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Abstract: Venous thromboembolism (VTE), a common condition in Western countries, is a cardiovas-
cular disorder that arises due to haemostatic irregularities, which lead to thrombus generation inside
veins. Even with successful treatment, the resulting disease spectrum of complications considerably
affects the patient’s quality of life, potentially leading to death. Cumulative data indicate that long
non-coding RNAs (lncRNAs) may have a role in VTE pathogenesis. However, the clinical usefulness
of these RNAs as biomarkers and potential therapeutic targets for VTE management is yet unclear.
Thus, this article reviewed the emerging evidence on lncRNAs associated with VTE and with the
activity of the coagulation system, which has a central role in disease pathogenesis. Until now, ten
lncRNAs have been implicated in VTE pathogenesis, among which MALAT1 is the one with more ev-
idence. Meanwhile, five lncRNAs have been reported to affect the expression of TFPI2, an important
anticoagulant protein, but none with a described role in VTE development. More investigation in this
field is needed as lncRNAs may help dissect VTE pathways, aiding in disease prediction, prevention
and treatment.

Keywords: RNA; long non-coding; venous thromboembolism; deep vein thrombosis; tissue-factor-
pathway inhibitor 2

1. Introduction

The blood circulatory system (or the cardiovascular system) is responsible for trans-
porting and delivering various compounds, including nutrients and gases, being also
engaged in removing waste products [1]. As such, ensuring the integrity of the blood
vessels in this complex network is vital, a function carried out by the haemostatic system,
which allows continuous blood circulation [2].

Haemostasis is a complex and dynamic process that rapidly responds to vascular injury.
Several biochemical and cellular processes are triggered following vascular damage to
form a blood clot, a process known as blood coagulation or blood clotting. This mechanism
allows for the stopping of blood loss, restores haemostasis and initiates vascular repair [3].
Haemostasis is, however, under tight regulation to limit blood coagulation to sites of
vascular damage, preventing haemorrhage and the formation of unnecessary blood clots
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known as thrombi. The generation of a thrombus (i.e., thrombosis) can be life-threatening
as it might restrict or even block the blood circulation inside the vessels, preventing the
transportation of compounds and exchange of gases [4,5]. Thus, proclotting and anticlotting
mechanisms that regulate haemostasis must be balanced to avoid excessive bleeding and
blood clotting. To maintain the haemostatic balance, four key players—vascular endothelial
cells (vECs), platelets, coagulation cascade, and fibrinolytic system—interact in an intricate
and tightly controlled manner (Figure 1). The damage to blood vessels activates platelets,
which adhere to the exposed subendothelial matrix. Simultaneously, the coagulation
cascade, a chain of enzymatic reactions that culminate in fibrin generation, is triggered
to stabilize the platelet plug with fibrin and form a blood clot at the injury site to stop
the bleeding [3,6]. Subsequently, the fibrinolytic system is responsible for clot lysis (i.e.,
fibrinolysis), which prevents thrombosis and restores blood flow. The vECs, in turn, express
and/or release a set of proteins that modulate the platelet activity, the coagulation cascade
and fibrinolysis towards haemostasis restoration [6]. As expected, when one of these
four components is malfunctioning, the haemostatic balance can be disturbed, leading to
bleeding or thrombotic disorders [5].
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Deep venous thrombosis (DVT) and pulmonary embolism (PE) are two thrombotic
events that collectively are known as venous thromboembolism (VTE). The former occurs
when a thrombus forms within a deep vein (usually leg veins), leading to abnormal
swelling and ulceration [7–10]. As for PE, this is a frequent complication of DVT that occurs
when the thrombus migrates to the lungs, representing the most fatal VTE manifestation.
Worldwide, every year VTE affects nearly ten million people [10]. If not treated properly,
this cardiovascular disorder can be lethal, resulting in approximately 15% of mortality
within the first three months following diagnosis [8–10]. However, even with successful
treatment, the disease is also associated with a spectrum of potential complications that
lead to substantial morbidity, namely VTE recurrent events, post-thrombotic syndrome,
pulmonary hypertension, major bleeding under anticoagulation therapy and long-term
disability [11,12]. Currently, anticoagulation therapy is the standard therapeutic approach
for VTE, which, however, has proven to not always be efficient in the removal of the
existing thrombus. Thus, it is crucial to dissect the molecular pathways involved in
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VTE pathogenesis to identify novel biomarkers and improve risk stratification, disease
prevention and treatment [7,12,13].

Like other common diseases in the general population, VTE has a complex patho-
physiology with both acquired and genetic risk determinants modulating the disease’s
susceptibility. Advanced age, physical trauma, immobilization and active cancer constitute
the most common acquired risk factors [11,14,15]. As for genetic factors, Factor V Leiden
gene polymorphism (F5 rs6025), prothrombin gene polymorphism 20210 (F2 rs1799963),
mutations causing inherited deficiencies of antithrombin, protein C and protein S, as well
as the antiphospholipid antibody syndrome, account for about 7% to 22% of the elderly
population attributable risk [14,15]. These factors can trigger what is known as Virchow’s
triad, which encompasses three conditions that prompt VTE development, namely blood
hypercoagulability, stasis of blood flow within the vessels (i.e., venous stasis) and vascular
endothelial damage [16].

