Proteomics of Plasma and Plasma-Treated Podocytes: Application to Focal and Segmental Glomerulosclerosis
Abstract
:1. Introduction
2. Results
2.1. Clinical Characteristics of Patients
2.2. Comparison of Blood-Plasma and Plasma-Exchange-Fluid Proteomes
2.3. Analysis of Soluble and EV Plasma Proteomes from rFSGS Patients
2.4. Raftomic Analysis of Podocytes Incubated with rFSGS and Control PE
2.5. Phosphoproteomic Analysis of Podocytes Incubated with rFSFG and Control PE
2.6. Data Integration of Proteomic Analyses on Podocytes
2.7. Targeted Analysis of Selected Proteins
2.8. Correlation of Plasma Proteomics and Podocyte Proteomics
3. Discussion
3.1. Plasma-Proteome Analysis
3.2. Proteomes of Plasma-Treated Podocytes
4. Materials and Methods
4.1. Patients and Controls
4.2. Plasma Collection and Preparation
4.2.1. EV Preparation
4.2.2. Plasma Immunodepletion Using Proteome PurifyTM Kit
4.3. Suspension Trapping (S-Trap)
4.4. High pH Fractionation
4.5. Cell Culture and Incubations
4.6. Lipid-Raft Preparation
4.7. Filter-Aided Sample Preparation (FASP)
4.8. Phosphopeptide Enrichment
4.9. Nano-LC-MS/MS-Protein Identification and Quantification
4.10. MS-Data Processing and Bioinformatic Analysis
4.11. Immunodetection and Fluorescence Microscopy
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saleem, M.A. Molecular Stratification of Idiopathic Nephrotic Syndrome. Nat. Rev. Nephrol. 2019, 15, 750–765. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.S.; Yang, X.Q.; Zhao, X.D.; Li, Q.; Xie, Y.Y.; Wang, X.G.; Wang, M.; Zhang, W. The Prevalence of Th17 Cells and FOXP3 Regulate T Cells (Treg) in Children with Primary Nephrotic Syndrome. Pediatr. Nephrol. 2009, 24, 1683–1690. [Google Scholar] [CrossRef] [PubMed]
- Bertelli, R.; Bodria, M.; Nobile, M.; Alloisio, S.; Barbieri, R.; Montobbio, G.; Patrone, P.; Ghiggeri, G.M. Regulation of Innate Immunity by the Nucleotide Pathway in Children with Idiopathic Nephrotic Syndrome. Clin. Exp. Immunol. 2011, 166, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.-L.; Qin, Y.; Cai, J.-F.; Wang, H.-Y.; Tao, J.-L.; Li, H.; Chen, L.-M.; Li, M.-X.; Li, X.-M.; Li, X.-W. Th17/Treg Imbalance in Adult Patients with Minimal Change Nephrotic Syndrome. Clin. Immunol. 2011, 139, 314–320. [Google Scholar] [CrossRef]
- Araya, C.; Diaz, L.; Wasserfall, C.; Atkinson, M.; Mu, W.; Johnson, R.; Garin, E. T Regulatory Cell Function in Idiopathic Minimal Lesion Nephrotic Syndrome. Pediatr. Nephrol. 2009, 24, 1691–1698. [Google Scholar] [CrossRef] [Green Version]
- Boumediene, A.; Vachin, P.; Sendeyo, K.; Oniszczuk, J.; Zhang, S.-Y.; Henique, C.; Pawlak, A.; Audard, V.; Ollero, M.; Guigonis, V.; et al. NEPHRUTIX: A Randomized, Double-Blind, Placebo vs Rituximab-Controlled Trial Assessing T-Cell Subset Changes in Minimal Change Nephrotic Syndrome. J. Autoimmun. 2018, 88, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Uffing, A.; Pérez-Sáez, M.J.; Mazzali, M.; Manfro, R.C.; Bauer, A.C.; de Sottomaior Drumond, F.; O’Shaughnessy, M.M.; Cheng, X.S.; Chin, K.-K.; Ventura, C.G.; et al. Recurrence of FSGS after Kidney Transplantation in Adults. Clin. J. Am. Soc. Nephrol. 2020, 15, 247–256. [Google Scholar] [CrossRef]
- Reiser, J.; Nast, C.C.; Alachkar, N. Permeability Factors in Focal and Segmental Glomerulosclerosis. Adv. Chronic. Kidney Dis. 2014, 21, 417–421. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.C.; Kiss, J.E.; Goldman, J.R.; Carcillo, J.A. The Role of Plasmapheresis in Critical Illness. Crit. Care Clin. 2012, 28, 453–468. [Google Scholar] [CrossRef] [Green Version]
- Candelier, J.-J.; Lorenzo, H.-K. Idiopathic Nephrotic Syndrome and Serum Permeability Factors: A Molecular Jigsaw Puzzle. Cell Tissue Res. 2020, 379, 231–243. [Google Scholar] [CrossRef]
- Königshausen, E.; Sellin, L. Circulating Permeability Factors in Primary Focal Segmental Glomerulosclerosis: A Review of Proposed Candidates. Biomed. Res. Int. 2016, 2016, 3765608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maas, R.J.; Deegens, J.K.; Wetzels, J.F. Permeability Factors in Idiopathic Nephrotic Syndrome: Historical Perspectives and Lessons for the Future. Nephrol. Dial. Transpl. 2014, 29, 2207–2216. [Google Scholar] [CrossRef] [PubMed]
