TCR Sequencing in Mouse Models of Allorecognition Unveils the Features of Directly and Indirectly Activated Clonotypes
Abstract
:1. Introduction
2. Results
2.1. Alloreactive Repertoires Obtained
2.2. Prediction of Binding Features and Structure of Alloreactive TCR Repertoires
2.3. Features of Alloreactive Clonotypes and TCRs
2.4. Cross-Reactivity of Alloreactive Clonotypes
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Skin Graft Transplantation
4.3. Vaccination with Allogeneic Dendritic Cells
4.4. Vaccination of Mice with Allogeneic Skin Lysate and Human PBMC Lysate
4.5. Preparation of CD4+ Lymphocyte RNA for TCR Sequencing
4.6. Mixed Leukocyte Cultures to Generate Allospecific Lymphocytes In Vitro
4.7. TCR Sequencing
4.8. Repertoire Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siu, J.H.Y.; Surendrakumar, V.; Richards, J.A.; Pettigrew, G.J. T Cell Allorecognition Pathways in Solid Organ Transplantation. Front. Immunol. 2018, 9, 2548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marino, J.; Paster, J.; Benichou, G. Allorecognition by T Lymphocytes and Allograft Rejection. Front. Immunol. 2016, 7, 582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benichou, G.; Takizawa, P.A.; Ho, P.T.; Killion, C.C.; Olson, C.A.; McMillan, M.; Sercarz, E.E. Immunogenicity and Tolerogenicity of Self-Major Histocompatibility Complex Peptides. J. Exp. Med. 1990, 172, 1341–1346. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.; Sacks, S.H.; Wong, W. Extensive and Bidirectional Transfer of Major Histocompatibility Complex Class II Molecules between Donor and Recipient Cells in Vivo following Solid Organ Transplantation. FASEB J. 2008, 22, 3776–3784. [Google Scholar] [CrossRef] [PubMed]
- Herrera, O.B.; Golshayan, D.; Tibbott, R.; Salcido Ochoa, F.; James, M.J.; Marelli-Berg, F.M.; Lechler, R.I. A Novel Pathway of Alloantigen Presentation by Dendritic Cells. J. Immunol. 2004, 173, 4828–4837. [Google Scholar] [CrossRef]
- Wang, Y.; Singh, N.K.; Spear, T.T.; Hellman, L.M.; Piepenbrink, K.H.; McMahan, R.H.; Rosen, H.R.; Vander Kooi, C.W.; Nishimura, M.I.; Baker, B.M. How an Alloreactive T-Cell Receptor Achieves Peptide and MHC Specificity. Proc. Natl. Acad. Sci. USA 2017, 114, E4792–E4801. [Google Scholar] [CrossRef]
- Macdonald, W.A.; Chen, Z.; Gras, S.; Archbold, J.K.; Tynan, F.E.; Clements, C.S.; Bharadwaj, M.; Kjer-Nielsen, L.; Saunders, P.M.; Wilce, M.C.J.; et al. T Cell Allorecognition via Molecular Mimicry. Immunity 2009, 31, 897–908. [Google Scholar] [CrossRef] [Green Version]
- Tian, G.; Li, M.; Lv, G. Analysis of T-Cell Receptor Repertoire in Transplantation: Fingerprint of T Cell-Mediated Alloresponse. Front. Immunol. 2021, 12, 778559. [Google Scholar] [CrossRef]
- Fu, J.; Khosravi-Maharlooei, M.; Sykes, M. High Throughput Human T Cell Receptor Sequencing: A New Window Into Repertoire Establishment and Alloreactivity. Front. Immunol. 2021, 12, 777756. [Google Scholar] [CrossRef]
- Emerson, R.O.; Mathew, J.M.; Konieczna, I.M.; Robins, H.S.; Leventhal, J.R. Defining the Alloreactive T Cell Repertoire Using High-Throughput Sequencing of Mixed Lymphocyte Reaction Culture. PLoS ONE 2014, 9, e111943. [Google Scholar] [CrossRef] [Green Version]
- Aschauer, C.; Jelencsics, K.; Hu, K.; Heinzel, A.; Gregorich, M.G.; Vetter, J.; Schaller, S.; Winkler, S.M.; Weinberger, J.; Pimenov, L.; et al. Prospective Tracking of Donor-Reactive T-Cell Clones in the Circulation and Rejecting Human Kidney Allografts. Front. Immunol. 2021, 12, 750005. [Google Scholar] [CrossRef] [PubMed]
