
cells [13]. Furthermore, not a few cancer cells such as cervical, breast, hepatoma, and
pancreatic cancer cells can switch from aerobic glycolysis to OXPHOS under limiting
glucose conditions [15].

During extensive studies on metabolism in cancer cells since the 1920s, Ibsen and
Schiller, in 1967, found oscillations of nucleotides and glycolytic intermediates in aerobic
suspensions of starved Ehrlich ascites tumor cells upon the addition of glucose [16]. Though
glucose has been found to induce oscillations of reduced pyridine nucleotides and glycolytic
intermediates in yeast cells [17] and heart muscle extracts [18], such oscillations—called
metabolic oscillations or glycolytic oscillations—have not been reported in cancer cells.

Since the first study by Ibsen and Schiller, no studies have been published on glycolytic
oscillations in cancer cells until 2017 when we observed the oscillations in HeLa cervical
cancer cells at the single-cell level by using a monolayer cell system [19]. One of the reasons
for the few studies on glycolytic oscillations in cancer cells is probably due to the low degree
of their synchronization [19]. No oscillations or only ambiguous oscillations can be observed
if the degree of cellular synchronization is low under a conventional cell suspension
system [16,20]. Contrarily, a monolayer cell system [21], which was first developed for
yeast glycolytic oscillations, enabled us to observe the oscillations in individual cancer cells,
even when they were not synchronized [19,22].

Here, we focus on the glycolytic phenotype in cancer cells and present their experi-
mental and modeling results of glycolytic oscillations in two types of cancer cells: HeLa
cervical cancer cells and DU145 prostate cancer cells. In the case of HeLa cells, different
types of cellular morphologies were also investigated: spheroids [23] and monolayers.
Spheroids are dense, 3D aggregates of cells that adhere to each other via cadherins [24]. We
can expect different characteristics of glycolytic oscillations in spheroidal and monolayered
cancer cells because gene expression, drug sensitivity, and metabolic properties are different
between spheroidal and monolayered cancer cells [25–27].

To get insights into the experimental results, we present a new mathematical model
for glycolytic oscillations in cancer cells based on the enzymatic feedback reactions in the
glycolytic pathway [28,29], which quantitatively reproduced the oscillatory behaviors. In
summary, biomedical implications could be derived from the experimental and modeling
results of oscillatory dynamics in cancer cells in terms of their metabolic phenotypes.

2. Mathematical Model

We modified a previously proposed modeling scheme [23,29] to simulate oscillations
in HeLa and DU145 cells in monolayers and HeLa cells in spheroids. The present model
has five variables, which are the same as those in the previous model, and newly includes
the inhibition of phosphofructokinase (PFK) by lactate (Y), as shown in Figure 1. PFK is
one of the most important regulatory enzymes in glycolysis and is known to be activated
by ADP and inhibited by both ATP and metabolites such as phosphoenolpyruvate (PEP)
and lactate, which are produced in the downstream of glycolytic pathway [30–32].

Briefly, the previous model considered two main processes in the glycolytic pathway:
the upstream (ATP-consuming) reactions of hexose and the downstream (ATP-producing)
reactions of triose. The two reactions were modeled by PFK– and pyruvate kinase (PK)–
allosteric reactions, respectively; PFK was activated by ADP and inhibited by ATP, and
PK was inhibited by ATP. In addition, the present model includes inhibition of PFK by
intracellular lactate [32] to simulate the experimentally observed oscillatory behaviors in
which the oscillations stopped, even though the concentrations of extracellular glucose
were high enough to sustain the oscillations, as shown below.
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Figure 1. A mathematical model for the glycolytic oscillations in cancer cells. Variables: G, intracellu-
lar glucose; X, pool of intermediates following the PFK reaction; Y, lactate; A3, ATP; Gex, extracellular
glucose; Yex, extracellular Y; Jin, glucose flux into the extracellular solution; JGLUT, glucose transport
through glucose transporter GLUT; JP,Y, flux of difference in Y and Yex through monocarboxylic
transporter; v1, reaction rate of PFK; v2, reaction rate of PK; v3, reaction rate of consumption of Y; v4,
reaction rate of consumption of ATP. PFK is allosterically activated by A2 and inhibited by A3 and Y.
PK is allosterically inhibited by A3. Abbreviations: PFK, phosphofructokinase; PK, pyruvate kinase;
F1,6BP, fructose 1,6-bisphosphate; 1,3BPG, 1,3-bisphosphoglycerate.