- Bruschi, M.; Catarsi, P.; Candiano, G.; Rastaldi, M.P.; Musante, L.; Scolari, F.; Artero, M.; Carraro, M.; Carrea, A.; Caridi, G.; et al. Apolipoprotein E in Idiopathic Nephrotic Syndrome and Focal Segmental Glomerulosclerosis. Kidney Int. 2003, 63, 686–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Hellin, J.; Cantarell, C.; Jimeno, L.; Sanchez-Fructuoso, A.; Puig-Gay, N.; Guirado, L.; Vilariño, N.; Gonzalez-Roncero, F.M.; Mazuecos, A.; Lauzurica, R.; et al. A Form of Apolipoprotein A-I Is Found Specifically in Relapses of Focal Segmental Glomerulosclerosis Following Transplantation. Am. J. Transplant 2013, 13, 493–500. [Google Scholar] [CrossRef]
- Tu, C.; Rudnick, P.A.; Martinez, M.Y.; Cheek, K.L.; Stein, S.E.; Slebos, R.J.C.; Liebler, D.C. Depletion of Abundant Plasma Proteins and Limitations of Plasma Proteomics. J. Proteome Res. 2010, 9, 4982–4991. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.Y.; Osman, J.; Low, T.Y.; Jamal, R. Plasma/Serum Proteomics: Depletion Strategies for Reducing High-Abundance Proteins for Biomarker Discovery. Bioanalysis 2019, 11, 1799–1812. [Google Scholar] [CrossRef]
- Muruve, D.A.; Debiec, H.; Dillon, S.T.; Gu, X.; Plaisier, E.; Can, H.; Otu, H.H.; Libermann, T.A.; Ronco, P. Serum Protein Signatures Using Aptamer-Based Proteomics for Minimal Change Disease and Membranous Nephropathy. Kidney Int. Rep. 2022, 7, 1539–1556. [Google Scholar] [CrossRef]
- Pocsfalvi, G.; Raj, D.A.A.; Fiume, I.; Vilasi, A.; Trepiccione, F.; Capasso, G. Urinary Extracellular Vesicles as Reservoirs of Altered Proteins during the Pathogenesis of Polycystic Kidney Disease. Proteom. Clin. Appl. 2015, 9, 552–567. [Google Scholar] [CrossRef]
- Lu, C.C.; Ma, K.L.; Ruan, X.Z.; Liu, B.C. The Emerging Roles of Microparticles in Diabetic Nephropathy. Int. J. Biol. Sci. 2017, 13, 1118–1125. [Google Scholar] [CrossRef]
- Caruso, S.; Poon, I.K.H. Apoptotic Cell-Derived Extracellular Vesicles: More Than Just Debris. Front. Immunol. 2018, 9, 1486. [Google Scholar] [CrossRef] [Green Version]
- Ståhl, A.-L.; Johansson, K.; Mossberg, M.; Kahn, R.; Karpman, D. Exosomes and Microvesicles in Normal Physiology, Pathophysiology, and Renal Diseases. Pediatr. Nephrol. 2019, 34, 11–30. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Wang, S.; Wang, G.; Wu, Y.; Yang, T.; Shen, W.; Zhuang, Y.; Zhang, L.; Liu, X.; Yang, L.; et al. Protein Spectrum Changes in Exosomes after Therapeutic Plasma Exchange in Patients with Neuromyelitis Optica. J. Clin. Apher. 2020, 35, 206–216. [Google Scholar] [CrossRef]
- Chung, C.-F.; Kitzler, T.; Kachurina, N.; Pessina, K.; Babayeva, S.; Bitzan, M.; Kaskel, F.; Colmegna, I.; Alachkar, N.; Goodyer, P.; et al. Intrinsic Tumor Necrosis Factor-α Pathway Is Activated in a Subset of Patients with Focal Segmental Glomerulosclerosis. PLoS ONE 2019, 14, e0216426. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; El Hindi, S.; Li, J.; Fornoni, A.; Goes, N.; Sageshima, J.; Maiguel, D.; Karumanchi, S.A.; Yap, H.-K.; Saleem, M.; et al. Circulating Urokinase Receptor as a Cause of Focal Segmental Glomerulosclerosis. Nat. Med. 2011, 17, 952–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hattori, M.; Akioka, Y.; Chikamoto, H.; Kobayashi, N.; Tsuchiya, K.; Shimizu, M.; Kagami, S.; Tsukaguchi, H. Increase of Integrin-Linked Kinase Activity in Cultured Podocytes upon Stimulation with Plasma from Patients with Recurrent FSGS. Am. J. Transpl. 2008, 8, 1550–1556. [Google Scholar] [CrossRef] [PubMed]
- Doublier, S.; Musante, L.; Lupia, E.; Candiano, G.; Spatola, T.; Caridi, G.; Zennaro, C.; Carraro, M.; Ghiggeri, G.M.; Camussi, G. Direct Effect of Plasma Permeability Factors from Patients with Idiopatic FSGS on Nephrin and Podocin Expression in Human Podocytes. Int. J. Mol. Med. 2005, 16, 49–58. [Google Scholar] [CrossRef]
- Kim, E.Y.; Roshanravan, H.; Dryer, S.E. Changes in Podocyte TRPC Channels Evoked by Plasma and Sera from Patients with Recurrent FSGS and by Putative Glomerular Permeability Factors. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 2342–2354. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.J.; McCarthy, H.J.; Ni, L.; Wherlock, M.; Kang, H.; Wetzels, J.F.; Welsh, G.I.; Saleem, M.A. Active Proteases in Nephrotic Plasma Lead to a Podocin-Dependent Phosphorylation of VASP in Podocytes via Protease Activated Receptor-1. J. Pathol. 2013, 229, 660–671. [Google Scholar] [CrossRef]
