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Abstract: Type 2 diabetes (T2D) is associated with a plethora of comorbidities, including osteo-
porosis, which occurs due to an imbalance between bone resorption and formation. Numerous
mechanisms have been explored to understand this association, including the renin–angiotensin–
aldosterone system (RAAS). An upregulated RAAS has been positively correlated with T2D and
estrogen deficiency in comorbidities such as osteoporosis in humans and experimental studies. There-
fore, research has focused on these associations in order to find ways to improve glucose handling,
osteoporosis and the downstream effects of estrogen deficiency. Upregulation of RAAS may al-
ter the bone microenvironment by altering the bone marrow inflammatory status by shifting the
osteoprotegerin (OPG)/nuclear factor kappa-B ligand (RANKL) ratio. The angiotensin-converting-
enzyme/angiotensin II/Angiotensin II type 1 receptor (ACE/Ang II/AT1R) has been evidenced
to promote osteoclastogenesis and decrease osteoblast formation and differentiation. ACE/Ang
II/AT1R inhibits the wingless-related integration site (Wnt)/β-catenin pathway, which is integral in
bone formation. While a lot of literature exists on the effects of RAAS and osteoporosis on T2D, the
work is yet to be consolidated. Therefore, this review looks at RAAS activity in relation to osteoporo-
sis and T2D. This review also highlights the relationship between RAAS activity, osteoporosis and
estrogen deficiency in T2D.
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1. Introduction

The renin–angiotensin–aldosterone system (RAAS) is a fluid and electrolyte regulatory
system responsible for the maintenance of blood volume and pressure [1]. This system has
been studied extensively and has been evidenced to be crucial in maintaining glucose home-
ostasis [2]. A plethora of studies have highlighted the relationship between hyperglycemia
and alterations in RAAS, and the development of estrogen deficiency and osteoporosis [3,4].
RAAS components have been identified in bones, whereby the interaction between an-
giotensin II (Ang II) and the angiotensin II type 1 receptor (AT1R) inhibits osteoblast
maturation [5]. Furthermore, upregulation of Ang II has been reported to elevate nuclear
factor-κB ligand (RANKL) and decrease osteoprotegerin (OPG) expression, thus activating
osteoclasts, which promote bone resorption [6]. Additionally, the upregulation of Ang II
promotes the upregulation of aldosterone, which is another RAAS hormone that affects
bone turnover by binding to mineralocorticoid receptors (MR) in osteoclasts, osteocytes and
osteoblasts [7,8]. The Ang II/AT1R axis has been reported to stimulate proinflammatory
cytokines that promote bone resorption and hinder osteoblast differentiation [9]. MRs are
also expressed in the parathyroid tissue and several authors have demonstrated a positive

Int. J. Mol. Sci. 2023, 24, 11963. https://doi.org/10.3390/ijms241511963 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms241511963
https://doi.org/10.3390/ijms241511963
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-9032-8303
https://orcid.org/0000-0002-2246-0038
https://doi.org/10.3390/ijms241511963
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms241511963?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 11963 2 of 22

correlation between the concentrations of aldosterone and serum parathyroid hormone
(PTH), a calcium-regulating hormone [10]. Collectively, upregulation of the Ang II/AT1R
interaction, the shift in the OPG/RANKL ratio and the increase in aldosterone contribute
to decreased bone mineral density (BMD) [11], consequently altering the microarchitecture
of the bone structure and leading to the development and progression of osteoporosis [11].
Other RAAS components such as angiotensin 1-7 (Ang 1-7), angiotensin 1-9 (Ang 1-9)
and angiotensin-converting enzyme 2 (ACE2) are expressed in bone tissue and have been
reported to negate the effects of Ang II/AT1R interaction and RANKL upregulation [12,13].
Furthermore, estrogen is a well-known bone anti-resorption hormone [14]. Estrogen exerts
numerous physiological effects that maintain glucose homeostasis [15]. However, estrogen
deficiency is associated with impaired glucose uptake, impaired insulin secretion, insulin
resistance, increased gluconeogenesis and increased lipolysis, which are clinical markers of
T2D [16,17]. Interestingly, RAAS is reportedly upregulated in T2D; therefore, this review
seeks to highlight the relationship between RAAS and osteoporosis and their association
with estrogen deficiency in T2D.

1.1. The Renin–Angiotensin–Aldosterone System

The renin–angiotensin–aldosterone system (RAAS) is a regulatory signaling pathway
that maintains fluid and electrolyte homeostasis [18]. Renin is secreted by the kidneys in
response to a decrease in blood pressure, blood volume, plasma sodium and potassium
levels [19]. Renin has also been shown to induce the release of prorenin from the juxta-
glomerular cells in the kidneys [20]. The release of prorenin results in a cascade of events
where inactive angiotensin I (Ang I) is produced from angiotensinogen (AGT), which is
subsequently cleaved by angiotensin-converting enzyme (ACE) into angiotensin II (Ang II).
Ang II activates Ang II type 1 (AT1), which is responsible for inducing vasoconstriction in
the systemic vasculature, subsequently raising blood pressure [21]. Furthermore, Ang II
acts on the adrenal cortex to synthesize aldosterone, which promotes sodium and water
reabsorption through activation of the mineralocorticoid receptor in the nephrons [2,21].
The renin–angiotensin–aldosterone system is pathologically activated in type II diabetes;
this has been noted to result in various detrimental effects, including osteoporosis and
estrogen deficiency [22–24]. Recent studies have evidenced the presence and activity of
the renin–angiotensin system in T2D in various tissues, with observable changes in an-
giotensinogen, renin, ACE, aldosterone, angiotensin II, AT1R, AT2R, Ang 1-7 and Ang
1-9 in bones [22,25]. Furthermore, patients who suffer from T2D and hypertension usu-
ally have osteoporosis, with this phenomenon being highly prevalent in postmenopausal
women [26].