Several glycolytic reactions are lumped into the present model; the variable X after
the PFK reaction denotes the concentrations of pools of intermediates from fructose 1,6-
bisphosphate (F1,6BP) to 1,3-bisphosphoglycerate (1,3BPG) in the glycolytic pathway and
the variable Y denotes the concentration of lactate as shown in Figure 1. The other variables
are as follows: G, glucose; Gex extracellular glucose; A3, ATP; and Yex, extracellular lactate.

The rate laws of six variables (G, X, Y, A3, Gex, and Yex), three transport kinetics (Jin,
JGLUT, and JP,Y), and four reaction rates (v1, v2, v3, and v4) in the model are summarized in
Table 1.

The four of each rate constant (k1 − k4) contain constant values (a1 − a4), respec-
tively, and a common parameter α (> 0) that may take different values for different
cells [23,33–35]:

ki = αai, i = 1, 2, 3, 4, (1)

Equation (1) assumes that the values of the four rate constants can be different among
cancer cells; however, they are not completely random. Notably, a higher value of α yields
a higher rate of each reaction step, indicating a higher glycolytic activity in a cell. Thus,
Equation (1) excludes the case where the activity of a particular enzyme is very high (or low),
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whereas the activities of the other enzymes are very low (or high) in a cell. This indicates
that the activities of some glycolytic enzymes are often regulated synchronously [35].

Table 1. Rate laws, transport kinetics, and reaction rates for the model.

Rate laws
dG
dt = JGLUT − v1
dX
dt = v1 − v2
dY
dt = 2v2 − v3 − JP,Y
dA3
dt = −2v1 + 4v2 − v4

dGex
dt = Jin − ϕJGLUT

dYex
dt = ϕJP,Y

Transport kinetics

Jin =


Gin

t2−t1
, t1 ≤ t ≤ t2

0, other

JGLUT = β
Gex− G

Keq

Kout

(
1+ G

Kin

)
+Gex

JP,Y = κ(Y − Yex)

Reaction rates

v1 = αk1GA3 f (G, A3, Y),

with f (G, A3, Y) = (A0−A3)
m[

1+(A0−A3)
m
(

1
K1

+ G
K1K3

+
A3

K1K4

)
+

Am
3

K2
+ Ym

K8

]
v2 = αk2X(A0 − A3)g(X, A3),

with g(X, A3) =
1[

1+
An

3
K5

+ X
K6

+
(A0−A3)

K7

]
v3 = αk3Y
v4 = αk4 A3

Variables: G, intracellular glucose; X, pool of intermediates following the PFK reaction; Y, lactate; A3, ATP; Gex,
extracellular glucose; Yex, extracellular Y; Jin, glucose flux into the extracellular solution; JGLUT, glucose transport
through glucose transporter GLUT; JP,Y, flux of difference in Y and Yex through monocarboxylic transporter. The
stoichiometric coefficient 2 of v2 in the dY/dt equation means that two molecules of Y (lactate) are produced from
one molecule of glucose through the glycolysis. The stoichiometric coefficients −2 and 4 in the dA3/dt equation
mean that two molecules of ATP are consumed, and four molecules of ATP are produced in the upstream and
downstream of the glycolysis, respectively. The meaning and values of parameters are summarized in Table 2.

In addition, the activity of the glucose transporter was expressed by β as,

β = Vmax/0.65 (2)

where the maximum glucose uptake rate Vmax (mM s−1) was normalized to the value of
0.65 mM s−1 for HeLa cells [29].

Notably, the parameter values, such as the rate constants and maximum glucose
uptake rate, were set at 25 ◦C in the previous model [29]. Thus, these values (α and β)
could be approximately twice as high as those at 37 ◦C [23] if the effect of temperature on
the rate constants was considered. This assumption is based on studies showing that the
Arrhenius-type dependence of the rate constant on the temperature can model reaction
rates in biological reactions including metabolic processes [36–38]. The Arrhenius-type
model contributes 1.8–3.0 to the Q10 values: the change in reaction rates with every 10 K
change in temperature. Table 2 summarizes the parameter values used for the calculations.
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Table 2. The parameter values used for the calculations.