- Robins, R.; Baldwin, C.; Aoudjit, L.; Côté, J.-F.; Gupta, I.R.; Takano, T. Rac1 Activation in Podocytes Induces the Spectrum of Nephrotic Syndrome. Kidney Int. 2017, 92, 349–364. [Google Scholar] [CrossRef]
- Babayeva, S.; Miller, M.; Zilber, Y.; El Kares, R.; Bernard, C.; Bitzan, M.; Goodyer, P.; Torban, E. Plasma from a Case of Recurrent Idiopathic FSGS Perturbs Non-Muscle Myosin IIA (MYH9 Protein) in Human Podocytes. Pediatr. Nephrol. 2011, 26, 1071–1081. [Google Scholar] [CrossRef]
- den Braanker, D.J.W.; Maas, R.J.H.; van Mierlo, G.; Parr, N.M.J.; Bakker-van Bebber, M.; Deegens, J.K.J.; Jansen, P.W.T.C.; Gloerich, J.; Willemsen, B.; Dijkman, H.B.; et al. Primary Focal Segmental Glomerulosclerosis Plasmas Increase Lipid Droplet Formation and Perilipin-2 Expression in Human Podocytes. Int. J. Mol. Sci. 2022, 24, 194. [Google Scholar] [CrossRef] [PubMed]
- Chhuon, C.; Zhang, S.-Y.; Jung, V.; Lewandowski, D.; Lipecka, J.; Pawlak, A.; Sahali, D.; Ollero, M.; Guerrera, I.C. A Sensitive S-Trap-Based Approach to the Analysis of T Cell Lipid Raft Proteome. J. Lipid. Res. 2020, 61, 1512–1523. [Google Scholar] [CrossRef] [PubMed]
- Otto, G.P.; Nichols, B.J. The Roles of Flotillin Microdomains--Endocytosis and Beyond. J. Cell Sci. 2011, 124, 3933–3940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skryabin, G.O.; Komelkov, A.V.; Savelyeva, E.E.; Tchevkina, E.M. Lipid Rafts in Exosome Biogenesis. Biochemistry 2020, 85, 177–191. [Google Scholar] [CrossRef]
- Sakiyama, M.; Matsuo, H.; Shimizu, S.; Chiba, T.; Nakayama, A.; Takada, Y.; Nakamura, T.; Takada, T.; Morita, E.; Naito, M.; et al. Common Variant of Leucine-Rich Repeat-Containing 16A (LRRC16A) Gene Is Associated with Gout Susceptibility. Hum. Cell 2014, 27, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Gormally, E.; Caboux, E.; Vineis, P.; Hainaut, P. Circulating Free DNA in Plasma or Serum as Biomarker of Carcinogenesis: Practical Aspects and Biological Significance. Mutat. Res. 2007, 635, 105–117. [Google Scholar] [CrossRef]
- Miura, N.; Hasegawa, J.; Shiota, G. Serum Messenger RNA as a Biomarker and Its Clinical Usefulness in Malignancies. Clin. Med. Oncol. 2008, 2, 511–527. [Google Scholar] [CrossRef]
- Backes, C.; Meese, E.; Keller, A. Specific MiRNA Disease Biomarkers in Blood, Serum and Plasma: Challenges and Prospects. Mol. Diagn. Ther. 2016, 20, 509–518. [Google Scholar] [CrossRef]
- Surinova, S.; Schiess, R.; Hüttenhain, R.; Cerciello, F.; Wollscheid, B.; Aebersold, R. On the Development of Plasma Protein Biomarkers. J. Proteome Res. 2011, 10, 5–16. [Google Scholar] [CrossRef]
- Anderson, N.L.; Anderson, N.G. The Human Plasma Proteome: History, Character, and Diagnostic Prospects. Mol. Cell. Proteom. 2002, 1, 845–867. [Google Scholar] [CrossRef] [Green Version]
- Du, R.; Zhu, L.; Gan, J.; Wang, Y.; Qiao, L.; Liu, B. Ultrasensitive Detection of Low-Abundance Protein Biomarkers by Mass Spectrometry Signal Amplification Assay. Anal. Chem. 2016, 88, 6767–6772. [Google Scholar] [CrossRef] [PubMed]
- Abramowicz, A.; Widłak, P.; Pietrowska, M. Different Types of Cellular Stress Affect the Proteome Composition of Small Extracellular Vesicles: A Mini Review. Proteomes 2019, 7, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourderioux, M.; Nguyen-Khoa, T.; Chhuon, C.; Jeanson, L.; Tondelier, D.; Walczak, M.; Ollero, M.; Bekri, S.; Knebelmann, B.; Escudier, E.; et al. A New Workflow for Proteomic Analysis of Urinary Exosomes and Assessment in Cystinuria Patients. J Proteome Res. 2015, 14, 567–577. [Google Scholar] [CrossRef]
- Wu, C.-X.; Liu, Z.-F. Proteomic Profiling of Sweat Exosome Suggests Its Involvement in Skin Immunity. J. Investig. Dermatol. 2018, 138, 89–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welton, J.L.; Loveless, S.; Stone, T.; von Ruhland, C.; Robertson, N.P.; Clayton, A. Cerebrospinal Fluid Extracellular Vesicle Enrichment for Protein Biomarker Discovery in Neurological Disease; Multiple Sclerosis. J. Extracell. Vesicles 2017, 6, 1369805. [Google Scholar] [CrossRef]