1.2. Local RAAS and T2D

Several studies have highlighted the role of RAAS in the development and progres-
sion of insulin resistance, as RAAS is produced locally in numerous organs [27]. RAAS is
upregulated in the skeletal muscle, which is a major site of glucose utilization [28]. Ang
II suppresses phosphorylation of insulin receptor substrate (IRS)-1 in muscles, blocking
increases in phosphatidylinositol 3 (PI3)-kinase and the consequent translocation of glucose
transporter (GLUT) 4 to the cell membrane [29]. This results in hyperglycinemia due to
impaired glucose uptake and insulin resistance [30]. Hyperglycemia induces p53 glyco-
sylation, which has been implicated in angiotensinogen transcription and the subsequent
generation of Ang II from the local RAAS [31], thus promoting the upregulation of local
RAAS in various organs [25]. Furthermore, the upregulation of RAAS induces insulin
resistance in adipose tissue [30]. In T2D, the renin-encoding gene is expressed and up-
regulated in adipose tissue, which also contains Cathepsin D and G enzymes that can
create Ang I and Ang II via RAAS alternate pathways [32]. Nutrition was proposed as
the link between RAAS upregulation and hyperglycemia. An animal study evidenced the
upregulation of RASS mRNA, translocation of the RAAS genes and expression of RAAS
proteins in rats fed on high-fat diets and high-fat-high-carbohydrate diets [33]. Angiotensin
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II induces the formation of prostacyclin in adipose tissue, which causes the conversion of
preadipocytes to adipocytes and increases lipid synthesis and storage in adipocytes through
Ang II/AT2R signaling and the ACE2/Ang 1-7/Mas receptor [34]. However, in overt hy-
perglycemia, which occurs in T2D, the expression of Ang II and AT1R is upregulated whilst
the expression of AT2R and ACE2/Ang 1-7/Mas receptor is downregulated [28]. Ang
II/AT1R signaling has been reported to induce lipogenesis and impair the differentiation of
preadipocytes, thus affecting adipose storage capacity [28,33]. Consequently, the adipose
tissue is overloaded with lipids, resulting in the ectopic redistribution of fats to other
organs [33]. Additionally, a positive correlation has been noted between insulin resistance
and the upregulation of Ang II/AT1R signaling [35]. Hence, the upregulation of adipose
RAAS contributes to the development and progression of insulin resistance and T2D [35].
The increased lipogenesis contributes to the storage of fats in the liver [36]. Hypertriglyc-
eridemia is closely associated with insulin resistance [37]. The liver and adipose tissue are
the main sites of triglyceride synthesis [38]. Ang II/AT1R signaling, which is upregulated
in T2D, is involved in the suppression of the protein expression and enzymatic activity of
hepatic N-deacetylase (NDST) [39] This is a key regulatory enzyme involved in heparan
sulphate (HS) biosynthesis in the diabetic state and suppression of hepatic NDST was
suggested to lead to diabetic dyslipidemia [40–42]. Furthermore, Ang II-based activation of
AT1R causes insulin resistance by increasing hepatic triglyceride levels, which is thought to
contribute to the development of diabetes [28,43]. Diabetic dyslipidemia is associated with
damage to vital organs such as the heart and kidneys [44,45]. Local RAAS in the kidneys
has been evidenced, in various studies, to cause morphological changes that affect kidney
function [44,46]. In T2D, systemic and kidney RAAS have been positively correlated with
proteinuria and hypertension [46,47]. Increased blood pressure has been evidenced to cause
stress on the heart, thus affecting its function [29,48]. Interestingly, local RAAS activity has
also been reported to compromise the integrity of the heart [28,49]. In T2D, activation of
the Ang II/AT1R pathway can promote cell growth and proliferation, apoptosis, oxidative
stress generation, inflammation and fibrosis, which can contribute to cardiac remodeling
and atherosclerosis [50,51]. Therefore, research has been focused on this system due to the
detrimental effects of the upregulation of ACE/Ang II/AT1R signaling and downregulation
of the AT2R and Ang 1-7/AT2R/Mas axis in the various organs (Figure 1) [28]. A study by
Zheng and colleagues showed an improvement in insulin resistance and the mentioned
downstream changes when the ACE/Ang II/AT1R axis was blocked [35]. Recently, local
RAAS has been reported in bones and associated with bone fragility and the development
of osteoporosis in T2D due to the shift in pro-resorptive and anti-resorptive factors in favor
of pro-resorptive factors [52,53].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 22 
 

 

 
Figure 1. Local RAAS in various organs. Angiotensin II (Ang II) and angiotensin II type 1 receptor 
(AT1R) signaling are upregulated, whilst angiotensin 1-7 (Ang 1-7) and angiotensin type 2 receptor 
(AT2R) axis are downregulated in the numerous organs, i.e., skeletal muscle (leading to insulin re-
sistance) and adipose tissue (decreasing the adipose tissue buffering capacity). The shift in the axis 
in the liver results in increased hepatic triglycerides, insulin resistance and inhibition of N-deacety-
lase (NDST), reducing heparan sulphate (HS). Additionally, the shift in Ang II/AT1R and Ang 1-
7/AT2R in the kidneys and heart causes morphological changes, leading to organ dysfunction. Key 
For all figures. ↑ = increase/upregulation; ↓ = decrease; ┴ = inhibition; → = convert. 