The most clinically used biomarker for VTE risk prediction and diagnosis is D-dimer
(DD), which is a product resultant from the breakdown of cross-linked fibrin (i.e., fibrinoly-
sis) [17]. In addition to the first VTE events, DD is also associated with the rate of recurrent
events and mortality [18]. This thrombotic biomarker was first identified in the 1980s and
has since been used in clinical practice for the diagnosis of VTE, particularly given its long
half-life [17,19]. However, DD levels are significantly elevated in several other conditions,
such as inflammation, stroke, long hospitalization periods and individuals’ advanced age,
being unspecific of VTE presence [17,19,20]. To improve the specificity in detection, since
DD alone is insufficient to confirm a diagnosis of VTE, elevated DD levels are followed by
other diagnostic methods, including duplex ultrasonography for DVT and/or computed
tomography for PE diagnosis [21,22]. Other suggested VTE biomarkers include markers for
thrombophilia, for instance, soluble P-selectin and C-reactive protein (CRP). However, these
biomarkers are still under evaluation and can lack specificity and/or sensitivity [23,24].
Thus, novel and trustworthy biomarkers are required to reduce the time of diagnosis and
consequently improve the morbidity and mortality rates associated with VTE. Recently,
emerging evidence suggested a role of long non-coding RNAs (lncRNAs) in the disease’s
pathogenesis. This class of non-coding RNAs (ncRNAs) has the potential to expand our
knowledge about VTE, and they represent attractive novel biomarkers of this disorder.
Thus, in this narrative review, the discussion focus was the role of lncRNAs in VTE devel-
opment and their implications in the haemostatic system, aiming to assess their potential
clinical application as biomarkers and/or therapeutic targets in VTE management. To do
so, a PubMed search without time restriction was performed using combinations of the
terms “long non-coding RNA”, “lncRNA”, “venous thromboembolism”, “deep vein throm-
bosis”, “deep venous thrombosis”, “pulmonary embolism”, “thrombosis”, “haemostasis”,
“coagulation”, “tissue factor” and “tissue factor pathway inhibitor” anywhere in the article.
Relevant publications were also found by cross-referencing the bibliographic references of
the retrieved papers. The identified scientific articles were published in the last six years
(from 2017 to 2023).

2. LncRNAs: A Novel Epigenetic Regulator in VTE

LncRNAs are ncRNAs longer than 200 nucleotides with the particularity of forming
secondary structures, which enables them to bind to other biomolecules such as DNA,
RNA and even proteins, thus affecting gene expression at different levels [25–28]. Another
feature of these ncRNAs is the fact that they can function in the nucleus, where they
are transcribed, but also at the cytoplasm, with most of them operating in both. In fact,
lncRNAs can move between the two compartments in response to signals, even though the
underlying mechanisms are unclear [29].

Similarly to messenger RNAs (mRNAs), lncRNAs are also transcribed by RNA Poly-
merase II and are often capped and polyadenylated, also presenting evolutionarily con-
served patterns and a high level of tissue specificity [28]. According to the NONCODE
database (version 6.0) (http://www.noncode.org, accessed on 24 May 2023), there are
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96,411 human lncRNA genes [30]. Based on their genomic position, orientation and relative
location to nearby protein-coding genes, these ncRNAs can be classified as intergenic,
sense, antisense, intronic and bi-directional (Figure 2) [29]. Specifically, intergenic lncR-
NAs (lincRNAs), as the name indicates, do not overlap with any other genes [31]. As for
those that do overlap, they can be sense or antisense depending on whether they possess
sequence elements that will pair with other RNAs in the same or the opposite direction,
respectively [32,33]. Intronic lncRNAs are located within the introns of other genes, while
bi-directional lncRNAs correspond to those that are transcribed from the same region
in the genome as another gene but in the opposite direction [29]. In addition to linear
lncRNAs, another class is circular lncRNAs, which are formed by back-splicing of coding
and non-coding transcripts [34].
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Despite the inconsistency in classification, the roles of lncRNAs in gene expression
regulation can be divided into four main non-exclusive archetypes: signalling, decoy, guide
and scaffold functions (Figure 3) [26]. As signalling molecules, lncRNAs can operate as spa-
tiotemporal markers, reflecting the biological effects of transcription factors or signalling
pathways. As decoys, lncRNAs can sequester transcription factors and other proteins
into nuclear subdomains or away from chromatin. Decoy lncRNAs can also operate as
competitive endogenous RNAs (ceRNAs), functioning as microRNA (miRNA or miR)
sponges, consequently influencing the expression of miRNAs’ targets (mRNAs). On the
other hand, guide lncRNAs can recruit RNA-binding proteins to target genes, while scaf-
folds may bring together several proteins to build complexes with specific biological roles,
influencing transcription. Of note, lncRNAs localized in the nucleus can modify chromatin,
activate or repress transcription of target genes by interacting with DNA sequences or tran-
scription factors, while cytoplasmic lncRNAs are mostly associated with mRNA stability
and translation, promoting or repressing protein synthesis [28,35,36]. Specifically, in the
nucleus, lncRNAs are known to interact with DNA methyltransferases or demethylases,
influencing the addition (methylation) or removal of methyl groups (demethylation) on
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specific genomic regions. Consequently, DNA methylation/demethylation can then lead to
chromatin structure modifications [37]. Furthermore, lncRNAs can also directly mediate
histone modifications of target genes. By recruiting histone modification complexes, such
as histone methyltransferases or demethylases, to target gene promotor-associated bind-
ing sites, lncRNAs can induce changes in promotor histone modification patterns. These
complexes then add or remove specific histone marks, such as methylation, acetylation
or other modifications, on the histone tails. These modifications result in either a more
open or closed chromatin conformation at the target gene promotor [38]. Both mechanisms,
DNA methylation/demethylation and histone modifications, affect the accessibility of
genes to the transcriptional machinery [37,38]. The versatility in these functions (chromatin
regulation, transcriptional activation and repression, and RNA and protein modifications)
make lncRNAs important players in normal physiology and in the development of a variety
of diseases, such as cancer, cardiovascular and neurodegenerative diseases, in which their
dysregulated levels have been consistently observed [8,13,28,35,39–46].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 26 
 

 

demethylases, influencing the addition (methylation) or removal of methyl groups (de-

methylation) on specific genomic regions. Consequently, DNA methylation/demethyla-

tion can then lead to chromatin structure modifications [37]. Furthermore, lncRNAs can 

also directly mediate histone modifications of target genes. By recruiting histone modifi-

cation complexes, such as histone methyltransferases or demethylases, to target gene pro-

motor-associated binding sites, lncRNAs can induce changes in promotor histone modifi-

cation patterns. These complexes then add or remove specific histone marks, such as meth-

ylation, acetylation or other modifications, on the histone tails. These modifications result 

in either a more open or closed chromatin conformation at the target gene promotor [38]. 

Both mechanisms, DNA methylation/demethylation and histone modifications, affect the 

accessibility of genes to the transcriptional machinery [37,38]. The versatility in these func-

tions (chromatin regulation, transcriptional activation and repression, and RNA and pro-

tein modifications) make lncRNAs important players in normal physiology and in the de-

velopment of a variety of diseases, such as cancer, cardiovascular and neurodegenerative 

diseases, in which their dysregulated levels have been consistently observed 

[8,13,28,35,39–46].  