- Qazi, K.R.; Torregrosa Paredes, P.; Dahlberg, B.; Grunewald, J.; Eklund, A.; Gabrielsson, S. Proinflammatory Exosomes in Bronchoalveolar Lavage Fluid of Patients with Sarcoidosis. Thorax 2010, 65, 1016–1024. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Jiang, C.; Tang, T.; Wang, H.; Xia, Y.; Shao, Q.; Zhang, M. Clinical Significance of Urinary Biomarkers in Patients With Primary Focal Segmental Glomerulosclerosis. Am. J. Med. Sci. 2018, 355, 314–321. [Google Scholar] [CrossRef]
- Bieniaś, B.; Zajączkowska, M.; Borzęcka, H.; Sikora, P.; Wieczorkiewicz-Płaza, A.; Wilczyńska, B. Early Markers of Tubulointerstitial Fibrosis in Children With Idiopathic Nephrotic Syndrome: Preliminary Report. Medicine 2015, 94, e1746. [Google Scholar] [CrossRef]
- Chehade, H.; Parvex, P.; Poncet, A.; Werner, D.; Mosig, D.; Cachat, F.; Girardin, E. Urinary Low-Molecular-Weight Protein Excretion in Pediatric Idiopathic Nephrotic Syndrome. Pediatr. Nephrol. 2013, 28, 2299–2306. [Google Scholar] [CrossRef] [Green Version]
- Korzeniecka-Kozerska, A.; Wasilewska, A.; Tenderenda, E.; Sulik, A.; Cybulski, K. Urinary MMP-9/NGAL Ratio as a Potential Marker of FSGS in Nephrotic Children. Dis. Markers 2013, 34, 357–362. [Google Scholar] [CrossRef]
- Youssef, D.M.; El-Shal, A.A. Urine Neutrophil Gelatinase-Associated Lipocalin and Kidney Injury in Children with Focal Segmental Glomerulosclerosis. Iran. J. Kidney Dis. 2012, 6, 355–360. [Google Scholar] [PubMed]
- Wang, R.; Tong, H.; Wang, H.; Chen, Z.; Wang, L.; Chen, J. Nephrotic Syndrome Related to Chronic Neutrophilic Leukemia. Intern. Med. 2014, 53, 2505–2509. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Zuo, K.; Le, W.; Chen, W.; Qin, W.; Zhang, F.; Liang, S.; Zeng, C.; Wang, J. Characterization of Thromboelastography of Patients with Different Pathological Types of Nephrotic Syndrome. Medicine 2020, 99, e18960. [Google Scholar] [CrossRef] [PubMed]
- Gulleroglu, K.; Yazar, B.; Sakalli, H.; Ozdemir, H.; Baskin, E. Clinical Importance of Mean Platelet Volume in Children with Nephrotic Syndrome. Ren. Fail. 2014, 36, 663–665. [Google Scholar] [CrossRef] [PubMed]
- Medjeral-Thomas, N.; Ziaj, S.; Condon, M.; Galliford, J.; Levy, J.; Cairns, T.; Griffith, M. Retrospective Analysis of a Novel Regimen for the Prevention of Venous Thromboembolism in Nephrotic Syndrome. Clin. J. Am. Soc. Nephrol. 2014, 9, 478–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haraguchi, K.; Shimura, H.; Ogata, R.; Inoue, H.; Saito, T.; Kondo, T.; Nagata, M.; Kobayashi, T. Focal Segmental Glomerulosclerosis Associated with Essential Thrombocythemia. Clin. Exp. Nephrol. 2006, 10, 74–77. [Google Scholar] [CrossRef]
- Sethna, C.B.; Ng, D.K.; Jiang, S.; Saland, J.; Warady, B.A.; Furth, S.; Meyers, K.E. Cardiovascular Disease Risk among Children with Focal Segmental Glomerulosclerosis: A Report from the Chronic Kidney Disease in Children Study. Pediatr. Nephrol. 2019, 34, 1403–1412. [Google Scholar] [CrossRef]
- Raina, R.; Krishnappa, V. An Update on LDL Apheresis for Nephrotic Syndrome. Pediatr. Nephrol. 2019, 34, 1655–1669. [Google Scholar] [CrossRef]
- Kawasaki, Y.; Suzuki, S.; Matsumoto, A.; Takano, K.; Suyama, K.; Hashimoto, K.; Suzuki, J.; Suzuki, H.; Hosoya, M. Long-Term Efficacy of Low-Density Lipoprotein Apheresis for Focal and Segmental Glomerulosclerosis. Pediatr. Nephrol. 2007, 22, 889–892. [Google Scholar] [CrossRef]
- Hattori, M.; Chikamoto, H.; Akioka, Y.; Nakakura, H.; Ogino, D.; Matsunaga, A.; Fukazawa, A.; Miyakawa, S.; Khono, M.; Kawaguchi, H.; et al. A Combined Low-Density Lipoprotein Apheresis and Prednisone Therapy for Steroid-Resistant Primary Focal Segmental Glomerulosclerosis in Children. Am. J. Kidney Dis. 2003, 42, 1121–1130. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, M.; Yasuno, T.; Ito, K.; Matsunaga, A.; Hisano, S.; Abe, Y.; Miyake, K.; Masutani, K.; Nakashima, H.; Saito, T. Focal Segmental Glomerulosclerosis with Heterozygous Apolipoprotein E5 (Glu3Lys). CEN Case Rep. 2018, 7, 225–228. [Google Scholar] [CrossRef]