2. Pro-Resorptive Factors 
2.1. Parathyroid Hormone 

Parathyroid hormone (PTH) is an 84-amino acid polypeptide released by the para-
thyroid glands in response to calcium deficiency [54]. PTH promotes renal tubular cal-
cium reabsorption and stimulates renal 1,25 dihydroxy vitamin D synthesis, thus indi-
rectly enhancing intestinal calcium absorption and bone remodeling [54]. PTH is critical 
in calcium homeostasis and the consequent formation of bone integrity by increasing the 
number of bone-forming cells as well as stimulating osteoblast development and reducing 
osteoblast cell death [54,55]. The parathyroid hormone further contributes to calcium ho-
meostasis by promoting bone resorption when there is a calcium deficiency [55]. Studies 
have evidenced the expression of AT1R and mineralocorticoid receptors (MR) in the par-
athyroid glands [56,57]. Studies have shown that RAAS, along with the expression of 
AT1R and MR receptors, is upregulated during T2D, thus enhancing PTH release from 
the parathyroid glands [56,57]. Due to chronic hyperglycemia in T2D, the parathyroid 
glands are overstimulated, resulting in excessive release of PTH [58]. The increased PTH 
levels result in excessive bone resorption, which affects the structural integrity of the bone 
[58]. Hence, the upregulation of RAAS in T2D may stimulate the production of excessive 
amounts of PTH, leading to bone fracture and osteoporosis [3]. However, more studies 
are required to generate evidence for this theory. PTH is pivotal for calcium homeostasis 

Figure 1. Local RAAS in various organs. Angiotensin II (Ang II) and angiotensin II type 1 receptor
(AT1R) signaling are upregulated, whilst angiotensin 1-7 (Ang 1-7) and angiotensin type 2 receptor
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(AT2R) axis are downregulated in the numerous organs, i.e., skeletal muscle (leading to insulin
resistance) and adipose tissue (decreasing the adipose tissue buffering capacity). The shift in the axis
in the liver results in increased hepatic triglycerides, insulin resistance and inhibition of N-deacetylase
(NDST), reducing heparan sulphate (HS). Additionally, the shift in Ang II/AT1R and Ang 1-7/AT2R
in the kidneys and heart causes morphological changes, leading to organ dysfunction. Key For all
figures. ↑ = increase/upregulation; ↓ = decrease;
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2. Pro-Resorptive Factors
2.1. Parathyroid Hormone

Parathyroid hormone (PTH) is an 84-amino acid polypeptide released by the parathy-
roid glands in response to calcium deficiency [54]. PTH promotes renal tubular calcium
reabsorption and stimulates renal 1,25 dihydroxy vitamin D synthesis, thus indirectly en-
hancing intestinal calcium absorption and bone remodeling [54]. PTH is critical in calcium
homeostasis and the consequent formation of bone integrity by increasing the number of
bone-forming cells as well as stimulating osteoblast development and reducing osteoblast
cell death [54,55]. The parathyroid hormone further contributes to calcium homeostasis
by promoting bone resorption when there is a calcium deficiency [55]. Studies have evi-
denced the expression of AT1R and mineralocorticoid receptors (MR) in the parathyroid
glands [56,57]. Studies have shown that RAAS, along with the expression of AT1R and MR
receptors, is upregulated during T2D, thus enhancing PTH release from the parathyroid
glands [56,57]. Due to chronic hyperglycemia in T2D, the parathyroid glands are over-
stimulated, resulting in excessive release of PTH [58]. The increased PTH levels result in
excessive bone resorption, which affects the structural integrity of the bone [58]. Hence,
the upregulation of RAAS in T2D may stimulate the production of excessive amounts of
PTH, leading to bone fracture and osteoporosis [3]. However, more studies are required to
generate evidence for this theory. PTH is pivotal for calcium homeostasis as it promotes the
production of 1,25-hydroxy vitamin D in the kidneys [59]. 1,25-hydroxy vitamin D restores
calcium balance by promoting bone resorption, and the restored calcium homeostasis
inhibits the release of PTH [59]. MR and AT1R are expressed in the parathyroid glands [56].
T2D leads to upregulation of aldosterone and the ACE/Ang II/AT1R axis, potentially re-
sulting in the parathyroid glands being over-stimulated and leading to increased PTH and
1,25-hydroxy vitamin D concentrations that could further lead to osteoporosis [3,50,59,60].
Furthermore, PTH stimulates the release of aldosterone from the adrenal glands due to the
expression of type 1 PTH receptors in the adrenal glands, indicating a cycle of continued
activity [56].