 

Figure 3. Four archetypes of lncRNAs functions. The figure was created with BioRender.com (ac-

cessed on 23 July 2023). 

The first report of a putative implication of lncRNAs in cardiovascular diseases came 

from genome-wide association studies (GWAS). These studies independently identified 

single-nucleotide polymorphisms (SNPs) located in a locus close to the protein-coding 

genes CDKN2A and CDKN2B as related to susceptibility to coronary artery disease 

[47,48]. This locus, which is in human chromosome 9p21, is adjacent to the lncRNA named 

antisense non-coding RNA in the INK4 locus (ANRIL), indicating a potential role of this 

lncRNA in coronary artery disease, which was later corroborated by subsequent studies 

[49]. Recently, reports have also suggested that the expression of lncRNAs is deregulated 

in VTE. Interestingly, most of the reported lncRNAs were linked to the activity of vECs. 

As Virchow’s triad postulates, endothelial injury is a major risk factor for thrombogenesis 

[50]. The vECs play important roles in the maintenance of haemostasis and thrombus 

Figure 3. Four archetypes of lncRNAs functions. The figure was created with BioRender.com
(accessed on 23 July 2023).

The first report of a putative implication of lncRNAs in cardiovascular diseases came
from genome-wide association studies (GWAS). These studies independently identified
single-nucleotide polymorphisms (SNPs) located in a locus close to the protein-coding genes
CDKN2A and CDKN2B as related to susceptibility to coronary artery disease [47,48]. This
locus, which is in human chromosome 9p21, is adjacent to the lncRNA named antisense
non-coding RNA in the INK4 locus (ANRIL), indicating a potential role of this lncRNA in
coronary artery disease, which was later corroborated by subsequent studies [49]. Recently,
reports have also suggested that the expression of lncRNAs is deregulated in VTE. Interest-
ingly, most of the reported lncRNAs were linked to the activity of vECs. As Virchow’s triad
postulates, endothelial injury is a major risk factor for thrombogenesis [50]. The vECs play
important roles in the maintenance of haemostasis and thrombus development [51]. In fact,
several studies have confirmed the close relationship between vECs and the occurrence
of DVT [52]. Under physiological conditions, these cells act as a barrier, preventing coag-
ulation factors and platelets from activating and forming blood clots. Additionally, they
secrete anticoagulant factors such as tissue factor pathway inhibitor (TFPI), nitric oxide
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(NO) and prostacyclin. They also exert an anticoagulant activity by expressing molecules
such as heparin-like molecules, as well as thrombomodulin (TM) and endothelial protein
C receptor (EPCR), both implicated in the protein C anticoagulant pathway that leads to
the inactivation coagulation factors Va (FVa) and VIIIa (FVIIIa). Besides the anticoagulant
activity, vECs also favour fibrinolysis via tissue-type plasminogen activator (tPA) produc-
tion, which by converting plasminogen to plasmin, dissolves fibrin clots [53]. Contrarily,
under pathological conditions (for instance, inflammation), vECs can express adhesion
molecules such as P-selectin, which facilitates blood clot formation. Inclusively, under these
conditions, these cells can become dysfunctional, which compromises their antithrombotic
properties, increasing VTE risk [54–57].

In addition to mature vECs, two cell populations are of relevance when it comes to
dissecting the endothelium biology, namely the endothelial progenitor cells (EPCs) and
human umbilical vein endothelial cells (HUVECs) (Figure 4). The former are multipotent
cells derived from bone marrow that circulate in the peripheral blood and can differentiate
into mature vECs when needed [13,52]. Inclusively, studies have already shown that
EPCs have the potential to prevent thrombus propagation and recurrence and to promote
endothelial regeneration, revascularization and vein wall remodelling [52,58]. When there
is a vascular injury, a series of mechanisms are triggered to repair the damage. One of
these mechanisms is angiogenesis, during which new vessels are formed from pre-existing
ones, allowing the restoration of normal vascular function and thrombus resolution [53,59].
During this process, several angiogenic factors are released, such as vascular endothelial
growth factors (VEGFs), fibroblast growth factors (FGFs) and platelet-derived growth
factors (PDGFs), which together promote angiogenesis and stimulate the proliferation and
migration of vECs to the injury site to help in the repair process [57]. Additionally, vECs
can bind to platelets and inhibit their role in thrombus formation [60]. Taken together, these
cells might be a promising therapeutic approach for patients for whom DVT treatments are
unsuccessful [7]. As for HUVECs, they are primary cells present in the vein of the umbilical
cord. These cells are commonly used as a model system for studying the biology of the
endothelium and its response to environmental cues, angiogenesis and the development of
cardiovascular diseases [61,62].
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To the best of our knowledge, a total of 13 studies from 2017 to 2023 were performed,
pinpointing a total of ten lncRNAs implicated in venous thrombosis (Table 1).

2.1. ANRIL

ANRIL, also known as CDKN2B antisense RNA 1 (CDKN2B-AS1), is a lncRNA first
identified in patients with hereditary melanoma and neural system tumour. Moreover,
ANRIL is implicated in other diseases, such as atherosclerosis and cancer [63–66]. This
antisense lncRNA is highly expressed in the HUVEC autophagy model. Although its
roles in thrombosis are not entirely understood, ANRIL is suggested to modulate TM
expression [53,67]. By cooperating with protein C and thrombin activable fibrinolysis
inhibitor (TAFI), TM is important in the maintenance of the endothelial microenvironment.
More specifically, TM exhibits anticoagulant and anti-inflammatory properties. Also, it
enhances fibrinolysis and improves the endothelium barrier function, overall inhibiting
thrombosis [53,68]. Zeng et al. [67] reported that ANRIL is highly expressed among patients
with thrombosis. As having a “decoy” archetype, the authors indicated that this lncRNA
might act as a ceRNA, sponging miR-99a and miR-449a in the thrombus. This mechanism
consequently promotes the activation of beclin-1 while significantly increasing the levels
of TM. Through these mechanisms, the authors suggested that ANRIL could promote
angiogenesis and thrombosis, which seems to be conflicted. As this lncRNA was evaluated
in the presence of thrombi (thrombosis patients versus healthy individuals), the data should
be analysed with caution since the lncRNA might be related to thrombus resolution rather
than thrombus formation. This would explain the TM upregulation. Another limitation of
the study is the fact that the authors fail to differentiate the different types of thrombotic
events considered in the study. To be noted, ANRIL has also been associated with different
manifestations of arterial thrombosis [69,70]. Overall, more studies are needed to clarify
the role of ANRIL in venous thrombosis.