- Morris, H.; DeWolf, S.; Robins, H.; Sprangers, B.; LoCascio, S.A.; Shonts, B.A.; Kawai, T.; Wong, W.; Yang, S.; Zuber, J.; et al. Tracking Donor-Reactive T Cells: Evidence for Clonal Deletion in Tolerant Kidney Transplant Patients. Sci. Transl. Med. 2015, 7, 272ra10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeWolf, S.; Grinshpun, B.; Savage, T.; Lau, S.P.; Obradovic, A.; Shonts, B.; Yang, S.; Morris, H.; Zuber, J.; Winchester, R.; et al. Quantifying Size and Diversity of the Human T Cell Alloresponse. JCI Insight 2018, 3, e121256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bettens, F.; Calderin Sollet, Z.; Buhler, S.; Villard, J. CD8+ T-Cell Repertoire in Human Leukocyte Antigen Class I-Mismatched Alloreactive Immune Response. Front. Immunol. 2021, 11, 588741. [Google Scholar] [CrossRef] [PubMed]
- Afzali, B.; Lombardi, G.; Lechler, R.I. Pathways of Major Histocompatibility Complex Allorecognition. Curr. Opin. Organ Transplant. 2008, 13, 438–444. [Google Scholar] [CrossRef] [Green Version]
- Glanville, J.; Huang, H.; Nau, A.; Hatton, O.; Wagar, L.E.; Rubelt, F.; Ji, X.; Han, A.; Krams, S.M.; Pettus, C.; et al. Identifying Specificity Groups in the T Cell Receptor Repertoire. Nature 2017, 547, 94–98. [Google Scholar] [CrossRef] [Green Version]
- Madi, A.; Poran, A.; Shifrut, E.; Reich-Zeliger, S.; Greenstein, E.; Zaretsky, I.; Arnon, T.; Laethem, F.V.; Singer, A.; Lu, J.; et al. T Cell Receptor Repertoires of Mice and Humans Are Clustered in Similarity Networks around Conserved Public CDR3 Sequences. eLife 2017, 6, e22057. [Google Scholar] [CrossRef] [PubMed]
- Amoriello, R.; Chernigovskaya, M.; Greiff, V.; Carnasciali, A.; Massacesi, L.; Barilaro, A.; Repice, A.M.; Biagioli, T.; Aldinucci, A.; Muraro, P.A.; et al. TCR Repertoire Diversity in Multiple Sclerosis: High-Dimensional Bioinformatics Analysis of Sequences from Brain, Cerebrospinal Fluid and Peripheral Blood. EBioMedicine 2021, 68. [Google Scholar] [CrossRef]
- Huang, H.; Wang, C.; Rubelt, F.; Scriba, T.J.; Davis, M.M. Analyzing the Mycobacterium Tuberculosis Immune Response by T-Cell Receptor Clustering with GLIPH2 and Genome-Wide Antigen Screening. Nat. Biotechnol. 2020, 38, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Benichou, G.; Gonzalez, B.; Marino, J.; Ayasoufi, K.; Valujskikh, A. Role of Memory T Cells in Allograft Rejection and Tolerance. Front. Immunol. 2017, 8, 170. [Google Scholar] [CrossRef] [Green Version]
- Amir, A.L.; D’Orsogna, L.J.A.; Roelen, D.L.; van Loenen, M.M.; Hagedoorn, R.S.; de Boer, R.; van der Hoorn, M.A.W.G.; Kester, M.G.D.; Doxiadis, I.I.N.; Falkenburg, J.H.F.; et al. Allo-HLA Reactivity of Virus-Specific Memory T Cells Is Common. Blood 2010, 115, 3146–3157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pantenburg, B.; Heinzel, F.; Das, L.; Heeger, P.S.; Valujskikh, A. T Cells Primed by Leishmania Major Infection Cross-React with Alloantigens and Alter the Course of Allograft Rejection. J. Immunol. 2002, 169, 3686–3693. [Google Scholar] [CrossRef] [PubMed]
- D’Orsogna, L.J.; Roelen, D.L.; Doxiadis, I.I.N.; Claas, F.H.J. TCR Cross-Reactivity and Allorecognition: New Insights into the Immunogenetics of Allorecognition. Immunogenetics 2012, 64, 77–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shugay, M.; Bagaev, D.V.; Zvyagin, I.V.; Vroomans, R.M.; Crawford, J.C.; Dolton, G.; Komech, E.A.; Sycheva, A.L.; Koneva, A.E.; Egorov, E.S.; et al. VDJdb: A Curated Database of T-Cell Receptor Sequences with Known Antigen Specificity. Nucleic Acids Res. 2018, 46, D419–D427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tickotsky, N.; Sagiv, T.; Prilusky, J.; Shifrut, E.; Friedman, N. McPAS-TCR: A Manually Curated Catalogue of Pathology-Associated T Cell Receptor Sequences. Bioinformatics 2017, 33, 2924–2929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arrieta-Bolaños, E.; Crivello, P.; Metzing, M.; Meurer, T.; Ahci, M.; Rytlewski, J.; Vignali, M.; Yusko, E.; van Balen, P.; Horn, P.A.; et al. Alloreactive T Cell Receptor Diversity against Structurally Similar or Dissimilar HLA-DP Antigens Assessed by Deep Sequencing. Front. Immunol. 2018, 9, 280. [Google Scholar] [CrossRef] [Green Version]