2.2. Vitamin D3

Vitamin D3 plays a key role in calcium homeostasis and can be synthesized en-
dogenously in the skin or absorbed via the intestines from our diet, converted to 25-hy
droxyvitamin D (25(OH)2D) in the liver or to the bioactive form, 1,25-hydroxyvitamin D
(1,25(OH)2D), in the kidneys [61]. In the postnatal stage, one of the principal functions of
1,25(OH)2D is to maintain calcium homeostasis by enhancing calcium absorption in the
intestines [62]. When dietary calcium levels are low, 1,25(OH)2D increases transcellular
intestinal calcium transport by upregulating the expression of the apical membrane calcium
channel transient receptor potential vanilloid 6 (TRPV6) and the calcium-binding pro-
tein calbindin-D9k as these channels promote calcium reabsorption [61,63]. Additionally,
1,25(OH)2D promotes distal tubular calcium reabsorption in the kidney [64]. T2D causes
renal morphological and functional alterations due to the upregulation of systemic and
renal RAAS via the ACE/Ang II/AT1R axis, consequently affecting calcium homeosta-
sis [58]. Calcium loss promotes an increase in 1,25(OH)2D, inducing bone breakdown—a
process known as bone resorption—in an attempt to restore blood calcium levels [65]. A
continued state of bone resorption contributes to bone fragility, increased risk of bone frac-
ture and osteoporosis [66]. Interestingly, a recent study suggested an inverse relationship
between 1,25(OH)2D and plasma renin, whereby 1,25(OH)2D has an inhibitory effect on
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renin [10]. However, PTH promotes aldosterone synthesis in the adrenal glands. Studies
show that changes in PTH and 1,25(OH)2D are largely influenced by systemic and renal
RAAS, affecting kidney function; however, growing evidence shows an interaction between
local RAAS, inflammatory cytokines and bone remodeling [67,68]. Recent studies have
demonstrated a positive correlation between PTH and 1,25(OH)2D and the production
of Ang II and aldosterone [67,68]. Furthermore, MRs have not only been identified on
the parathyroid glands but they have also been identified on osteoblasts, osteoclasts and
bone cells, indicating that aldosterone has a direct effect on bone metabolism (Figure 2) [3].
Physiologically, 1,25(OH)2D interacts with the Wnt signaling cascade, which regulates
osteoblast differentiation, to induce bone formation and mineralization in osteoblasts as
well as osteogenic differentiation from human mesenchymal stem cells [69]. The promoter
region of the gene encoding LRP5 is upregulated by interaction with 1,25(OH)2D–VDR,
increasing LRP5 expression [70]. Interestingly, RAAS, through the ACE/Ang II/AT1R axis,
has been evidenced to inhibit the Wnt signaling cascade [71]. RAAS affects 1,25(OH)2D,
thus leading to increased osteoclast formation [12,72]. Furthermore, the 1,25(OH)2D–VDR
interaction is impaired in T2D, further reducing bone formation and mineralization [73].
PTH, 1,25(OH)2D, Ang II, glucocorticoids and proinflammatory cytokines have been evi-
denced to cause osteoclastogenesis, leading to bone remodeling through the expression of
nuclear factor-κB ligand (RANKL) [74–77]. The differentiation and bone-resorbing abilities
of the osteoclast depend on RANKL and its receptor, nuclear factor-B (RANK) [77]. Osteo-
protegerin (OPG) binds to RANK and inhibits RANKL–RANK binding via competitive
inhibition, hence the OPG/RANKL ratio is a measure of osteoclast differentiation [77–79].
RANKL influences the immune system and regulates bone remodeling and regrowth [79].
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Figure 2. Renin–angiotensin–aldosterone system (RAAS) activity and parathyroid hormone (PTH)
expression are elevated in T2D. The expression of mineralocorticoid receptors (MRs), angiotensin
type 1 receptor (AT1R) and parathyroid hormone 1 receptor (PTH1R) is upregulated in the parathyroid
gland and the bone marrow. Consequently, Runx, osterix and β-catenin are downregulated, leading
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to a decrease in osteoblasts; however, osteoclast activity is elevated. Furthermore, the upregulation
of MRs, AT1R and PTH1R in the parathyroid glands stimulates PTH hypersecretion, leading to
increased calcium reabsorption in the kidneys and collectively resulting in increased plasma calcium
and decreased bone density.

2.3. Proinflammatory Cytokines

Osteoblasts and osteoclasts, which are bone-forming and bone-resorbing cells, respec-
tively, are necessary for maintaining bone homeostasis [80]. Osteoblasts synthesize proteins
for the bone matrix and encourage bone deposition and mineralization [81]. Bone-related
disorders such as postmenopausal osteoporosis, hyperparathyroidism and osteopetrosis
are caused by an imbalance between osteoclast and osteoblast activity during bone re-
modeling as a result of proinflammatory cytokines, growth factors and hormones [82].
Proinflammatory cytokines such as interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor
necrosis factor-α (TNF-α) are involved in the breakdown of bone through enhancement of
the development of osteoclast precursors into adult osteoclasts [83]. Furthermore, TNF-α
promotes osteoclastogenesis by increasing RANKL expression in osteoblasts [83]. RANKL
binding to RANK commits monocytic precursor cells to the osteoclastic lineage, thus pro-
moting bone loss [83]. TNF-α is also involved in osteoclastogenesis through modulation of
the wingless-related integration site (Wnt) signaling pathway, which is considered a key
regulatory pathway for bone formation by osteoblasts [84,85]. TNF-α is a potent inducer of
the production of Dickkopf-1 (Dkk-1), a Wnt antagonist that hinders the development of
bone cells (Figure 3) [85,86]. Systemic and local RAAS is upregulated in T2D; hence, the
ACE/Ang II/AT1R axis stimulates the activity of proinflammatory cytokines, resulting in
increased osteoclastogenesis, reduced bone density and development of osteoporosis [87].
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such as interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). The increased
activity of proinflammatory cytokines in the bone marrow increases osteoclast precursors, thus
increasing osteoclasts. Additionally, the nuclear factor-κB ligand (RANKL) and nuclear factor-κB
(RANK) interaction is enhanced, thus promoting the conversion of monocytic precursors to osteoclasts.
Osteoclast differentiation is stimulated by M-CSF and RANKL. M-CSF induces the proliferation and
survival of osteoclast precursor cells through activation of ERK and Akt. RANKL recruits TRAF6 to
activate MAPKs, Akt and NFATc1 to promote the differentiation of osteoclast precursors to osteoclasts.
Furthermore, increased proinflammatory cytokine activity in the bone induces the production of
dickkopf-1 (Dkk-1), a wingless-related integration site (Wnt) antagonist that hinders the development
of bone cells.