Model-Step Parameters Meaning Values Sources

Jin Gin External glucose additionfor 30 s ≤ t ≤ 32 s 20 or 25 mM Experiments
JGLUT β Normalized maximum glucose uptake 1.0 or 2.0 Equation (2)

ϕ
Ratio of cellular volume to

extracellular volume 0.1 [23,29]

Kin
Michaelis constant of GLUT for

intracellular glucose 12 mM [23,29]

Kout
Michaelis constant of GLUT for

extracellular glucose 10 mM [23,29]

Keq Equilibrium constant 1.0 [23,29]
JP,Y κ Transport constant of MCT 0.1 s−1 [23,29]
v1 k1 Rate constant of PFK reaction α a1 Equation (1)

α
A common parameter for the four

rate constants 0.27–0.68 This work

a1 A constant value for k1 1.0 mM−(m+1)·s−1 [23,29]

m The number of substrate molecules bound
to PFK 4 [23,29]

K1
Dissociation constant for free PFK and

m-molecules of ADP 1.0 mMm [23,29]

K2
Dissociation constant for free PFK and

m-molecules of ATP 1.0 mMm [23,29]

K3
Dissociation constant for ADP-activated PFK

and glucose 1.0 mM [23,29]

K4
Dissociation constant for ADP-activated PFK

and ATP 1.0 mM [23,29]

K8
Dissociation constant for free PFK and

m-molecule of Y (lactate) 2.0 mMm This work

v2 k2 Rate constant of PK reaction α a2 Equation (1)

α
A common parameter for the four

rate constants 0.27–0.68 This work

a2 A constant value for k2 0.5 mM−1·s−1 [23,29]

n The number of substrate molecules Boud
to PK 4 [23,29]

K5
Dissociation constant for free PK and

n-molecule of ATP 20 mMn [23,29]

K6
Dissociation constant for free PK and X (pool

of intermediates) 20 mM [23,29]

K7 Dissociation constant for free PK and ADP 20 mM [23,29]
v3 k3 Rate constant of consumption of Y (lactate) α a3 Equation (1)

α
A common parameter for the four

rate constants 0.27–0.68 This work

a3 A constant value for k3 0.09 s−1 [23,29]
v4 k4 Rate constant of consumption of ATP α a4 Equation (1)

α
A common parameter for the four

rate constants 0.27–0.68 This work

a4 A constant value for k4 0.15 s−1 [23,29]

Table 3 summarizes the initial concentrations of variables and the total concentration
of ATP and ADP used for the calculations. The initial concentration (0.30 mM) of glucose
was assigned referring to a reported value (0.12 mM) in starved HeLa cells [39] and the
other initial values were the same as those in our previous modeling studies [23,29]. The
total concentration (3.0 mM) of ATP and ADP was assigned referring to a value (4.0 mM)
in yeast cells [28].
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Table 3. Initial concentrations and total concentration (A0) of ATP and ADP for the calculations.

Initial Concentrations Sources

Variables Values

G0 0.30 mM [39]
X0 0.30 mM [23,29]
Y0 0.30 mM [23,29]

Gex, 0 0 mM [23,29]
Yex, 0 0 mM [23,29]

Total concentration of ATP and ADP

Constant Value

A0 3.0 mM [28]

3. Results
3.1. Glycolytic Oscillations in Monolayers of HeLa Cervical and DU145 Prostate Cancer Cells

The glycolytic oscillations were first investigated using different cancer cells, HeLa
cervical cancer cells and DU145 prostate cancer cells, cultured in monolayers. Figure 2
shows the time course of glycolytic oscillations observed through NADH fluorescence
signals from HeLa and DU145 cells. These cells were cultured in the high-glucose (25 mM)
medium with antibiotics and then starved of glucose before the initiation of oscillations by
adding 20 mM glucose at 25 ◦C. When the cells were not starved of glucose, no oscillations
were observed, as shown in Figure 2A, as an example of HeLa cells. On the other hand,
when the cells were starved of glucose, they exhibited oscillations lasting up to 450 s. The
amplitude of oscillations was smaller in HeLa cells (Figure 2B) than those in DU145 cells
(Figure 2C).
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Figure 2. Glycolytic oscillations in HeLa and DU145 cells in monolayers. A time series of NADH
fluorescence signals from single cells (A–C) and their frequency distributions (D,E): HeLa cells with
no starvation of glucose (A), HeLa cells starved of glucose for 24 h (B), DU145 cells starved of glucose
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for 24 h (C), HeLa cells (N = 262 oscillatory cells/544 total cells) exhibiting median frequency of
0.034 Hz (D), and DU145 cells (N = 172 oscillatory cells/651 total cells) exhibiting median frequency
of 0.023 Hz (E). Glucose of 20 mM was added to the cells at 30 s following each starving condition at
25 ◦C. Multiple oscillation curves in (A–C) are the typical examples of NADH fluorescence signals;
different colors in the curves are ease of visibility to readers, the grey curves are original data, and
the colored curves are their average. The color columns in panels (D,E) indicate the difference in the
frequency ranges of oscillations.