- Freedman, B.I.; Limou, S.; Ma, L.; Kopp, J.B. APOL1-Associated Nephropathy: A Key Contributor to Racial Disparities in CKD. Am. J. Kidney Dis. 2018, 72, S8–S16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmaci, A.M.; Peru, H.; Akin, F.; Akcoren, Z.; Caglar, M.; Ozel, A. A Case of Homozygous Familial Hypercholesterolemia with Focal Segmental Glomerulosclerosis. Pediatr. Nephrol. 2007, 22, 1803–1805. [Google Scholar] [CrossRef] [PubMed]
- Nicklin, P.; Bergman, P.; Zhang, B.; Triantafellow, E.; Wang, H.; Nyfeler, B.; Yang, H.; Hild, M.; Kung, C.; Wilson, C.; et al. Bidirectional Transport of Amino Acids Regulates MTOR and Autophagy. Cell 2009, 136, 521–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zschiedrich, S.; Bork, T.; Liang, W.; Wanner, N.; Eulenbruch, K.; Munder, S.; Hartleben, B.; Kretz, O.; Gerber, S.; Simons, M.; et al. Targeting MTOR Signaling Can Prevent the Progression of FSGS. J. Am. Soc. Nephrol. 2017, 28, 2144–2157. [Google Scholar] [CrossRef] [Green Version]
- Das, R.; Kim, S.-J.; Nguyen, N.T.; Kwon, H.J.; Cha, S.-K.; Park, K.-S. Inhibition of the ERK1/2-MTORC1 Axis Ameliorates Proteinuria and the Fibrogenic Action of Transforming Growth Factor-β in Adriamycin-Induced Glomerulosclerosis. Kidney Int. 2019, 96, 927–941. [Google Scholar] [CrossRef]
- Sancak, Y.; Bar-Peled, L.; Zoncu, R.; Markhard, A.L.; Nada, S.; Sabatini, D.M. Ragulator-Rag Complex Targets MTORC1 to the Lysosomal Surface and Is Necessary for Its Activation by Amino Acids. Cell 2010, 141, 290–303. [Google Scholar] [CrossRef] [Green Version]
- Mu, Z.; Wang, L.; Deng, W.; Wang, J.; Wu, G. Structural Insight into the Ragulator Complex Which Anchors MTORC1 to the Lysosomal Membrane. Cell Discov. 2017, 3, 17049. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Wang, J.; Yoshida, S.; Nada, S.; Okada, M.; Inoki, K. Role of Ragulator in the Regulation of Mechanistic Target of Rapamycin Signaling in Podocytes and Glomerular Function. J. Am. Soc. Nephrol. 2016, 27, 3653–3665. [Google Scholar] [CrossRef] [Green Version]
- Um, S.H.; Frigerio, F.; Watanabe, M.; Picard, F.; Joaquin, M.; Sticker, M.; Fumagalli, S.; Allegrini, P.R.; Kozma, S.C.; Auwerx, J.; et al. Absence of S6K1 Protects against Age- and Diet-Induced Obesity While Enhancing Insulin Sensitivity. Nature 2004, 431, 200–205. [Google Scholar] [CrossRef]
- Inoki, K.; Mori, H.; Wang, J.; Suzuki, T.; Hong, S.; Yoshida, S.; Blattner, S.M.; Ikenoue, T.; Rüegg, M.A.; Hall, M.N.; et al. MTORC1 Activation in Podocytes Is a Critical Step in the Development of Diabetic Nephropathy in Mice. J. Clin. Investig. 2011, 121, 2181–2196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gödel, M.; Hartleben, B.; Herbach, N.; Liu, S.; Zschiedrich, S.; Lu, S.; Debreczeni-Mór, A.; Lindenmeyer, M.T.; Rastaldi, M.-P.; Hartleben, G.; et al. Role of MTOR in Podocyte Function and Diabetic Nephropathy in Humans and Mice. J. Clin. Investig. 2011, 121, 2197–2209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cinà, D.P.; Onay, T.; Paltoo, A.; Li, C.; Maezawa, Y.; De Arteaga, J.; Jurisicova, A.; Quaggin, S.E. Inhibition of MTOR Disrupts Autophagic Flux in Podocytes. J. Am. Soc. Nephrol. 2012, 23, 412–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fervenza, F.C.; Fitzpatrick, P.M.; Mertz, J.; Erickson, S.B.; Liggett, S.; Popham, S.; Wochos, D.N.; Synhavsky, A.; Hippler, S.; Larson, T.S.; et al. Acute Rapamycin Nephrotoxicity in Native Kidneys of Patients with Chronic Glomerulopathies. Nephrol. Dial. Transpl. 2004, 19, 1288–1292. [Google Scholar] [CrossRef]
- Sengupta, S.; Peterson, T.R.; Sabatini, D.M. Regulation of the MTOR Complex 1 Pathway by Nutrients, Growth Factors, and Stress. Mol. Cell 2010, 40, 310–322. [Google Scholar] [CrossRef] [Green Version]
- Morita, M.; Prudent, J.; Basu, K.; Goyon, V.; Katsumura, S.; Hulea, L.; Pearl, D.; Siddiqui, N.; Strack, S.; McGuirk, S.; et al. MTOR Controls Mitochondrial Dynamics and Cell Survival via MTFP1. Mol. Cell 2017, 67, 922–935.e5. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, A.; Schreiber, S.L. Direct Control of Mitochondrial Function by MTOR. Proc. Natl. Acad. Sci. USA 2009, 106, 22229–22232. [Google Scholar] [CrossRef]
- Khan, N.A.; Nikkanen, J.; Yatsuga, S.; Jackson, C.; Wang, L.; Pradhan, S.; Kivelä, R.; Pessia, A.; Velagapudi, V.; Suomalainen, A. MTORC1 Regulates Mitochondrial Integrated Stress Response and Mitochondrial Myopathy Progression. Cell Metab. 2017, 26, 419–428.e5. [Google Scholar] [CrossRef] [PubMed]