2.4. ACE/Ang II/AT1R Axis and ACE2/Ang 1-7/Mas Receptor

Various components of RAAS are expressed in various bone cells and chondrocytes of
epiphyseal plates under physiological environments, implicating local RAAS in epiphyseal
elongation during bone development and repair [3,88]. Furthermore, a locally active RAAS
influencing hematopoietic cell growth, generation, proliferation and differentiation has
been identified in bone marrow cells (BMCs), hematopoietic-lineage BMCs and cultured
marrow stromal cells (MSCs) [3,13,88]. Ang II/AT1R signaling in these cells affects the
production of red blood cells and blood flow in capillaries in the bone marrow [89]. Ang II
diminished osteoblastic differentiation and mineralization and reduced the percentage of
mineralized nodules by activating AT1R in osteoblast UMR-106 cells [90]. The ACE/Ang
II/AT1R axis stimulates bone marrow mononuclear cells to differentiate into multinuclear
cells [91,92]. This axis also stimulates multinuclear cells to differentiate into osteoclasts and
enhances tartrate-resistant acid phosphatase (TRAP)-positive multinuclear osteoclasts [91].
Osteoclasts are cells that mediate bone loss by increasing their resorptive activity and
causing bone degradation, leading to the initiation of the normal bone remodeling pro-
cess [93]. In pathological conditions such as T2D, systemic and local RAAS are upregulated,
particularly the ACE/Ang II/AT1R axis, which may promote osteoclast over-production
leading to bone degradation [25,28,94]. Chronic upregulation of RAAS, as observed in
T2D, may result in continued bone breakdown, a decline in bone density, osteoporosis
and an increased risk of bone fracture. Osteoporosis interventions have focused on RAAS
blockers [95]. As previously established, osteoporosis occurs due to an imbalance in bone
remodeling, which is marked by a decrease in osteoblastic activity and an increase in
osteoclastic activity, resulting in a greater rate of bone resorption [66]. Ang II has been
evidenced to play a key role in osteoclastogenesis, and thus osteoporosis, through various
mechanisms such as those discussed in the subsequent sections [96].

2.4.1. Ang II and Expression of RANKL

A study demonstrated that Ang II resulted in a significant (eightfold) increase in
RANKL mRNA expression through the ERK pathway in human osteoblasts and UMR-106
cells [97]. It also promoted the differentiation of mesenchymal stem cells into multinu-
clear cells, activated mature osteoclasts responsible for bone resorption and increased the
number of TRAP-positive multinuclear osteoclasts, and hence, osteoclastogenesis [98,99].
Studies have suggested that an increase in RANKL upon activation of the AT1R–ERK
signaling pathway may serve as a mediator of Ang II-induced osteoclast differentiation
and activation [96,100]. In order to investigate this theory, Olmesartan (an AT1R blocker)
or U0126 (an extracellular signaling kinase pathway MEK/ERK inhibitor) were added to
osteoblasts, resulting in the amelioration of the osteoclastogenesis effects of Ang II [101].
Therefore, studies have alluded to ACE/Ang II/AT1R increasing RANKL expression, thus
facilitating pathophysiological bone resorption [102].

2.4.2. Ang II Increases Cyclic Adenosine Monophosphate (cAMP)

RANKL and core-binding factor subunit alpha-1 (Cbfa1/Runx2), both of which are
controlled by cAMP, are the main regulators of the differentiation of osteoblast and osteo-
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clast cells [103]. Cbfa1/Runx2 is a transcription factor required for osteoblast development
from mesenchymal progenitors and subsequent bone matrix mineralization [103,104]. Fur-
thermore, Cbfa-1 is a potent transcription factor that regulates the expression of many of
the osteoblast and chondrocyte functions and triggers the expression of major osteoblast-
specific lineage genes [104,105]. Angiotensin II can promote an increase in intracellular
cAMP and subsequently activate signaling pathways that are involved in the control of
low-density-lipoproteins (LDLs), which in turn changes Cbfa1 expression [106,107]. LDL-
mediated cholesterol administration improves osteoclast survival, and hence their lifespan,
considerably [108,109]. Therefore, Ang II modifies Cbfa1 expression, consequently reduc-
ing the number of osteoblasts and resulting in poor bone formation by stimulating the
cAMP signaling pathway and regulating other downstream targets such as LDLs [110,111].
Ang II triggers prostaglandins, which stimulate cAMP signaling, leading to upregulated
expression of LDL receptors [112]. The upregulated expression of LDL receptors in the
bone marrow leads to increased LDLs, which have been reported to take up space in the
marrow, thus affecting osteoblast availability [113].

Furthermore, in vitro studies showed that free cholesterol reduced the proliferation
and differentiation of osteoblasts and inhibited the expression of BMP2 and core binding
factor alpha 1 (Cbfa1). As mentioned, local RAAS exists in other organs such as adipose
tissue, where it alters adipose buffering capacity, thus increasing free cholesterol levels.
Free cholesterol increases the level of malondialdehyde (MDA) and decreased the activity
of superoxidase dismutase (SOD) in osteoblasts, indicating oxidative stress in the bone
microenvironment. Oxidative stress inhibits and decreases osteoblast development and ac-
tivity, which in turn reduces mineralization and osteogenesis. Furthermore, the increase in
cAMP as a result of Ang II activates downstream signaling pathways that, in turn, downreg-
ulate the expression of Cbfa1/Runx2 while increasing the expression of RANKL [114]. The
decrease in Cbfa1/Runx2 and the increase in RANKL decrease the quantity and function
of osteoblasts, resulting in increased bone resorption and decreased bone formation [114].

2.4.3. Ang II Upregulates SOST Gene Expression

Ang II increases the expression of the SOST gene in osteocytes via activation of
AT1R [5,85,90]. Sclerostin coding gene (SOST) encodes the secretory protein sclerostin
that binds to LRP5/6 (low-density lipoprotein receptor-related protein) receptors on os-
teoblast cell membranes, inhibiting Wnt/b-catenin signaling and lowering osteoblastic
bone production [85,115].