Statistical analysis of the frequency of oscillations revealed that most HeLa cells
oscillated at higher frequencies than DU145 cells, with frequencies ranging 0.019–0.070 Hz
with a median of 0.034 Hz in HeLa cells (Figure 2D) and ranging 0.0050–0.065 Hz with a
median of 0.023 Hz in DU145 cells (Figure 2E).

To investigate the reason why the oscillations stopped, the amount of glucose was
measured by using the urinary glucose test strip after stopping the oscillations. Since the
test strip showed green in color, which indicated 28 mM glucose in this semiquantitative
test (see Section 5), the glucose concentration after the fluorescent observation was high
enough to exhibit oscillations; this was the same for both HeLa and DU145 cells and all the
cases hereafter. This information was used in the numerical simulation of the oscillations
using a mathematical model.

3.2. Comparison of Spheroids and Monolayers of HeLa Cells

To investigate the oscillatory behaviors in different cellular morphologies, we used
HeLa cells in spheroids and monolayers. Figure 3 shows the time course of NADH
fluorescence in HeLa cells in the spheroids and in monolayers, respectively. These cells
were cultured in a low-glucose medium (5.6 mM) without antibiotics and starved with both
glucose and FBS before the initiation of glycolytic oscillations by adding 25 mM glucose at
37 ◦C.
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distribution of oscillations in HeLa cells in spheroids (C) and in monolayers (D). Glucose (25 mM)
was added to the cells at 30 s following starvation of both glucose and FBS for 24 h in spheroids
(A) and for 2 h in monolayers (B) at 37 ◦C. The frequency distributions were calculated by ROIs
(N = 289 oscillatory ROIs/563,162 total ROIs) from 74 spheroids starved of glucose and FBS for 0–52 h,
exhibiting median frequency of 0.070 Hz (B), and by HeLa cells (N = 49 oscillatory cells/4948 total
cells) from 22 monolayers starved of glucose and FBS for 0–2 h, exhibiting median frequency of
0.031 Hz (D), respectively. Multiple oscillation curves in (A,B) are the typical examples of NADH
fluorescence signals; different colors in the curves are ease of visibility to readers, the grey curves are
original data, and the colored curves are their average. The color columns in panels (C,D) indicate the
difference in the frequency ranges of oscillations. (a Modified from [23] according to the permission
procedure of the Wiley journal Content).

Figure 3A shows the oscillations in seven single cells in spheroids. The oscillations in
HeLa cells in spheroids (Figure 3A) were more irregular and heterogeneous than those in
monolayers (Figure 3B). Notably, HeLa cells in both spheroids and in monolayers exhib-
ited oscillations even without the above starvation process under the present conditions,
although the fraction of oscillating cells was very small (less than 0.01).

A statistical analysis of the frequency of oscillations revealed that most of the HeLa
cells in spheroids oscillated with higher frequencies than in monolayers; their frequencies
of oscillations ranged 0.031–0.17 Hz with a median of 0.070 Hz in spheroids (Figure 3C)
and ranged 0.031–0.078 Hz with a median of 0.031 Hz in the monolayers (Figure 3D),
respectively. The fraction of oscillating ROIs in a spheroid was considered to be the same
as that of oscillating cells in the spheroid (see Materials and Methods) and was used to
calculate the distribution of frequency in HeLa cells in spheroids (Figure 3C).

Notably, the glucose concentration after the fluorescent observation was high enough
to exhibit oscillations after the oscillations were stopped for HeLa cells in both spheroids
and monolayers by testing the urinary glucose test strips, as mentioned above.

3.3. Numerical Simulations of Glycolytic Oscillations in HeLa and DU145 Cells

Our previous mathematical model included the PFK and PK reactions as key enzy-
matic reactions regulating the upstream and downstream of the glycolysis, respectively
referring to a glycolytic model for yeast cells [40]. The previous model succeeded in re-
producing the frequency of oscillations in HeLa cells, however, it could not reproduce the
duration of oscillations [23,29]. Namely, when 20 mM or 25 mM glucose was used as the
initial and added concentrations, the duration of the oscillations was much longer than that
in the experiments.