- Ayala García, M.A.; González Yebra, B.; López Flores, A.L.; Guaní Guerra, E. The Major Histocompatibility Complex in Transplantation. J. Transplant. 2012, 2012, 842141. [Google Scholar] [CrossRef]
- Ali, J.M.; Negus, M.C.; Conlon, T.M.; Harper, I.G.; Qureshi, M.S.; Motallebzadeh, R.; Willis, R.; Saeb-Parsy, K.; Bolton, E.M.; Bradley, J.A.; et al. Diversity of the CD4 T Cell Alloresponse: The Short and the Long of It. Cell Rep. 2016, 14, 1232–1245. [Google Scholar] [CrossRef] [Green Version]
- Minervina, A.A.; Pogorelyy, M.V.; Komech, E.A.; Karnaukhov, V.K.; Bacher, P.; Rosati, E.; Franke, A.; Chudakov, D.M.; Mamedov, I.Z.; Lebedev, Y.B.; et al. Primary and Secondary Anti-Viral Response Captured by the Dynamics and Phenotype of Individual T Cell Clones. eLife 2020, 9, e53704. [Google Scholar] [CrossRef]
- Pogorelyy, M.V.; Minervina, A.A.; Touzel, M.P.; Sycheva, A.L.; Komech, E.A.; Kovalenko, E.I.; Karganova, G.G.; Egorov, E.S.; Komkov, A.Y.; Chudakov, D.M.; et al. Precise Tracking of Vaccine-Responding T Cell Clones Reveals Convergent and Personalized Response in Identical Twins. Proc. Natl. Acad. Sci. USA 2018, 115, 12704–12709. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; de Jonge, N.; Doornewaard, H.; Gmelig-Meyling, F.H.; Tilanus, M.G.; Bosboom, K.; Robertus, M.; Plomp, S.; van Reijsen, F.C.; Laphor, J.R. Cytotoxic T Lymphocytes Infiltrating the Human Cardiac Allograft Show a Restriction in T-Cell Receptor V Beta Gene Usage: A Study on Serial Biopsy and Blood Specimens. J. Heart Lung Transplant. 1994, 13, 1058–1071. [Google Scholar]
- Scifo, C.; Mekaelian, L.; Munyazesa, E.; Schmitt-Verhulst, A.-M.; Guimezanes, A. Selection of T-Cell Receptors with a Recurrent CDR3β Peptide-Contact Motif within the Repertoire of Alloreactive CD8(+) T Cells. Eur. J. Immunol. 2011, 41, 2414–2423. [Google Scholar] [CrossRef] [PubMed]
- Sebille, F.; Gagne, K.; Guillet, M.; Degauque, N.; Pallier, A.; Brouard, S.; Vanhove, B.; Delsuc, M.-A.; Soulillou, J.-P. Direct Recognition of Foreign MHC Determinants by Naive T Cells Mobilizes Specific Vβ Families without Skewing of the Complementarity-Determining Region 3 Length Distribution1. J. Immunol. 2001, 167, 3082–3088. [Google Scholar] [CrossRef]
- George, A.; Dazzi, F.; Lynch, J.; Sidhu, S.; Marelli, F.; Batchelor, R.J.; Lombardi, G.; Lechler, R.I. Biased TCR Gene Usage in Alloreactive T Cells Specific for a Structurally Dissimilar MHC Alloantigen. Int. Immunol. 1994, 6, 1785–1790. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, K.; Kwok, W.W.; Mickelson, E.M.; Masewicz, S.; Smith, F.; Nepom, G.T. Selective T-Cell-Receptor Gene Usage in Allorecognition and Graft-versus-Host Disease. Transplantation 1993, 55, 1167–1175. [Google Scholar] [CrossRef] [PubMed]
- Pannetier, C.; Cochet, M.; Darche, S.; Casrouge, A.; Zöller, M.; Kourilsky, P. The Sizes of the CDR3 Hypervariable Regions of the Murine T-Cell Receptor Beta Chains Vary as a Function of the Recombined Germ-Line Segments. Proc. Natl. Acad. Sci. USA 1993, 90, 4319–4323. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Zeng, P.; Zhang, X.; Chen, J.; Liang, Y.; Yang, J.; Yang, Y.; Liu, X.; Diao, H. Shorter TCR β-Chains Are Highly Enriched During Thymic Selection and Antigen-Driven Selection. Front. Immunol. 2019, 10, 299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, D.R.; Borbulevych, O.Y.; Piepenbrink, K.H.; Corcelli, S.A.; Baker, B.M. Disparate Degrees of Hypervariable Loop Flexibility Control T-Cell Receptor Cross-Reactivity, Specificity, and Binding Mechanism. J. Mol. Biol. 2011, 414, 385–400. [Google Scholar] [CrossRef] [Green Version]