As already mentioned, Ang II/AT1R signaling is upregulated in T2D, resulting in the
above cascade of events [90]. Therefore, local bone RAAS, specifically Ang II, has been
positively associated with decreased bone density, increased bone turnover and impaired
bone microarchitecture, leading to the development and progression of osteoporosis [116].
However, the ACE2/Ang 1-7/MasR receptor arm of bone RAAS has been demonstrated
to increase the expression of OPG, a glycoprotein that regulates bone remodeling [13].
OPG regulates bone remodeling by controlling osteoclast activity, hence interfering with
the interaction between RANK and its ligand RANKL [76]. In order to regulate cell
proliferation, the apoptosis regulator gene RANKL interacts with OPG, a ligand for the
RANK receptor, under physiological conditions (Figure 4) [76]. However, the ACE/Ang
II/AT1R axis is upregulated and the ACE2/Ang 1-7/MasR arm is downregulated in T2D,
consequently decreasing the expression of OPG protein [13,117]. Thus, the shift in the
RANKL/OPG ratio is regarded as one of the markers of bone fragility and the development
of bone disorders such as osteoporosis [13].
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Figure 4. The Angiotensin-converting-enzyme (ACE)/angiotensin II (Ang II)/angiotensin type 1
receptor (AT1R) axis (ACE/Ang II/AT1R) in the bone marrow contributes to bone degradation by
altering the microarchitecture of the bone structure. The ACE/Ang II/AT1R axis upregulates the
AT1R–extracellular signal-regulated kinases (AT1R–ERK) pathway, which increases the formation
of tartrate-resistant acid phosphatase positive (TRAP+) osteoclasts and nuclear factor-κB ligand
(RANKL). RANKL promotes the conversion of mesenchymal stem cells (MSCs) to osteoclasts. Fur-
thermore, this axis increases cAMP, downregulates core-binding factor subunit alpha-1/Runt-related
transcription factor 2 (cbfα1/Runx2) and increases RANKL, subsequently decreasing osteoblast
quantity and quality. Runx2 enhances the proliferation of suture mesenchymal cells and induces
their commitment to osteoblast lineage cells. A decrease in Runx2 reduces the conversion of MSCs
to osteoblasts, thus monocytic precursors are converted to osteoclasts. The ACE/Ang II/AT1R
axis increases the expression of sclerostin coding gene (SOST) and hence the sclerostin protein that
inhibits the wingless-related integration site (Wnt)/β-catenin pathway, thus significantly reducing
osteoblast formation.

2.5. ANG 1-7

The ACE2/Ang1-7/Mas receptor cascade is thought to be the beneficial arm in the
biological consequences of systemic and local RAAS. Ang (1-7) improves abnormal bone
metabolism and micro-architecture [12,13,118]. Furthermore, Ang (1-7) significantly in-
creases mineralization while inhibiting osteoclastogenesis [12,118]. To test this theory,
A-779 was used to block the Mas receptor, resulting in significantly reduced beneficial
effects of Ang (1-7) on bone health, indicating that the Mas receptor plays a critical role
in regulating Ang (1-7)’s osteoprotective properties [13,119,120]. The role of ACE/Ang
II/AT1R in osteoclastogenesis due to the activated proinflammatory cytokines has been
discussed [96]. Interestingly, evidence suggests that the ACE2/Ang1-7/Mas receptor
axis counteracts the proinflammatory cytokine effects, thus improving bone health. Ang-
(1-7) reduces the expression of proinflammatory cytokines associated with bone resorp-
tion, namely IL-6 and TNF-α [121–124]. In osteoporosis-related alveolar bone resorption,
IL-6—an osteoclastogenesis-promoting cytokine—promotes the conversion of forkhead
box P3 (FoxP3) T cells to T helper 17 (Th17) cells, which guard against germs but induce os-
teoclast formation and thus, bone injury [125–127]. Additionally, the ACE2/Ang1-7/MasR
axis has been observed to reduce the expression of RANKL and IL-1β mRNA levels, hence
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reducing osteoclastogenesis (Figure 5) [12,124]. However, in T2D, the conventional RAAS
axis is upregulated and the ACE2/Ang1-7/MasR axis is downregulated and may thus
compromise bone health [124,128,129]. Anti-resorptive factors such as calcium, estrogen
and TGFb promote bone health via the ACE2/Ang1-7/MasR axis and the Ang (1-7)/AT2R
pathway [13,130].
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Figure 5. The Angiotensin-converting-enzyme 2 (ACE2)/angiotensin 1-7(Ang 1-7)/MasR
(ACE2/Ang 1-7/MasR) axis exhibits osteoprotective properties in the bone marrow by increas-
ing mineralization and inhibiting osteoclastogenesis. The ACE2/Ang 1-7/MasR axis counteracts
the ACE/Ang II/AT1R signal by decreasing proinflammatory cytokines (interleukin-1 (IL-1β),
interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)). A decrease in IL-6 reduces the conversion
of forkhead box P3 (FoxP3) T cells to T helper 17 (Th17) cells, consequently reducing osteoclasto-
genesis. Additionally, a reduction in the proinflammatory cytokines TNF-α, interleukin-1β (IL-1β)
and nuclear factor-κB ligand (RANKL) decreases bone resorption. The ACE2/Ang1-7/MasR axis
increases osteoprotegerin (OPG), resulting in increased osteoblast formation.