2.2. GUSBP5-AS

The recently identified lncRNA GUSB pseudogene 5 antisense (GUSBP5-AS) was
shown to be upregulated in EPCs among DVT patients [7,13]. Acting as a decoy, this
ncRNA is reported to sponge miR-223-3p, which targets forkhead box protein O1 (FOXO1).
This leads to the activation of the AKT pathway, which enhances fibroblast growth factor
2 (FGF2), matrix metalloproteinase-2/9 (MMP2/9) and F-actin expression, promoting
angiogenesis, EPC migration and invasion while reducing the apoptosis of these cells.
As previously mentioned, these mechanisms are important for thrombus resolution and
recanalization, as well as to improve the home ability of EPCs to thrombosis sites. Taken
together, GUSBP5-AS seems to promote thrombus resolution and, thus, might help pinpoint
a new potential therapeutic approach for DVT [7].

2.3. MEG9

The lncRNA maternally expressed gene 9 (MEG9) is suggested to protect the vascu-
lature from DNA damage, according to an abstract. While DNA-damaging agents are
known to induce the expression of this lncRNA, vascular growth factors have the opposite
effect. The knockdown of MEG9 inhibits proapoptotic proteins, increases vEC death and
decreases sprouting angiogenesis, implying that MEG9 might have a regulatory role in
thrombosis since its inhibition in vECs accelerated fibrin formation [71]. Even though the
available data about this lncRNA remains scarce, this abstract, together with other findings,
indicates that MEG9 in vECs might impact pathways associated with inflammation and
thrombosis [71–74]. More studies are required to explore the role of this lncRNA in VTE
pathogenesis.

2.4. MALAT1

The lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), as
the name indicates, was first identified in non-small cell lung cancer (NSCLC) and in
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association with lung cancer metastasis [75]. Since then, this lincRNA has been intensively
studied, with reports of its deregulation in several conditions, such as cancer and Parkin-
son’s disease [9,76–81]. Concerning vascular disease pathogenesis, MALAT1 has been
pointed out as a major player due to its downregulation in atherosclerotic plaques and its
association with vEC function [8,82]. There has been a growing interest in understanding
the mechanisms through which MALAT1 manages to impact DVT. The performed studies
had, however, inconsistent results, which led to the hypothesis that MALAT1 may have
a dual role in thrombosis. On the one hand, this lncRNA was found to be upregulated
in DVT through regulation of the activity and behaviour of EPCs [8,9]. Concordantly,
in the same study, silenced MALAT1 enhanced the growth, migration and survival of
EPCs. Those changes were reversed when the Wnt/β-catenin signalling pathway was
inhibited, suggesting that this pathway is a potential downstream target of MALAT1 in
DVT. Thus, the MALAT1/Wnt/β-catenin axis might be a promising novel therapeutic
target for DVT treatment [8]. In another study, MALAT1 modulated HUVEC apoptosis
by regulating the miR-383-5p/BCL2-like 11 (BCL2L11) axis in DVT. When overexpressed,
this lncRNA repressed miR-383-5p, which otherwise would target BCL2L11, suggesting
this ncRNA as a decoy. In turn, higher levels of BCL2L11 reduced cell viability and in-
creased vEC apoptosis. Therefore, the MALAT1/miR-383-5p/BCL2L11 axis might also be
effective for DVT management [9]. A more recent study investigated the mechanisms by
which MALAT1 affects platelet activity and thrombus formation, as this is one of the most
abundant lncRNAs in platelets. According to the results, platelet deficiency of MALAT1
was reported to enhance platelet adhesion and aggravate thrombus generation through
the phosphoinositide 3-kinase (PI3K)/AKT/Glycogen synthase kinase-3 beta (GSK-3β)
signalling pathway, which contradicts the previous findings [83]. Taken together, the data
indicate that MALAT1 might have a context-dependent role in DVT pathways. Additional
studies are needed to better comprehend its implications in thrombogenesis, as this lncRNA
seems to be a promising biomarker and therapeutic target for DVT.

2.5. SIRT1-AS

Sirt1 antisense lncRNA (Sirt1-AS) was first identified in 2014 and is implicated in myo-
genesis via the regulation of silent information regulator 1 (Sirt1) expression [84]. Sirt1 is a
NAD+-dependent lysine deacetylase (member of the sirtuins family) activated in response
to cellular stress. This enzyme is known to inhibit the development of several diseases,
such as pulmonary fibrosis and cerebral ischemia, including also thrombotic events, by
regulating the activity of platelets and vECs [85–88]. Specifically, sirt1-AS can bind and
overlap with the 3′ untranslated region (3′-UTR) of Sirt1 mRNA, forming a lncRNA-mRNA
duplex, acting as a guide able to increase Sirt1 stability and expression. By promoting Sirt1
expression, Sirt1-AS can suppress the development of endothelial ageing and alleviate
the formation of thrombus by improving the viability and proliferation of HUVECs [37].
Concordantly, in patients with DVT, Sirt1-AS is reported to be downregulated, which may
affect Sirt1 abundance leading to an increased risk of thrombotic events [37,89,90]. Overall,
the current evidence suggests that Sirt1-AS could be a potential DVT biomarker [37].

2.6. LINC01123

Long intergenic non-protein coding RNA 1123 (LINC01123) is known to act as an
oncogene [91–93]. This lincRNA is also reported to play a role in carotid atherosclerosis
by promoting cell proliferation and migration [94]. In a recent study, LINC01123 was
shown to have a relevant role in lower extremity DVT (LEDVT) in rats via the miR-125a-
3p/interleukin-1 receptor type 1 (IL1R1) axis. By sponging miR-125a-3p, which targets
IL1R1, LINC01123 is associated with a rise in the length and weight of the thrombus,
as well as higher levels of pro-inflammatory cytokines, namely interleukin-6 (IL-6) and
interleukin-8 (IL-8). This, in turn, favours inflammatory cell infiltration, thrombosis in the
lumen, and collagen fibre hyperplasia, which collectively leads to thrombo-inflammation in
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the setting of LEDVT. The findings might give some insights into novel treatment options
for patients with this condition [95].