- de la Cruz López, K.G.; Toledo Guzmán, M.E.; Sánchez, E.O.; García Carrancá, A. MTORC1 as a Regulator of Mitochondrial Functions and a Therapeutic Target in Cancer. Front. Oncol. 2019, 9, 1373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen-Worthington, K.; Xie, J.; Brown, J.L.; Edmunson, A.M.; Dowling, A.; Navratil, A.M.; Scavelli, K.; Yoon, H.; Kim, D.-G.; Bynoe, M.S.; et al. The F0F1 ATP Synthase Complex Localizes to Membrane Rafts in Gonadotrope Cells. Mol. Endocrinol. 2016, 30, 996–1011. [Google Scholar] [CrossRef] [Green Version]
- Yonally, S.K.; Capaldi, R.A. The F(1)F(0) ATP Synthase and Mitochondrial Respiratory Chain Complexes Are Present on the Plasma Membrane of an Osteosarcoma Cell Line: An Immunocytochemical Study. Mitochondrion 2006, 6, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Champagne, E.; Martinez, L.O.; Collet, X.; Barbaras, R. Ecto-F1Fo ATP Synthase/F1 ATPase: Metabolic and Immunological Functions. Curr. Opin. Lipidol. 2006, 17, 279–284. [Google Scholar] [CrossRef]
- Bae, T.-J.; Kim, M.-S.; Kim, J.-W.; Kim, B.-W.; Choo, H.-J.; Lee, J.-W.; Kim, K.-B.; Lee, C.S.; Kim, J.-H.; Chang, S.Y.; et al. Lipid Raft Proteome Reveals ATP Synthase Complex in the Cell Surface. Proteomics 2004, 4, 3536–3548. [Google Scholar] [CrossRef]
- Xing, S.-L.; Yan, J.; Yu, Z.-H.; Zhu, C.-Q. Neuronal Cell Surface ATP Synthase Mediates Synthesis of Extracellular ATP and Regulation of Intracellular PH. Cell Biol. Int. 2011, 35, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-W.; Lee, C.S.; Yi, J.-S.; Lee, J.-H.; Lee, J.-W.; Choo, H.-J.; Jung, S.-Y.; Kim, M.-S.; Lee, S.-W.; Lee, M.-S.; et al. Lipid Raft Proteome Reveals That Oxidative Phosphorylation System Is Associated with the Plasma Membrane. Expert Rev. Proteom. 2010, 7, 849–866. [Google Scholar] [CrossRef] [PubMed]
- Volpon, L.; Culjkovic-Kraljacic, B.; Osborne, M.J.; Ramteke, A.; Sun, Q.; Niesman, A.; Chook, Y.M.; Borden, K.L.B. Importin 8 Mediates M7G Cap-Sensitive Nuclear Import of the Eukaryotic Translation Initiation Factor EIF4E. Proc. Natl. Acad. Sci. USA 2016, 113, 5263–5268. [Google Scholar] [CrossRef]
- Wang, R.; Yang, J.F.; Ho, F.; Robertson, E.S.; You, J. Bromodomain-Containing Protein BRD4 Is Hyperphosphorylated in Mitosis. Cancers 2020, 12, 1637. [Google Scholar] [CrossRef]
- Li, Y.; Xiang, J.; Zhang, J.; Lin, J.; Wu, Y.; Wang, X. Inhibition of Brd4 by JQ1 Promotes Functional Recovery From Spinal Cord Injury by Activating Autophagy. Front. Cell. Neurosci. 2020, 14, 555591. [Google Scholar] [CrossRef]
- Mu, J.; Zhang, D.; Tian, Y.; Xie, Z.; Zou, M.-H. BRD4 Inhibition by JQ1 Prevents High-Fat Diet-Induced Diabetic Cardiomyopathy by Activating PINK1/Parkin-Mediated Mitophagy in Vivo. J. Mol. Cell. Cardiol. 2020, 149, 1–14. [Google Scholar] [CrossRef]
- Shen, S.; Li, B.; Dai, J.; Wu, Z.; He, Y.; Wen, L.; Wang, X.; Hu, G. BRD4 Inhibition Protects Against Acute Pancreatitis Through Restoring Impaired Autophagic Flux. Front. Pharmacol. 2020, 11, 618. [Google Scholar] [CrossRef]
- Wyant, G.A.; Abu-Remaileh, M.; Frenkel, E.M.; Laqtom, N.N.; Dharamdasani, V.; Lewis, C.A.; Chan, S.H.; Heinze, I.; Ori, A.; Sabatini, D.M. NUFIP1 Is a Ribosome Receptor for Starvation-Induced Ribophagy. Science 2018, 360, 751–758. [Google Scholar] [CrossRef] [Green Version]
- Shim, M.S.; Nettesheim, A.; Hirt, J.; Liton, P.B. The Autophagic Protein LC3 Translocates to the Nucleus and Localizes in the Nucleolus Associated to NUFIP1 in Response to Cyclic Mechanical Stress. Autophagy 2020, 16, 1248–1261. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, Y.; Meng, Y.; Rong, Y.; Bai, H.; Chen, L. Autophagy Upregulation Ameliorates Cell Injury in Sequestosome 1 Knockout Podocytes in Vitro. Biochem. Biophys. Res. Commun. 2017, 490, 98–103. [Google Scholar] [CrossRef]
- Xin, W.; Li, Z.; Xu, Y.; Yu, Y.; Zhou, Q.; Chen, L.; Wan, Q. Autophagy Protects Human Podocytes from High Glucose-Induced Injury by Preventing Insulin Resistance. Metabolism 2016, 65, 1307–1315. [Google Scholar] [CrossRef]