3. Anti-Resorptive Factors
3.1. Transforming Growth Factor β (TGF-β)

Osteoblasts develop from mesenchymal stem cells (MSCs) in the bone marrow, while
osteoclasts develop from hematopoietic stem cells (HSCs) [131,132]. TGF-β1 regulates
both osteoblast and osteoclast differentiation, thus balancing bone production and resorp-
tion [133]. TGF-β1 maintains bone density by promoting osteoblast proliferation, inhibiting
osteoblast apoptosis and attracting osteoblastic precursors or matrix-producing osteoblasts
to the location via chemotactic attraction [133,134]. Additionally, in the first phases of
osteoblast development, TGF-1β increases the synthesis of extracellular bone matrix pro-
tein by osteoblasts, thus maintaining bone health [134]. Estrogen increases osteoblast
proliferation and differentiation by increasing the synthesis of TGF- β1 in osteoblasts [135].
In addition, estrogen inhibits bone loss by encouraging osteoclast apoptosis through a
TGF-dependent process [136]. However, in T2D, there is an estrogen deficiency associated
with impaired estrogen receptor expression that results in reduced TGF-β1 [14,137,138].
Hence, estrogen deficiency due to the upregulation of RAAS is positively correlated with
decreased TGF-β1 expression, leading to bone loss [139,140]. Furthermore, studies have
highlighted a positive correlation between increased glucocorticoids and T2D [141,142].
Glucocorticoids are known to promote the apoptosis of osteoblasts and inhibit their pro-
liferation and differentiation while promoting the differentiation of osteoclasts [143,144].
Glucocorticoids upregulate TGF-β1 expression in osteoblasts; however, unlike estrogen,
glucocorticoids synergize with TGF-β1 to enhance osteoclast formation by stimulating
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the priming of osteoclast progenitors for differentiation into osteoclasts [145]. Therefore,
the upregulated glucocorticoids contribute to the progression of insulin resistance to the
development of T2D due to increasing glucose levels [141,146]. Furthermore, local bone
RAAS activity has been reported in glucocorticoid-induced osteoporosis, hence therapies
that target the RAAS system have been reported to improve glucose homeostasis and
hence the declining bone health [5,52,76,147]. Numerous cell types, including osteoblasts, B
lymphocytes and osteogenic stromal stem cells produce OPG in response to anti-resorptive
agents such as estrogen and TGFβ-related bone morphogenic proteins [148,149].

3.2. Estrogen
3.2.1. Estrogen Physiology

Estrogen is a sex hormone—predominantly synthesized in the ovaries in females and
testes in males—that governs the growth, development and physiology of the reproduc-
tive system [150]. The neuroendocrine, skeletal, adipogenic and cardiovascular systems
are similarly impacted by estrogen due to the presence of estrogen receptors in these or-
gans [151]. Estrogen is associated with glucose handling as it has been shown to stimulate
insulin sensitization in the skeletal muscle and adipose tissue through the insulin signaling
pathway [152]. Therefore, estrogen, due to the ERs in the skeletal muscle and adipose
tissue, is associated with impaired insulin signaling and the development and progression
of hyperglycemia reported in T2D [152–155].

Studies have determined the presence of estrogen receptor alpha (ERα) and estrogen
receptor beta (ERβ) in the bone marrow [156]. Osteoblasts, osteoclasts and osteocytes ex-
press ERs, which have beneficial effects on bone integrity [156]. The binding of estrogen
to ERs modulates the expression of genes that encode proteins that are estrogen targets,
including IL-1β, insulin-like growth factor 1 (IGF1) and TGF-β1 [157–159]. As discussed,
TGF-β1 promotes osteoblast proliferation, inhibits osteoblast apoptosis and recruits os-
teoblastic precursors or matrix-producing osteoblasts to maintain bone density [133,149,160].
Furthermore, the binding of estrogen to ER promotes the upregulation of OPG and the
downregulation of RANKL, thus impairing osteoclastogenesis and bone resorption [161,162].
Additionally, the estrogen–ER interaction activates Wnt/β-catenin signaling to increase
osteogenesis by curbing the differentiation of MSC to adipocytes and facilitating the differ-
entiation of mesenchymal stem cells to osteoblasts, thus promoting bone formation [163].
Sclerostin is a Wnt antagonist that competitively binds to LRP5/6 to inhibit the Wnt signal-
ing pathway [164]. Reports show that sclerostin is significantly increased in postmenopausal
women in comparison to premenopausal women [165]. Therefore, due to reduced es-
trogen levels in postmenopausal women, sclerostin is significantly increased, leading to
morphological changes in the bone marrow microarchitecture due to the inhibition of os-
teoblastogenesis and the increase in bone resorption [165–167]. Moreover, reports have
suggested that the ACE/Ang II/AT1R axis upregulates the SOST gene that encodes scle-
rostin, thus promoting osteoclastogenesis [168]. The predominant form of estrogen, estradiol
(E2), has been shown to increase the mRNA levels of the AGT gene [24]. Interestingly, E2 has
been evidenced to downregulate AT1R expression and reduce renin and ACE activity [169].
Additionally, AT1R mRNA is regulated post-transcriptionally by estrogen-sensitive binding
proteins [170,171]. Although estrogen’s effect on Ang II has not been fully elucidated, it
can attenuate Ang II responses to AT1R [171]. Estrogen treatment elevates Ang (1-7) levels
in transgenic mice [172,173]. Structural and biochemical changes in rats with ovariectomy-
induced osteoporosis are improved by the ANG (1-7) axis; therefore, estrogen might use
this axis to exert its osteoprotective effects [13,174]. Moreover, estrogen has been evidenced
to mediate the transcription of ACE2; thus ACE2 is downregulated and AT1R is upregu-
lated in estrogen deficiency, leading to estrogen deficiency-induced osteoporosis [174]. Ang
II also downregulates the mRNA expression of osteocalcin, which is uniquely produced
during the maturation of osteoblastic cells [175]. Additionally, Ang II reduces the activity
of alkaline phosphatase (ALP), which is a hallmark of osteoblastic differentiation [175,176].
Thus, estrogen is critical for balancing bone resorption and formation [26,177].
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3.2.2. Estrogen Deficiency in T2D