- Cole, D.K.; Miles, K.M.; Madura, F.; Holland, C.J.; Schauenburg, A.J.A.; Godkin, A.J.; Bulek, A.M.; Fuller, A.; Akpovwa, H.J.E.; Pymm, P.G.; et al. T-Cell Receptor (TCR)-Peptide Specificity Overrides Affinity-Enhancing TCR-Major Histocompatibility Complex Interactions. J. Biol. Chem. 2014, 289, 628–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcus, A.; Eshhar, Z. Tumor-Specific Allogeneic Cells for Cancer Therapy. Expert Opin. Biol. Ther. 2011, 11, 1551–1554. [Google Scholar] [CrossRef]
- Furukawa, Y.; Hamano, Y.; Shirane, S.; Kinoshita, S.; Azusawa, Y.; Ando, J.; Nakauchi, H.; Ando, M. Advances in Allogeneic Cancer Cell Therapy and Future Perspectives on “Off-the-Shelf” T Cell Therapy Using IPSC Technology and Gene Editing. Cells 2022, 11, 269. [Google Scholar] [CrossRef]
- Abdelrahim, M.; Esmail, A.; Abudayyeh, A.; Murakami, N.; Saharia, A.; McMillan, R.; Victor, D.; Kodali, S.; Shetty, A.; Nolte Fong, J.V.; et al. Transplant Oncology: An Evolving Field in Cancer Care. Cancers 2021, 13, 4911. [Google Scholar] [CrossRef] [PubMed]
- Bolotin, D.A.; Poslavsky, S.; Mitrophanov, I.; Shugay, M.; Mamedov, I.Z.; Putintseva, E.V.; Chudakov, D.M. MiXCR: Software for Comprehensive Adaptive Immunity Profiling. Nat. Methods 2015, 12, 380–381. [Google Scholar] [CrossRef]
- Samokhina, M.; Popov, A.; Ivan-Immunomind; Nazarov, V.I.; Immunarch, B.; Rumynskiy, E.; Gracecodeadventures; Tsvvas; Zarodniuk, M. Immunomind/Immunarch: Immunarch 0.9.0 2022. Available online: https://immunarch.com/ (accessed on 26 July 2023).
- Tarazona, S.; Furió-Tarí, P.; Turrà, D.; Pietro, A.D.; Nueda, M.J.; Ferrer, A.; Conesa, A. Data Quality Aware Analysis of Differential Expression in RNA-Seq with NOISeq R/Bioc Package. Nucleic Acids Res. 2015, 43, e140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardcastle, T.J.; Kelly, K.A. BaySeq: Empirical Bayesian Methods for Identifying Differential Expression in Sequence Count Data. BMC Bioinform. 2010, 11, 422. [Google Scholar] [CrossRef] [Green Version]
- Csardi, G.; Nepusz, T. The Igraph Software Package for Complex Network Research. InterJ. Complex Syst. 2005, 1695, 1–9. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tereshchenko, V.; Shevyrev, D.; Fisher, M.; Bulygin, A.; Khantakova, J.; Sennikov, S. TCR Sequencing in Mouse Models of Allorecognition Unveils the Features of Directly and Indirectly Activated Clonotypes. Int. J. Mol. Sci. 2023, 24, 12075. https://doi.org/10.3390/ijms241512075
Tereshchenko V, Shevyrev D, Fisher M, Bulygin A, Khantakova J, Sennikov S. TCR Sequencing in Mouse Models of Allorecognition Unveils the Features of Directly and Indirectly Activated Clonotypes. International Journal of Molecular Sciences. 2023; 24(15):12075. https://doi.org/10.3390/ijms241512075
Chicago/Turabian StyleTereshchenko, Valeriy, Daniil Shevyrev, Marina Fisher, Aleksei Bulygin, Julia Khantakova, and Sergey Sennikov. 2023. "TCR Sequencing in Mouse Models of Allorecognition Unveils the Features of Directly and Indirectly Activated Clonotypes" International Journal of Molecular Sciences 24, no. 15: 12075. https://doi.org/10.3390/ijms241512075
APA StyleTereshchenko, V., Shevyrev, D., Fisher, M., Bulygin, A., Khantakova, J., & Sennikov, S. (2023). TCR Sequencing in Mouse Models of Allorecognition Unveils the Features of Directly and Indirectly Activated Clonotypes. International Journal of Molecular Sciences, 24(15), 12075. https://doi.org/10.3390/ijms241512075