- Lenoir, O.; Jasiek, M.; Hénique, C.; Guyonnet, L.; Hartleben, B.; Bork, T.; Chipont, A.; Flosseau, K.; Bensaada, I.; Schmitt, A.; et al. Endothelial Cell and Podocyte Autophagy Synergistically Protect from Diabetes-Induced Glomerulosclerosis. Autophagy 2015, 11, 1130–1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smoyer, W.E.; Ransom, R.F. Hsp27 Regulates Podocyte Cytoskeletal Changes in an in Vitro Model of Podocyte Process Retraction. FASEB J. 2002, 16, 315–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smoyer, W.E.; Gupta, A.; Mundel, P.; Ballew, J.D.; Welsh, M.J. Altered Expression of Glomerular Heat Shock Protein 27 in Experimental Nephrotic Syndrome. J. Clin. Investig. 1996, 97, 2697–2704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavoie, J.N.; Hickey, E.; Weber, L.A.; Landry, J. Modulation of Actin Microfilament Dynamics and Fluid Phase Pinocytosis by Phosphorylation of Heat Shock Protein 27. J. Biol. Chem. 1993, 268, 24210–24214. [Google Scholar] [CrossRef]
- Lavoie, J.N.; Lambert, H.; Hickey, E.; Weber, L.A.; Landry, J. Modulation of Cellular Thermoresistance and Actin Filament Stability Accompanies Phosphorylation-Induced Changes in the Oligomeric Structure of Heat Shock Protein 27. Mol. Cell. Biol. 1995, 15, 505–516. [Google Scholar] [CrossRef] [Green Version]
- Lundby, A.; Rossin, E.J.; Steffensen, A.B.; Acha, M.R.; Newton-Cheh, C.; Pfeufer, A.; Lynch, S.N.; QT Interval International GWAS Consortium (QT-IGC); Olesen, S.-P.; Brunak, S.; et al. Annotation of Loci from Genome-Wide Association Studies Using Tissue-Specific Quantitative Interaction Proteomics. Nat. Methods 2014, 11, 868–874. [Google Scholar] [CrossRef]
- Ni, Y.; Wang, X.; Yin, X.; Li, Y.; Liu, X.; Wang, H.; Liu, X.; Zhang, J.; Gao, H.; Shi, B.; et al. Plectin Protects Podocytes from Adriamycin-Induced Apoptosis and F-Actin Cytoskeletal Disruption through the Integrin A6β4/FAK/P38 MAPK Pathway. J. Cell Mol. Med. 2018, 22, 5450–5467. [Google Scholar] [CrossRef]
- Trost, M.; English, L.; Lemieux, S.; Courcelles, M.; Desjardins, M.; Thibault, P. The Phagosomal Proteome in Interferon-Gamma-Activated Macrophages. Immunity 2009, 30, 143–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouameur, J.-E.; Schneider, Y.; Begré, N.; Hobbs, R.P.; Lingasamy, P.; Fontao, L.; Green, K.J.; Favre, B.; Borradori, L. Phosphorylation of Serine 4,642 in the C-Terminus of Plectin by MNK2 and PKA Modulates Its Interaction with Intermediate Filaments. J. Cell Sci. 2013, 126, 4195–4207. [Google Scholar] [CrossRef] [Green Version]
- Riddick, N.; Ohtani, K.-I.; Surks, H.K. Targeting by Myosin Phosphatase-RhoA Interacting Protein Mediates RhoA/ROCK Regulation of Myosin Phosphatase. J. Cell Biochem. 2008, 103, 1158–1170. [Google Scholar] [CrossRef]
- Dephoure, N.; Zhou, C.; Villén, J.; Beausoleil, S.A.; Bakalarski, C.E.; Elledge, S.J.; Gygi, S.P. A Quantitative Atlas of Mitotic Phosphorylation. Proc. Natl. Acad. Sci. USA 2008, 105, 10762–10767. [Google Scholar] [CrossRef]
- Olsen, J.V.; Vermeulen, M.; Santamaria, A.; Kumar, C.; Miller, M.L.; Jensen, L.J.; Gnad, F.; Cox, J.; Jensen, T.S.; Nigg, E.A.; et al. Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy during Mitosis. Sci. Signal. 2010, 3, ra3. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Di Palma, S.; Preisinger, C.; Peng, M.; Polat, A.N.; Heck, A.J.R.; Mohammed, S. Toward a Comprehensive Characterization of a Human Cancer Cell Phosphoproteome. J. Proteome Res. 2013, 12, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Lehto, M.; Mäyränpää, M.I.; Pellinen, T.; Ihalmo, P.; Lehtonen, S.; Kovanen, P.T.; Groop, P.-H.; Ivaska, J.; Olkkonen, V.M. The R-Ras Interaction Partner ORP3 Regulates Cell Adhesion. J. Cell Sci. 2008, 121, 695–705. [Google Scholar] [CrossRef] [Green Version]
- Weber-Boyvat, M.; Kentala, H.; Lilja, J.; Vihervaara, T.; Hanninen, R.; Zhou, Y.; Peränen, J.; Nyman, T.A.; Ivaska, J.; Olkkonen, V.M. OSBP-Related Protein 3 (ORP3) Coupling with VAMP-Associated Protein A Regulates R-Ras Activity. Exp. Cell Res. 2015, 331, 278–291. [Google Scholar] [CrossRef]
- Dlugos, C.P.; Picciotto, C.; Lepa, C.; Krakow, M.; Stöber, A.; Eddy, M.-L.; Weide, T.; Jeibmann, A.; Krahn, M.P.; Van Marck, V.; et al. Nephrin Signaling Results in Integrin Β1 Activation. J. Am. Soc. Nephrol. 2019, 30, 1006–1019. [Google Scholar] [CrossRef]