A bi-directional relationship between estrogen deficiency and T2D has been studied,
where hyperglycemia is linked to reduced estrogen bioavailability and a lack of estrogen
is shown to contribute to the progression of insulin resistance [153,178]. Postmenopausal
women have been shown to suffer from progressive impaired glucose tolerance, declining
bone mass density and increased bone turnover due to estrogen deficiency [179,180]. Fur-
thermore, estrogen regulates the expression of its own receptors, hence estrogen deficiency
is associated with reduced ER expression in the bone marrow [181,182]. As previously
stated, osteoblasts express ERs. As T2D is associated with estrogen deficiency, ERs are also
reduced because estrogen regulates the expression of its own receptors, thus potentially
leading to impaired bone metabolism [16,161]. Rats lacking estrogen exhibit an imbalance
between the traditional ACE/Ang II/AT1R receptor pathway and the ACE2/Ang1-7/Mas-
receptor pathway in their femurs [183,184]. Hence, focused interventions have proven
that blocking Ang II action with an AT1R antagonist prevents bone loss associated with
estrogen deficiency [185,186]. The hyperglycinemia noted in T2D is positively correlated
with estrogen deficiency and the upregulation of the ACE/Ang II/AT1R axis and down-
regulation of the ACE2/Ang 1-7/Mas receptor axis and AT2R, which may promote osteo-
porosis [185,186]. Furthermore, due to the effect of estrogen on glucose handling, estrogen
deficiency and the upregulation of local RAAS are linked to increased low-density lipopro-
teins (LDLs) [184,187]. Increased LDLs were shown to correlate with low bone mass in
postmenopausal women, alluding to a possible relationship between triglycerides and the
maintenance of bone mass (Figure 6) [188,189]. The relationship between estrogen defi-
ciency, increased systemic and local RAAS activity and hypertension has recently received
attention [190]. A plethora of studies have evidenced the correlation between systemic
RAAS and hypertension [19,190]. Over the past decade, the focus has shifted to local
RAAS, including bone RAAS, osteoporosis and hypertension [191]. Data demonstrates
that these are enhanced in postmenopausal women who have significantly reduced es-
trogen levels [24,186]. Hence, a relationship between estrogen deficiency, RAAS activity
and osteoporosis has gained traction [186]. Interestingly, hypertension and systemic and
local RAAS upregulation has been demonstrated in T2D [51,192]. Hence, the correlation
between RAAS, hypertension, osteoporosis and estrogen deficiency in T2D is of interest for
formulating effective treatment strategies. Henceforth, this review focuses on the plethora
of mechanisms involving RAAS and their association with osteoporosis and estrogen
deficiency in association with T2D.
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factor β1 (TGF-β1), leading to enhanced osteoblast apoptosis and reduced matrix-producing os-
teoblasts. Furthermore, estrogen deficiency is associated with increased sclerostin and dickkopf-1
(Dkk-1), which inhibit the wingless-related integration site (Wnt)/β-catenin pathway, leading to
a reduction in osteoblasts. Estrogen deficiency promotes the upregulation of nuclear factor-κB
ligand (RANKL) and the downregulation of osteoprotegerin (OPG), leading to osteoclastogenesis
and bone resorption. The wingless-related integration site (Wnt)/β-catenin pathway is downreg-
ulated in estrogen deficiency, thus enhancing the conversion of mesenchymal stem cells (MSCs) to
adipocytes and reducing osteoblasts. Estrogen deficiency downregulates the angiotensin-converting-
enzyme 2 (ACE2)/angiotensin 1-7 (Ang 1-7)/MasR (ACE2/Ang 1-7/MasR) axis and upregulates the
angiotensin-converting-enzyme (ACE)/angiotensin II (Ang II)/angiotensin type 1 receptor (AT1R)
axis (ACE/Ang II/AT1R), hence decreasing osteocalcin, alkaline phosphatase (ALP) activity and the
number of mature osteoblasts.

4. Conclusions

Hypertension, osteoporosis, adiposity and estrogen deficiency have been identified
as risk factors for T2D [193–195]. The renin–angiotensin–aldosterone system is positively
correlated with T2D and hypertension [196–199]. Anti-hypertensive medications that block
the RAAS have been evidenced to have osteoprotective effects [3,200–205]. Furthermore,
RAAS blockers are directly correlated with improved glucose handling and inhibition
of progressive insulin resistance [199,206]. In this review, the mechanistic action of this
system in association with the shift in bone formation and resorption has been highlighted.
The effects of the classical arm and the physiologically beneficial arm were analyzed
and this system was shown to affect the inflammatory status, subsequently affecting the
microarchitecture of the bone [3,207,208]. Additionally, the presence of RAAS receptors,
including mineralocorticoid receptors in the parathyroid and adrenal glands and osteoblasts
has been evidenced, further emphasizing the role of RAAS in calcium handling and its
effects in the bone microenvironment [209–212].

In addition to the relationship between RAAS, hypertension and osteoporosis, these
findings may suggest that the upregulation of RAAS in T2D acts on its receptors and
contributes to the development of osteoporosis. This review further focused on the relation-
ship between RAAS, osteoporosis and estrogen deficiency in T2D. Estrogen deficiency has
been proposed as a biomarker for T2D due to the critical role of estrogen in glucose han-
dling [16,213]. Additionally, several studies have investigated the role of local and systemic
RAAS in relation to hypertension and glucose homeostasis [214,215]. Interestingly, estrogen
deficiency has been associated with hypertension and osteoporosis in postmenopausal
women. This review focused on the relationship between estrogen deficiency, osteoporosis
and hypertension in T2D by exploring mechanistic pathways that may be involved, for
example, RAAS.

The association between RAAS and osteoporosis has been identified independently
of T2D. However, a study investigating RAAS activity in T2D and its possible role in the
development of osteoporosis in T2D is required.
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