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Mast cells have existed for almost 500 million years [1] in many different species,
including invertebrates and fish, in which they regulate inflammatory responses [2]. In
mammals, mast cells are found in all tissues and express numerous surface receptors, allow-
ing them to sense and respond to allergic, autoimmune, environmental, neurohormonal,
pathogenic, and stress triggers by secreting numerous biologically active mediators. Of
these mediators, secretory granule-stored histamine and tryptase are only the tip of the
iceberg [3]. Consequently, mast cells could serve a critical role acting as pluripotent “im-
munoendocrine master players” [4]. However, a number of questions remain unanswered,
such as questions involving their tissue characteristics and reactivity, especially in processes
and conditions that do not involve allergic reactions.

The international Journal of Molecular Sciences recently published Special Issues
dedicated to aspects of the pathophysiology of mast cells, such as “Mast cells in human
health and diseases” edited by Giovanna Traina [5], and “Mast cells: when the best defense
is an attack” edited by Margarita Martin [6], but these volumes focused on the role of mast
cells in diseases, especially infections.

The emphasis of this Special Issue entitled “The Role of Mast Cells and Their Inflamma-
tory Mediators in Immunity” was to address aspects of mast cell involvement in immune
and inflammatory processes not covered by previous volumes.

A major review communicated via Dr. Domenico Ribatti and authored by Soli-
mando et al. described in detail the production of interleukins by mast cells, as well
as their important role in immune processes [7]. Given the proper microenvironment, such
as one involving presence of IL-33, mast cells can release large amounts of chemokines
CCL2 and CCL5 [8], as well as cytokines such as IL-1b [9] and TNF [10].

For the longest time, the notion persisted that all mast cells are the same. Then,
they were separated into mucosal-type (MMC), containing only tryptase, and those of
the connective-tissue-type (CTMC), containing both chymase and tryptase. However,
increasing evidence indicates that there are unique subpopulations with distinct histological
and secretory characteristics. The submission via Dr. Lars Hellman by Akula et al. using
quantitative transcriptome analysis describes a particular subtype of mucosal mast cell
in bronchoalveolar lavage fluid (BALF) that contributes to inflammation in the lungs of
asthmatic horses [11] that may be applicable to humans.

The paper submitted via Dr. Claudia González-Espinosa by Martínez-Aguilar et al.
identifies the augmenting effect of lysophosphatidylinositol (LPI, lysoPI) on mast cell
functions promoting inflammation through the differential participation of the GPR55
and cannabinoid 2 (CB2) receptors [12]. PI serves as an endogenous lysophospholipid
and endocannabinoid neurotransmitter, and is considered to be the endogenous ligand of
GPR55. Utilizing murine-bone-marrow-derived mast cells (BMMCs), the authors found that
LPI did not cause degranulation, but slightly increased FcεRI-dependent β-hexosaminidase
release; however, LPI induced strong chemotaxis dependent on GPR55 receptor activation
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and movement towards tumors. LPI also induced the expression of IL-1β, TNF, and VEGF;
however, in contrast to the chemotaxis, the effects on cytokine transcription were dependent
on both GPR55 CB2 receptors [12].

The submission via Dr. Zenke by De Toledo et al. describes the important finding that
human-induced pluripotent stem cell (hiPSC)-derived mast cells can mimic mastocytosis-
like mast cells [13], suggesting that such cells may be used as a disease surrogate, thus
abrogating the common use of immortalized mast cells (e.g., RBL, HMC-1, LAD2, and
LADR) that do not accurately reflect normal mast cell functions.

The article by Drs. Tsilioni and Theoharides reports for the first time that nanomolar
amounts of recombinant coronavirus spike protein stimulated human mast cells to secrete
proteases via the activation of the angiotensin-converting enzyme 2 (ACE2) receptor, but
stimulates the release of the proinflammatory cytokine IL-1b via the activation of TLR4;
these processes are augmented by alarmin IL-33 [14]. This novel finding suggests that the
spike protein may be able to stimulate mast cells via two different receptors, potentially
utilizing different signal–transduction pathways. Moreover, the findings suggest that
vaccines designed to stimulate antibody production against the ACE2 coronavirus receptor
binding domain (RBD) may not protect against COVID-associated cytokine storms. As
a result, mast cells could be involved in COVID-19 and Long-COVID syndrome via the
release of different mediators [15].

The contribution communicated via Dr. Tsilioni by Jingshu et al. reported the develop-
ment of a 3-D hydrogel formed by collagen I and culture human mast cells and showed that
different Aβ peptides could stimulate mast cells to secrete inflammatory mediators. This
model could incorporate microglia and neurons that could better reflect the mechanisms
involved in the pathogenesis of neuroinflammation and Alzheimer’s disease [16].

The submission submitted via Dr. Marcus Maurer by Dr. Buttgereit et al. describes
that the mitochondrial Complex I can act as a critical innate inhibitory component of the
mast cell secretion of pro-inflammatory mediators [17]. Complex I (NADH:ubiquinone
oxidoreductase) is the entry point for most electrons into the mitochondrial respiratory
chain that eventually generates energy through oxidative phosphorylation in the form of
ATP. While the inhibition of Complex I inhibited the primary human skin mast cell release
of L-4, IL-5, IL-6, IL-13, TNF-α, and GM-CSF (but not release of IL-4 and IL-5) without
loss of cell viability, Complex III did not. Instead, Complex III was reported to suppress
regulatory T cells (Treg) since the Treg cell-specific ablation of Complex III in mice resulted
in the development of fatal inflammatory disease, without affecting Treg cell number [18].
These results imply that mitochondrial respiratory Complexes may have affected mast cell
function via mechanisms other than just energy metabolism.

Finally, the review by Theoharides and Kempuraj discusses the potential role of the
ezrin, radixin, moesin (ERMS) family of proteins, especially moesin, in regulating the
exocytotic mechanism of mast cell secretion of granule-stored mediators [19].

These papers highlight key aspects of the potential role of mast cells in immunity
and inflammation by presenting novel findings on the subtypes, regulatory mechanisms,
and unique associations with innate and external triggers. However, there are still gaps
in our knowledge, such as the effect of the microenvironment on the tissue mast cell
phenotype and ways to regulate mast cell activation. An improved understanding may be
obtained through the use of in vitro disease surrogate models using organoids [20] with
hiPSC-derived mast cells co-cultured with other relevant tissue cells, such as dendritic cells,
endothelial cells, microglial cells, neurons, and pathogens. Such organoids could be used to
investigate complex cell interactions, to study signal–transaction mechanisms, to identify
new biomarkers of mast cell activation, and to screen for novel inhibitors.
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