- Pozzi, A.; Jarad, G.; Moeckel, G.W.; Coffa, S.; Zhang, X.; Gewin, L.; Eremina, V.; Hudson, B.G.; Borza, D.-B.; Harris, R.C.; et al. Beta1 Integrin Expression by Podocytes Is Required to Maintain Glomerular Structural Integrity. Dev. Biol. 2008, 316, 288–301. [Google Scholar] [CrossRef] [Green Version]
- Smeets, B.; Stucker, F.; Wetzels, J.; Brocheriou, I.; Ronco, P.; Gröne, H.-J.; D’Agati, V.; Fogo, A.B.; van Kuppevelt, T.H.; Fischer, H.-P.; et al. Detection of Activated Parietal Epithelial Cells on the Glomerular Tuft Distinguishes Early Focal Segmental Glomerulosclerosis from Minimal Change Disease. Am. J. Pathol. 2014, 184, 3239–3248. [Google Scholar] [CrossRef]
- Kim, T.; Ravilious, G.E.; Sept, D.; Cooper, J.A. Mechanism for CARMIL Protein Inhibition of Heterodimeric Actin-Capping Protein. J. Biol. Chem. 2012, 287, 15251–15262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Königshausen, E.; Zierhut, U.M.; Ruetze, M.; Potthoff, S.A.; Stegbauer, J.; Woznowski, M.; Quack, I.; Rump, L.C.; Sellin, L. Angiotensin II Increases Glomerular Permeability by β-Arrestin Mediated Nephrin Endocytosis. Sci. Rep. 2016, 6, 39513. [Google Scholar] [CrossRef] [PubMed]
- Harel, M.; Oren-Giladi, P.; Kaidar-Person, O.; Shaked, Y.; Geiger, T. Proteomics of Microparticles with SILAC Quantification (PROMIS-Quan): A Novel Proteomic Method for Plasma Biomarker Quantification. Mol. Cell. Proteom. 2015, 14, 1127–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipecka, J.; Chhuon, C.; Bourderioux, M.; Bessard, M.A.; van Endert, P.; Edelman, A.; Guerrera, I.C. Sensitivity of mass spectrometry analysis depends on the shape of the filtration unit used for filter aided sample preparation (FASP). Proteomics 2016, 16, 1852–1857. [Google Scholar] [CrossRef]
- Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 2016, 13, 731–740. [Google Scholar] [CrossRef]
Group | Sex (M/F) | Age | Diagnosis | Prot/Creat (mg/mmol) | Number of Transplant | Biopsy Result | Treatments |
---|---|---|---|---|---|---|---|
Ctrl1 | M | 74 | Other nephropathy | 32.67 | 2nd | HR | CS/MMF/CNI/PE/RTX/Ig |
Ctrl2 | M | 60 | Other nephropathy | 37.93 | 1st | HR | CS/MMF/mTORi/CNI /PE/RTX/Ig |
Ctrl3 | M | 62 | IgA nephropathy | 91.49 | 1st | HR | CS/MMF/CNI/PE/RTX/Ig |
Ctrl4 | F | 45 | Diabetic nephropathy | 67.1 | 1st | HR | CS/MMF/mTORi/PE/RTX/Ig |
rFSGS1 | M | 31 | FSGS | 229.59 | 2nd | rFSGS | CS/MMF/CNI/PE/RTX/Ig |
rFSGS2 | M | 21 | FSGS | 436 | 1st | rFSGS | CS/CNI/PE/RTX/Ig |
rFSGS3 | F | 70 | FSGS | 129.34 | 1st | rFSGS | CS/PE/RTX/Ig |
rFSGS4 | F | 48 | FSGS | 800 | 2nd | rFSGS | CS/MMF/CNI/PE/RTX/Ig |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chhuon, C.; Herrera-Marcos, L.V.; Zhang, S.-Y.; Charrière-Bertrand, C.; Jung, V.; Lipecka, J.; Savas, B.; Nasser, N.; Pawlak, A.; Boulmerka, H.; et al. Proteomics of Plasma and Plasma-Treated Podocytes: Application to Focal and Segmental Glomerulosclerosis. Int. J. Mol. Sci. 2023, 24, 12124. https://doi.org/10.3390/ijms241512124
Chhuon C, Herrera-Marcos LV, Zhang S-Y, Charrière-Bertrand C, Jung V, Lipecka J, Savas B, Nasser N, Pawlak A, Boulmerka H, et al. Proteomics of Plasma and Plasma-Treated Podocytes: Application to Focal and Segmental Glomerulosclerosis. International Journal of Molecular Sciences. 2023; 24(15):12124. https://doi.org/10.3390/ijms241512124
Chicago/Turabian StyleChhuon, Cerina, Luis Vicente Herrera-Marcos, Shao-Yu Zhang, Cécile Charrière-Bertrand, Vincent Jung, Joanna Lipecka, Berkan Savas, Nour Nasser, André Pawlak, Hocine Boulmerka, and et al. 2023. "Proteomics of Plasma and Plasma-Treated Podocytes: Application to Focal and Segmental Glomerulosclerosis" International Journal of Molecular Sciences 24, no. 15: 12124. https://doi.org/10.3390/ijms241512124
APA StyleChhuon, C., Herrera-Marcos, L. V., Zhang, S. -Y., Charrière-Bertrand, C., Jung, V., Lipecka, J., Savas, B., Nasser, N., Pawlak, A., Boulmerka, H., Audard, V., Sahali, D., Guerrera, I. C., & Ollero, M. (2023). Proteomics of Plasma and Plasma-Treated Podocytes: Application to Focal and Segmental Glomerulosclerosis. International Journal of Molecular Sciences, 24(15), 12124. https://doi.org/10.3390/ijms241512124