2.7. TUG1

LncRNA taurine upregulated gene 1 (TUG1) was first identified as upregulated in
developing retinal cells and in response to taurine (2-aminoethanesulfonie acid) [96]. This
lncRNA is also implicated in other conditions, namely colorectal cancer and obesity-related
diseases [97,98]. More recently, TUG1 was shown to have a poor expression in DVT
mice. However, by downregulating miR-92a-3p and subsequently upregulating the 3-
hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) pathway (known to regulate
angiogenesis), TUG1 overexpression was able to accelerate the proliferation, migration
and tube-forming abilities of EPCs, while decreasing their apoptosis and the thrombus
size. Collectively, this lncRNA, by serving as a decoy, seems to exert a protective effect
against DVT and provide femoral vein pathological damage. Thus, the TUG1/miR-92a-
3p/HMGCR cascade might open new perspectives to treat DVT [58].

2.8. XIST

The lncRNA X inactive-specific transcript (XIST) is one of the most studied lncR-
NAs, known to be required for X-chromosomal inactivation during early development
for dosage compensation [99]. In addition, XIST is also associated with preeclampsia and
cancer [100,101]. This lncRNA was found to be highly expressed in the plasma of DVT
patients, possibly acting as a decoy by sponging miR-103a-3p, which in turn, targets high-
mobility group box 1 (HMGB1) [102]. Concordantly, miR-103a-3p expression was found to
be reduced in patients with unprovoked VTE [103]. In DVT, lower levels of this microRNA
inhibited normal functions of EPCs, such as migration and angiogenesis [104]. On the other
hand, higher miR-103a-3p expression levels, together with lower levels of chemokine 12
(CXCL12), inhibited the development of LEDVT, which is in line with previous data [105].
As for HMGB1, its levels are highly expressed in DVT patients. This nuclear protein is
one of the main regulators of the coagulation cascade, also known to induce inflammatory
reactions and play a part in apoptosis. In thrombosis, HMGB1 has a pro-thrombotic effect
as it promotes both the activation and aggregation of platelets [102,106]. Also, via the
XIST/miR-103a-3p/HMGB1 axis, XIST may regulate the expression of tissue factor (TF,
also known as thromboplastin or coagulation factor III (FIII)) in HUVECs induced by IL-1β,
as well as increase cell viability and hinder apoptosis by inhibiting the reactive oxygen
species (ROS)/nuclear factor κB (NF-κB) signalling pathway [102,107–109].

2.9. LINC00659 and UXT-AS1

LINC00659, a novel lncRNA, was found highly expressed for the first time in colorectal
cancer with implications in cancer cell growth and apoptosis, possibly through the PI3K-
AKT pathway [110]. More recently, this lncRNA was implicated in gastric cancer [111,112].
High altitude is known to activate the coagulation system, increasing the risk of developing
VTE, although there is still a lack of evidence regarding this matter. However, a pro-
thrombotic phenotype often occurs, mainly in travellers and mountaineers, possibly due
to the hypoxia state present at high altitudes, which increases platelet aggregation and
triggers blood coagulation [113–117]. In this context, Jha et al. [114] aimed to compare the
lncRNA expression profiles in the peripheral blood of human patients with DVT at high
altitudes with control subjects without DVT. According to the results, LINC00659 and UXT
antisense RNA 1 (UXT-AS1) were upregulated in DVT patients, possibly because both of
these lncRNAs sponge miR-15 and miR-143, which otherwise would inhibit the expression
of the pro-thrombotic genes serpin family E member 1 (SERPINE1) and hypoxia-inducible factor
1 subunit alpha (HIF1A). The former encodes for plasminogen activator inhibitor 1 (PAI-1), a
key inhibitor of fibrinolysis, by blocking the activation of plasminogen to plasmin [118].
On the other hand, HIF1 (encoded by HIF1A) regulates the activity of the NLR family
pyrin domain containing 3 (NLRP3) inflammasome, a protein complex involved in the
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formation of blood clots under hypoxia [119]. To be noted, as UXT-AS1 has no described
role in VTE other than DVT associated with high altitude, this lncRNA does not fit the
scope of this review. In another study, aiming to dissect the role of LINC00659 in vECs,
the lncRNA was also reported to target and downregulate miR-525-5p, which, in turn,
is known to downregulate BCL2 associated X, apoptosis regulator (Bax), a member of
the Bcl-2 family of proteins linked to apoptosis, suggesting its role as a decoy. Via this
mechanism, LINC00659 could inhibit the proliferation and cell viability of HUVECs and
promote their apoptosis. Thus, the authors revealed a potential mechanism through which
LINC00659 might impact DVT and indicate the LINC00659/miR-525-5p/Bax axis as a
potential new direction for the diagnosis and treatment of DVT [120]. In a more recent
study aimed to unravel the role of LINC00659 in LEDVT, the lncRNA, in addition to being
elevated both in inferior vena cava tissues and EPCs of patients with LEDVT, also inhibited
proliferation and migration of EPCs, as well as angiogenesis [121]. As an explanation, the
authors hypothesized that LINC00659 might bind to the promoter of eukaryotic translation
initiation factor 4A3 (EIF4A3) to upregulate its expression, suggesting that this ncRNA
acts as a guide to promote EIF4A3 expression. In turn, EIF4A3 represses fibroblast growth
factor 1 (FGF1) expression and facilitates its methylation through the recruitment of DNA
methyltransferases 3A (DNAMT3A) to its promoter region. As FGF1 promotes EPCs
viability and neovascularization in addition to its role in cell proliferation, migration,
invasion and angiogenesis, by repressing this protein, LINC00659 might increase the risk
for LEDVT development [122,123].