To investigate the mechanism of stopping the oscillations, the present model newly
included feedback inhibition of PFK by lactate produced in the glycolysis and excreted to
extracellular space through a monocarboxylate transporter (MCT). Thus, we expect that
the oscillations can be stopped before most of the extracellular glucose is consumed by
the cells.

Thus, numerical simulations were performed using the present mathematical model,
with the parameter values listed in Table 2. The activity of glycolytic enzymes α (Equation (1))
and glucose transporter β (Equation (2)) were used as the two parameters for the calcula-
tions. We can see from the phase diagram (Figure 4A) that higher activities of glycolytic
enzymes yielded higher frequencies of the oscillations, although GLUT activity did not
significantly affect the frequencies.
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Figure 4. Numerical calculations of the mathematical model. (A) Phase diagram spanned by the
enzymatic activity α (Equation (1)) and the GLUT activity β (Equation (2)). White area and blue-green-
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indicate points used for numerical simulation. (B) Time series of simulated oscillations in X for HeLa
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calculated with α = 0.68, β = 2.0 (?c in panel A), and α = 0.37, β = 2.0 (?d in panel A), respectively.
The other parameter values are listed in Table 2.

The numerically simulated results for glycolytic oscillations in HeLa and DU145 cells
are shown in Figure 4B. The appropriate choice of parameters, α and β, as indicated in
Figure 4A, agreed well with the frequencies of oscillations in HeLa and DU145 cells in the
monolayers, as well as HeLa cells in spheroids and monolayers (Figure 4B). The experi-
mental median frequencies, as shown in Figures 2 and 3, and the simulated frequencies, as
shown in Figure 4B, are summarized in Table 4. The simulated results indicated that the
enhancement of glycolytic enzymes was higher in HeLa cells than in DU145 cells in the
monolayers and was also higher in HeLa cells in spheroids than in monolayers (c and d).

Table 4. Summary of the experimental median frequencies (Exp.), as shown in Figures 2 and 3, and
the simulated frequencies (Sim.), as shown in Figure 4B.

Cells in Monolayers (at 25 ◦C) HeLa Cells in Different Morphology (at 37 ◦C)

HeLa Cells DU145 Cells Spheroids Monolayers

Exp. (Hz) Sim. (Hz) Exp. (Hz) Sim. (Hz) Exp. (Hz) Sim. (Hz) Exp. (Hz) Sim. (Hz)

0.034 0.035 0.023 0.024 0.070 0.072 0.031 0.034

3.4. Effect of the Inhibitory Feedback Mechanism on the Glycolytic Oscillations

To get more insights into the effect of the newly added inhibition of PFK by lactate
(variable Y in Figure 1), we carried out numerical simulations with and without this
inhibition mechanism for the experimental (Figure 2B) and modeling (panel a in Figure 4B)
results of HeLa cells in the monolayers. As shown in Figure 5, the oscillatory durations
were significantly longer (more than 2000 s) without the lactate inhibition (Figure 5B) than
those in the experiments (350–400 s), as well as in the calculations with the lactate inhibition
(approximately 380 s, Figure 5A).
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The calculated oscillations with a frequency of 0.035 Hz stopped at around 380 s
when the added glucose was still present at a concentration of approximately 20 mM
in the extracellular solutions (Figure 5A), which was consistent with the experimental
observations of the urinary glucose test, as mentioned above.

4. Discussion

The present study aimed to characterize glycolytic phenotypes of cancer cells from
oscillatory behaviors in glycolysis, called glycolytic oscillations. The oscillations were
demonstrated in two types of cancer cells, HeLa cervical cancer cells and DU145 prostate
cancer cells, and in two types of cellular morphologies, spheroids and monolayers. The
median frequency was higher in HeLa cells (0.034 Hz) than in DU145 cells (0.023 Hz), and
was higher in HeLa spheroidal cells (0.070 Hz) than in the monolayered cells (0.031 Hz). A
new mathematical model for glycolytic oscillations in cancer cells was presented, based
on the enzymatic feedback reactions in the glycolytic pathway. The model reproduced the
experimental oscillatory behaviors quantitatively, indicating that the higher frequency of
oscillations was due to the higher rate of enzymatic reactions in the glycolysis.