2.10. CRNDE

Long non-coding RNA Colorectal neoplasia differentially expressed (CRNDE) was
initially found to be upregulated in colorectal cancer tissues [124]. More recent studies have
indicated that this lncRNA is also implicated in other malignancies, in addition to regulating
vascular smooth muscle cell behaviour and inflammation and apoptosis in alcoholic liver
disease [125–128]. A recent study found that CRNDE and the prenylcysteine oxidase 1
(PCYOX1) were upregulated in the blood of DVT mice [129]. The protein PCYOX1 is an
enzyme involved in the breakdown of prenylated proteins found in vascular and blood cells.
Deficiency of PCYOX1 is suggested to cause platelet hypo-reactivity [130,131]. Thus, acting
as a decoy and through the sequestering of miR-181a-5p (targets PCYOX1), CRNDE might
lead to PCYOX1 upregulation, exacerbating thrombus formation and vascular inflammatory
injury in DVT [129].
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Table 1. LncRNAs with reported roles in VTE pathogenesis.

LncRNA Study LncRNA
Location 1

LncRNA
Expression in VTE

Sample/Compartment
or Study Model

LncRNA
Target Mechanism of Action LncRNA Function

in VTE

ANRIL Zeng et al. (China,
2019) [67] 9p21.3 ↑ HUVECs and rats ↓miR-99a

↓miR-449a

Increases beclin-1
expression via miR-99a
and miR-449a sponging

and upregulates
thrombomodulin

Promotes thrombosis

GUSBP5-AS Sun et al. (China,
2020) [7] 4q31.21 ↑ Human EPCs and

mice ↓miR-223-3p

Sponges miR-223-3p,
which targets FOXO1 and
activates the Akt pathway

and enhances FGF2,
MMP2/9 and F-actin

expression

Promotes DVT
resolution

MEG9 Espinosa-Diez et al.
(EUA, 2020) [73] 14q32.31 n.a ECs n.a Inhibits fibrin formation

Possibly has a
protective effect

against thrombosis

MALAT1

Du et al. (China,
2020) [8]

11q13.1

↑ Human EPCs Wnt/β-catenin
Reduces endothelial

function
Promotes DVT

Wang et al. (China,
2022) [9] HUVECs ↓miR-383-

5p/BCL2L11

Sun et al. (China,
2022) [83]

CD34+
megakaryocytes and

mice
PI3K/AKT/GSK-3β Inhibits platelet activity

and thrombus formation Inhibits DVT

Sirt1-AS Lou et al. (China,
2021) [39] 10q21.3 ↓ Patients’ blood, mice

and HUVECs ↑Sirt1

Suppresses the endothelial
ageing and alleviates the

thrombus formation
through Sirt1/FOXO3a

axis

Attenuates
ageing-related DVT

LincRNA 1123 Yang et al. (2022,
China) [95] 2q13 ↑ Rats ↓miR-125a-3p

Sponges miR-125a-3p,
which targets IL1R1,
facilitating thrombus

formation and inducing
higher levels of IL-6 and

IL-8

Promotes LEDVT
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Table 1. Cont.

LncRNA Study LncRNA
Location 1

LncRNA
Expression in VTE

Sample/Compartment
or Study Model

LncRNA
Target Mechanism of Action LncRNA Function

in VTE

TUG1 Feng et al. (China,
2022) [58] 22q12.2 ↓ Mice EPCs and mice ↓miR-92a-3p

Accelerates proliferation,
migration and

tube-forming abilities and
decreases apoptosis of

EPCs and thrombus size
through downregulation

of miR-91a-3p and
upregulation of HMGCR

Protects against DVT

XIST Cao et al. (China,
2022) [102] Xq13.2 ↑ Human plasma and

HUVECs ↓miR-103a-3p
Reduces ECs normal

functions through
miR-103a-3p sponging

Promotes DVT

LINC00659

Zhang et al. (China,
2023) [121]

20q13.33

↑
Human IVC tissue
samples, human
EPCs and mice

↑EIF4A3

Upregulates EIF4A3
expression and exacerbates
endothelial progenitor cell

dysfunction

Promotes LEDVT

Zhu et al. (China,
2023) [120] n.a HUVECs ↓miR-525-5p

Inhibits proliferation and
cell viability in HUVECs
through downregulation

of miR-525-5p, which
targets Bax

Possibly promotes
DVT, given its role in

HUVECs

CRNDE He et al. (China,
2023) [129] 16q12.2 ↑ Mice IVC ↓miR-181a-5p

Competitively bound to
and inhibits miR-181a-5p,

promoting Pcyox1l
expression and

aggravating thrombus
formation in DVT

Promotes DVT

Abbreviations: DVT, deep vein thrombosis; ECs, endothelial cells; EPCs, endothelial progenitor cells, HUVECs, human umbilical vein endothelial cells; IVC: inferior vena cava; LEDVT;
lower extremity deep vein thrombosis; lncRNA; long non-coding ribonucleic acid; n.a, not available; VTE, venous thromboembolism. 1 According to HGNC: HUGO Gene Nomenclature
Committee (https://www.genenames.org/, accessed on 20 May 2023) and Ensembl database (https://www.ensembl.org/index.html, accessed on 20 May 2023). LncRNA or target
expression: ↓ downregulated and ↑ upregulated.

https://www.genenames.org/
https://www.ensembl.org/index.html
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3. LncRNAs Targeting the Coagulation System

The coagulation system plays a leading role in VTE pathogenesis. Inclusively, as
previously mentioned, treatment with anticoagulants constitutes the standard therapeutic
approach to treat VTE events [132]. The most used anticoagulants are low molecular weight
heparin (LMWH), unfractionated heparin (UFH) and direct oral anticoagulants (DOACs).
LMWH and UFH bind to antithrombin III to inhibit the activity of several clotting factors,
namely thrombin (or activated coagulation factor II (FIIa)) and activated coagulation factor
X (FXa). On the other hand, DOACs act by inhibiting either thrombin or FXa, depending
on the drug used [133].

The coagulation cascade involves a series of sequential proteolytic activation reactions,
with a complex interplay between several proteins named coagulation factors that culminate
in fibrin formation. There are three major coagulation pathways: extrinsic (also called the
TF coagulation pathway) and intrinsic (contact coagulation pathway), which converge
on a common coagulation pathway [134]. Thromboplastin, or TF, is a transmembrane
protein located constitutively on the surface of all cells except for endothelial and blood
cells. When damage to blood vessels occurs, TF is released into the bloodstream, initiating
the extrinsic coagulation pathway. By combining coagulation factor VII (FVII), the complex
TF-FVII (extrinsic tenase complex) activates coagulation factor X (FX) [135]. FXa then
participates in the common coagulation pathway. On a phospholipid surface, FXa forms
a complex with activated coagulation factor V (FVa), known as prothrombinase complex,
that converts prothrombin (coagulation factor II (FII)) into thrombin. Next, thrombin
transforms fibrinogen (coagulation factor I (FI)) into fibrin (activated FI (FIa)) that deposits
at the vascular injury site, forming a network together with platelets to create a blood
clot [136]. Parallelly, the intrinsic coagulation pathway is initiated by factors released into
the surrounding damaged tissue and circulating blood after injury, such as collagen and
other negatively charged surfaces. Once activated, coagulation factor XII (FXII) activates
coagulation factor XI (FXI), which then activates coagulation factor IX (FIX). In the presence
of calcium ions (coagulation factor IV (FIV)), activated FIX (FIXa) forms a complex with
coagulation factor VIII (FVIII) that generate FXa [137]. Both extrinsic and intrinsic pathways
thus produce FXa, which then participates in the common coagulation pathway leading
to thrombin generation and, ultimately, fibrin deposition (Figure 5A) [136]. To be noted,
thrombin also activates TAFI, FV, FVIII, FXI and coagulation factor XII (FXIII), creating a
positive feedback loop that enhances clot formation. In addition, thrombin also promotes
platelet adhesion by inactivating a disintegrin and metalloprotease with thrombospondin
type 1 motif (ADAMTS13). On the other hand, this multifunction protein has anticoagulant
activity through the activation of protein C, a natural anticoagulant that regulates the blood
coagulation system through the inactivation of FVa and FVIIIa [138].

Until now, few studies have been conducted to identify lncRNAs targeting the co-
agulation system, which were focused on the tissue factor pathway inhibitor 2 (TFPI2).
As the name already indicates, TFPI is a serine protease inhibitor that blocks the activity
of the extrinsic or TF coagulation pathway [139]. Specifically, under physiological con-
ditions, this natural anticoagulant protein is known to damp coagulation by effectively
inhibiting the extrinsic tenase complex and the prothrombinase complex [140,141]. Beyond
coagulation disorders, deregulated levels of TFPI were shown in several diseases, such
as cancer, diabetes mellitus and renal diseases [142–150]. Tissue factor pathway inhibitor
1 (TFPI1) and TFPI2 are two distinct coagulation inhibitors (encoded by different genes)
with the role of maintaining the haemostatic balance [151]. Alternative splicing of TFPI1
leads to the synthesis of two primary isoforms, namely TFPIα and TFPIβ. The former is a
soluble protein released into the bloodstream by vECs and activated platelets, while the
latter is a glycosylphosphatidyl inositol-anchored protein presented at the endothelium
surface. Moreover, TFPIα inhibits both extrinsic tenase and prothrombinase, whereas
TFPIβ blocks the extrinsic tenase complex more effectively, not being able to inhibit the
prothrombinase complex [139]. As for TFPI2, it has inhibitory activity towards tenase
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complex, FXIa, plasmin and some matrix metalloproteinases [142,149]. Reduced synthesis
of TFPI2 has been associated with angiogenesis, inflammation, atherosclerosis and tumour
growth and metastasis [152].
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To the best of our knowledge, a total of five studies from 2017 to 2022 were performed
identifying five lncRNAs with implications in TFPI2 expression and/or activity (Table 2).
The mechanisms through which these lncRNAs might impact TFPI2 and, consequently, the
coagulation pathway, are summarized in Figure 5B. Given the role of the TF coagulation
pathway in VTE development, further investigation should be carried out to explore
whether lncRNAs regulating TFPI2 expression might impact the disease pathogenesis and
dissect the underlying mechanisms of action.

3.1. TFPI2AS1

TFPI2 antisense RNA 1 (TFPI2AS1) is an antisense lncRNA that is reported to posi-
tively regulate TFPI2 expression in NSCLC tissues, acting as a guide. Specifically, TFPI2AS1
is upregulated and inhibits tumour cell proliferation and metastasis by upregulating TFPI2
expression, although the underlying mechanisms are unclear [153]. Beyond cancer-induced
hypercoagulability, dysregulation of TF-associated signalling pathways and their con-
stituents play an important role in tumour progression, particularly by impacting angiogen-
esis and tumour invasion. While TF shows tumour-enhancing characteristics, its natural
inhibitors, TFPI1 and TFPI2, are associated with tumour-suppressing properties [154].

BioRender.com
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3.2. Linc00473

Long intergenic ncRNA 00473 (linc00473) is a lincRNA that has been consistently
linked to cancer cell proliferation, survival and metastasis [155,156]. Preeclampsia is a
poorly comprehended pathological condition characterized by high blood pressure (hy-
pertension) and proteinuria in the second half of pregnancy [157]. In a study aiming to
explore the role of linc00473 in preeclampsia, this lncRNA was found to be downregulated
in patients’ placenta, while in vitro, the lncRNA overexpression stimulated trophoblast
proliferation. Acting as a molecular guide, Linc00473 was found to bind to lysine-specific
demethylase 1 (LSD1), responsible for the demethylation of histone H3 lysine 4 dimethy-
lation (H3K4me2) and histone H3 lysine 9 dimethylation (H3K9me2), thus affecting gene
expression and inhibiting the expression of TFPI2 [158]. The role of TFPI2 in preeclampsia
is, however, still unclear since both its increased and decreased levels have been reported
in preeclamptic patients. According to the current evidence, TFPI2 levels might depend on
the expression of glypican-3, a TFPI2-binding protein in placental tissue [159].

3.3. AC003092.1

Among glioblastoma patients, the lincRNA AC003092.1 was correlated with increased
temozolomide (TMZ) resistance, higher risk of disease relapse and poor prognosis. Even
though this study focused on AC003092.1 as a potential therapeutic target for glioblastoma
patients, the conducted investigation indicated that this lncRNA regulates TFPI2 expression
through the miR-195/TFPI2 axis in glioblastoma. Specifically, by acting as an endogenous
CeRNA and, consequently, as a decoy, AC003092.1 prevents miR-195 from targeting TFPI2,
thereby increasing TFPI2 expression [160].