Metabolic oscillations have also been uncovered in a comprehensive model including
both the cancer-related metabolic pathway and the gene regulatory network [2]. The
timescale of oscillations in their model is much greater than the timescale in Ehrlich
ascites tumor cells in cell suspensions [16] or in HeLa and DU145 cells in the monolayers
and spheroids in this study. Notably, the oscillations in their model occur among the
metabolically normal state, the cancer OXPHOS state, and the cancer glycolysis state [2].
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They are caused by the long time-period regulations between genes and metabolites. On
the other hand, the experimentally observed oscillations in the Ehrlich tumor [16] and the
present cancer cells are due to the enzymatic kinetics in the glycolytic pathway and are not
involved in the regulation of genes.

In the experiments, glucose starvation prior to glucose addition could induce glycolytic
oscillations in cancer cells. When starved, cancer cells activate AMP-activated protein
kinase (AMPK) under glucose-depleted conditions [41,42] to maintain ATP levels; cancer
cells switch from anabolic to catabolic metabolism by stimulating glucose uptake, aerobic
glycolysis, and ATP synthesis [42]. In particular, glucose uptake was reported to increase
by 23 times by glucose starvation in HeLa cells [43]. Such a large increase in glucose
uptake could induce glycolytic oscillations in cancer cells, as shown in the phase diagram
in Figure 4A.

Metabolites can activate or inhibit the enzymes in their generation pathways. PFK,
one of the most important regulatory enzymes of glycolysis, is allosterically activated
by ADP and fructose 2,6-bisphosphate and inhibited by ATP, phosphoenolpyruvate, and
lactate [30–32]. In addition, HK is inhibited by glucose 6-phosphate [44] and PK is activated
by fructose 1,6-bisphosphate [45] and inhibited by ATP [46]; both HK and PK are also
key regulatory enzymes of glycolysis. Among the important regulatory mechanisms in
glycolysis, our previous model for glycolytic oscillations in cancer cells took into account
ADP-activation and ATP-inhibition of PFK as well as ATP-inhibition of PK, referring to
glycolytic oscillation models for yeast cells [28,40].

Though the previous mathematical model could reproduce the frequency of oscilla-
tions quantitatively, it could not reproduce the duration of oscillations; the model yielded a
longer duration of oscillations than that in the experiments when external glucose of 25 mM
was used in the model (Figure 5B). Meanwhile, the present model has a newly added
inhibition of PFK by intracellular lactate (variable Y in Figure 1) to the previous model
and could reproduce both the frequency and duration of oscillations in the experiments
quantitatively (Figure 5A). The present mathematical model also demonstrates that the
cause of stopping oscillations is not the consumption of all extracellular glucose (Figure 5A
and the experimental urinary glucose test) but the inhibition of PFK by intracellular lactate
produced in glycolysis.

The calculated concentrations of intracellular lactate were approximately 1.5–3 mM
(Y in Figure 5A) for monolayered HeLa cells (Figure 2B and panel a in Figure 4B) and
approximately 2.0–3.5 mM (not shown) for spheroidal HeLa cells (Figure 3A and panel c in
Figure 4B); the lactate concentrations were a little larger in more glycolytic-spheroidal HeLa
cells than monolayered HeLa cells. Real values of lactate concentrations are reported to
range between approximately 1–2 mM in normal/immortalized cells and 4–9 mM in tumor-
derived cells [47], as well as between 4–12 mM in highly metastatic MDA-MB−231 breast
cancer cells and 1.4–3.0 mM in lowly metastatic MCF7 breast cancer cells in the case of
low glucose/glutamine conditions [48]. When provided with a medium having 25 mM
glucose/4 mM glutamine, both MDA-MB−231 and MCF7 cells showed high intracellular
lactate levels of 11 mM [48]. Though the conditions are different between our study and
the reported ones, the calculated lactate concentrations can be said to represent the real
values of lactate concentrations in cancer cells.