3.4. AGAP2-AS1

AGAP2 antisense RNA 1 (AGAP2-AS1) is a lincRNA that was first found overex-
pressed in human NSCLC, being also implicated in other malignant diseases such as
colorectal cancer and melanoma [161–163]. By interacting with specific RNA-binding pro-
teins, namely enhancers of zeste 2 polycomb repressive complex 2 subunit (EZH2) and
LSD1, some lncRNAs can regulate cell phenotypes. The former is a subunit of polycomb
repressive complex 2 (PRC2) with catalytic activity, which can suppress gene expression by
enhancing histone H3 lysine 27 trimethylation (H3K27me3). As for LSD1, it can repress
transcriptional activity through the enzymatic demethylation of histone H3 lysine 4 mono-
and dimethylation (H3K4me1/2). In glioblastoma, AGAP2-AS1 acts as a guide and is
suggested to inhibit TFPI2 expression through EZH2 and LSD1 binding [164].

3.5. MEG8

Long non-coding maternally expressed 8 (MEG8) was shown to be dysregulated in
several disorders, such as lung, ovarian and colorectal cancer as well as gestational diabetes
mellitus and diabetic nephropathy [165]. A study regarding ischemic heart disease revealed
an induction of this gene in patients with this disease. By modulating the expression
of TFPI2, which is a known angiogenesis inhibitor, MEG8 is suggested to regulate the
angiogenic sprouting [166,167]. In concordance, experiments with HUVECs showed that
TFPI2 was five times more expressed after MEG8 silencing. The negative regulation of
this lncRNA reduces the inhibitory histone modification H3K27me3 at the TFPI2 promoter,
therefore acting as a scaffold. Endothelial function is impaired by MEG8 silencing, suggest-
ing a beneficial role of this lncRNA in preserving cell viability. Knowing that TFPI2 is an
angiogenesis inhibitor and the role it plays in the coagulation cascade and extracellular
matrix remodelling, the MEG8/TFPI2 axis could be a potential therapeutic target for VTE
management [166].
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Table 2. LncRNAs that regulate TFPI2 expression or activity.

LncRNA First Author
(Country, Year) [Ref] LncRNA Location 1 Disease Sample/Compartment

or Study Model
LncRNA Expression

in the Disease
LncRNA
Targets

LncRNA Role in
TFPI2 Expression

TFPI2AS1 Gao et al. (China,
2017) [153] 7q31-q32 NSCLC NSCLC tissue and

cells ↑ TFPI2 ↑

Linc00473 Wu et al. (China,
2018) [158] 6q27 Preeclampsia Placenta tissues and

trophoblast cell lines ↓ LSD1/TFPI2 ↓

AC003092.1 Xu et al. (China,
2018) [160] 7q21.3 Glioblastoma Glioblastoma tissue

and cells and mice ↓ MiR-195/TFPI2 ↑

AGAP2-AS1 Luo et al. (China,
2019) [164] 12q14.1 Glioblastoma Glioblastoma tissue

and cells and mice ↑ EZH2 and
LSD1/TFPI2 ↓

MEG8
Kremer et al. (2022,
The Netherlands)

[166]
14q32.31 Ischemic heart

disease
Left ventricular

tissues and HUVECs ↓ TFPI2 ↑

noindentAbbreviations: HUVECs, human umbilical vein endothelial cells; lncRNA; long non-coding ribonucleic acid; NSCLC, non-small cell lung cancer. 1 According to HGNC
(HUGO Gene Nomenclature Committee) (https://www.genenames.org/, accessed on 20 May 2023) and Ensembl database (https://www.ensembl.org/index.html, accessed on 20 May
2023). LncRNA or TFPI2 expression: ↓ downregulated and ↑ upregulated.

https://www.genenames.org/
https://www.ensembl.org/index.html
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4. Conclusions

Venous thrombogenesis is a common haemostatic disorder associated with substantial
morbidity and mortality, particularly in Western countries. Understanding the disease
pathophysiology is crucial to improve disease risk stratification, diagnosis and management.
Emerging evidence indicates that lncRNAs may have a role in VTE pathogenesis. However,
their clinical usefulness as predictive biomarkers for VTE is yet unclear. According to the
current review, only a few studies have explored the implications of these ncRNAs in VTE
pathways. Moreover, the research repeatability is low, with only MALAT1 and LINC00659
being reported by multiple studies. The lack of external validation in larger cohorts and
the limited statistical power of the individual studies are currently the major challenges
in this research field. However, as previously mentioned, the first study pinpointing the
role of lncRNA in VTE was published in 2019, being that this research field is relatively
new. Of note, until now, the studies have only focused on DVT, dismissing a potential
role of lncRNAs in PE development. Another limitation of these studies is the fact that
the lncRNAs were evaluated in individuals already diagnosed with thrombosis, making it
difficult to link these ncRNAs to thrombus formation or thrombus resolution. Meanwhile,
multiple lncRNAs have been suggested to modulate the expression of TFPI2, an important
anticoagulant. The role of these ncRNAs in VTE pathogenesis should be thus investigated,
given the central role of the TF coagulation pathway in thrombosis. Overall, more studies in
this field and with real-world VTE patients are required to clarify the clinical use of lncRNAs
as VTE biomarkers in an era of minimally invasive methods. As for disease treatment, the
use of these ncRNAs is not straightforward. As previously mentioned, the field of lncRNA
research is relatively new. A lot of investigation is required to overcome current hurdles
before lncRNAs could be translated into effective therapies for VTE patients. The limitations
include lncRNAs’ susceptibility to degradation by nucleases present in the bloodstream,
the possibility of unintended interactions with off-targets, the possible immune responses
that might reduce their effectiveness, and the lack of an established, safe and effective
delivery route of lncRNAs to the target site [168–170]. Thus, the development of rigorous
and more precise investigations using, for instance, animal models should be conducted to
better elucidate the roles of these ncRNAs and their therapeutic characteristics and toxicity
effects. Using specific lncRNA mimics and inhibitors to change lncRNA expression may be
a novel strategy to prevent or treat VTE. In conclusion, this first review on the matter sheds
light on the functional significance of lncRNAs in VTE and suggests them as potential
biomarkers and therapeutic targets.
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