Different oscillation frequencies were observed depending on the cell type (Figure 2)
and the cellular morphology in HeLa cells (Figure 3). It has been reported that the activities
of all glycolytic enzymes are enhanced in cancer spheroids; spheroidal HeLa cells undergo
significantly enhanced glycolysis compared with those in monolayers [25,26] and the
enhanced glycolysis was also observed in other tumor spheroids [25,26,49]. This was likely
the main reason for the higher frequency of oscillations in HeLa cells in spheroids than in
the monolayers in the present study. In addition, ovarian cancer spheroid cells have been
reported to be more aggressive in growth, migration, and invasion, and more resistant to
chemotherapy [49]. Thus, the frequency of glycolytic oscillations can be a good indicator
for evaluating the malignancy of cancer cells.
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The present modeling study revealed that the higher frequency of oscillations was
due to higher glycolytic enzymatic activities in cancer cells (Figure 4). Enhanced glycolytic
activity is a crucial factor in the malignant phenotype of cancers [50]. For instance, the
triple-negative breast cancer (TNBC) cells—which are malignant and defined as a subtype
of breast cancer cells that are the absence of estrogen receptors (ER), progesterone recep-
tors (PR), and human epidermal growth factor receptor−2 (HER2)—exhibited a highly
glycolytic phenotype with high glucose uptake, increased lactate production, and low
mitochondrial respiration compared with ER-positive cells [51]. In addition, studies of
nonsmall cell lung cancer (NSCLC) which consists of approximately 85%–88% of lung
cancers showed that patients with NSCLC exhibiting higher values of whole-body total
lesion glycolysis (TLG) demonstrated lower overall survival rates than those with NSCLC
exhibiting lower TLG values [52]. Furthermore, comprehensive metabolic profiling of
pancreatic ductal adenocarcinoma (PDAC) revealed that the glycolytic subtype is strongly
associated with the mesenchymal subtype, which is typically more aggressive than the
epithelial subtype and typically has an overall poor prognosis [53,54]. Collectively, the
present mathematical model can be applied to evaluate the malignancy of cancer cells in
terms of their glycolytic phenotypes.

Mitochondrial membrane potential also oscillates through glucose or energy metabolism [55].
Little is known about mitochondrial oscillations and their interactions with glycolytic os-
cillations in cancer cells [56]. The present study assumes that intracellular glucose is
metabolized to lactate without using mitochondrial respiration. This is based on the
fact that the activity of the mitochondrial pyruvate carrier (MPC) is reduced in cancer
cells [57]; thus, they mostly use glycolysis for ATP production when glucose is the only
nutrient supply.

Based on the above, as well as the previous studies of yeast glycolytic oscillations [17,21],
this study also assumes that the NADH fluorescence results only from glycolysis. How-
ever, this should be inspected because NADH and NAD+ exist in different subcellular
compartments, including cytosol and mitochondria. Thus, to measure the NADH levels in
cytosol and to assess glycolytic rates actually, we should use, for instance, a fluorescence
resonance energy transfer (FRET) biosensor which can separately monitor glycolytic and
mitochondrial NADH levels, as well as the NAD+/NADH ratio [58].

Metabolic interactions may occur between cells. For instance, metabolic symbiosis
has been proposed between glycolytic and oxidative cancer cells [59], as well as between
cancer cells and cancer-associated fibroblasts (CAFs) [60]. In metabolic symbiosis, lactate
is produced in glycolytic cancer cells or CAFs and then transported to oxidative cancer
cells that metabolize it using OXPHOS; the latter cancer metabolism is called the reverse
Warburg effect [61]. By metabolic symbiosis, cancer cells can acquire heterogeneities in
energy metabolism in the tumor environment and reinforce their malignancy [60]. Studies
of metabolic oscillations will also be able to reveal the mechanisms of metabolic symbiosis,
which is a hot topic in cancer metabolism [62].

5. Materials and Methods
5.1. Cultures and Starvation of Glucose for HeLa Cervical and DU145 Prostate Cancer Cells
in Monolayers

HeLa cervical cancer cells and DU145 prostate cancer cells were obtained from Cell
Lines Service GmbH (Eppelheim, Germany) and the American Type Culture Collection
(ATCC), respectively. Cells of each type were routinely cultured in Dulbecco’s modified Ea-
gle’s medium (DMEM, FUJIFILM Wako Chemical Co., Osaka, Japan) and fetal bovine serum
(FBS, 10% v/v; Hyclone, Cytiva, Tokyo, Japan) as described elsewhere [19,22]. Notably, the
culturing medium contained high glucose (25 mM) and 1% antibiotic-antimycotic solutions.

The procedures of fluorescence measurement were also described in the literature [19,22].
Briefly, monolayers of each type of cell were detached and then seeded in a well of a slide
and chamber (Fukae-Kasei Co., Ltd., Watson Bio Lab, Kobe, Japan) at cell densities of
1.0 × 105 to 2.0 × 105 cells in 1 mL of the medium; the densities on the growth surface were
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6.0 × 104 to 1.2 × 105 cells/cm2. The seeded cells were incubated at 37 ◦C and 5% CO2 for
3 d and then starved of glucose at 37 ◦C and 5% CO2 for 24 h. The fluorescence microscopy
was carried out in Dulbecco’s phosphate-buffered saline (DPBS; Sigma-Aldrich Co., LLC.,
Tokyo, Japan) at a pH of 6.9 at 25 ◦C (air-conditioned room temperature). DMEM was not
used for the fluorescence measurement to avoid possible fluorescence from the amino acids
and vitamins in it. The pH of 6.9 was selected from preliminary experiments in which the
fraction of oscillating HeLa cells was relatively high.

5.2. Cultures and Starvation of Glucose for HeLa Cervical Cancer Cells in Spheroids and Monolayers

HeLa cervical cancer cells obtained from the RIKEN BRC Cell Bank (RCB007) were
used in this study. The cells were routinely cultured in the same way as mentioned above,
except for DMEM with low glucose (5.6 mM) and the antibiotic antimycotic solutions.
Antibiotics were not used in the present case because they inhibited spheroid formation,
as reported in the literature [63]. Relier et al. inhibited spheroid formation by antibiotics
in some cell lines [63]; however, the precise mechanism is not clear yet. The oscillatory
behaviors in HeLa cells were compared between spheroids and in monolayers under the
same experimental conditions.

Procedures for the formation of HeLa cell spheroids are described in detail in our
previous study [23]. Briefly, the cells detached and suspended in the culture medium
were seeded in a well of ultralow attachment 96-well plates (PrimeSurface 96U; Sumitomo
Bakelite Co., Ltd., Tokyo, Japan) and cultured at 37 ◦C and 5% CO2 for 30–48 h.

The starvation of spheroids was carried out under glucose-free conditions for 0 h to
52 h. Then, for fluorescence microscopy, the spheroids were put into a slide and chamber
equipped with a MAS-GP Type A-coat slide and fixed by coating with alginate gel.

In the case of cells cultured in monolayers, they were detached and cultured on a slide
and chamber at 37 ◦C and 5% CO2 for 2 d. Then, the cells were incubated at 37 ◦C and 5%
CO2 for 0 to 48 h in 100% glucose-free DMEM. Following glucose starvation, the medium
in the wells was replaced with DPBS (pH 6.90 for fluorescence microscopy analysis).

5.3. Fluorescence Microscopy

An inverted fluorescence microscope (TC 5000; Meiji Techno Co. Ltd., Miyoshi, Japan)
equipped with a thermoplate (TPi-CKX, Tokai Hit, Fujinomiya, Japan) was used for the
fluorescence microscopy. NADH fluorescence was achieved by excitation with a 365 nm
mercury line and emission was measured at 435–485 nm with a filter set (49000-ET-DAPI;
Chroma Technology Corp., Bellows Falls, VT, USA). In the case of the first experiments
using HeLa and DU145 cells in monolayers, fluorescence microscopy was performed at
25 ◦C (air-conditioned room temperature). The second experiments for HeLa cells in
spheroids and monolayers were carried out at 37 ◦C by using the thermoplate.

Glycolysis was induced by the addition of glucose with a final concentration of 20 or
25 mM dissolved in DPBS at pH 6.90 and then monitored through the autofluorescence of
intracellular NADH [23]. Procedures for image acquisition and data analysis are described
in detail elsewhere [23]. Briefly, ImageJ [64] was used to analyze the fluorescence signals.
To investigate the oscillatory behaviors of cells in the spheroids, we analyzed the NADH
signals from a region of interest (ROI) which consisted of 5 × 5 pixels over the entire area
of a spheroid. MATLAB (Math Works) was used for data processing and analysis unless
otherwise stated [65,66].

Following fluorescence microscopy, residual glucose was checked with the urinary
glucose test strip, New Uri-Ace Ga (Terumo, Corporation, Tokyo, Japan). Since its color
chart has color matches at 0, 2.8, 5.6, 28, and 111 mM of glucose, the test indicates 28 mM if
glucose consumption is low in the present study.

The fluorescence data were obtained in three fields of view in two separate experiments
for HeLa cells and DU145 cells in monolayers and in three fields of view in more than three
separate experiments for HeLa cells in spheroids and monolayers.
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