
Citation: Codina, J.-R.; Mascini, M.;

Dikici, E.; Deo, S.K.; Daunert, S.

Accelerating the Screening of Small

Peptide Ligands by Combining

Peptide-Protein Docking and

Machine Learning. Int. J. Mol. Sci.

2023, 24, 12144. https://doi.org/

10.3390/ijms241512144

Academic Editors: Gerard Pujadas

and Alexandre G. De Brevern

Received: 13 June 2023

Revised: 19 July 2023

Accepted: 28 July 2023

Published: 29 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Accelerating the Screening of Small Peptide Ligands by
Combining Peptide-Protein Docking and Machine Learning
Josep-Ramon Codina 1 , Marcello Mascini 2,* , Emre Dikici 1,3 , Sapna K. Deo 1,3 and Sylvia Daunert 1,3,4,*

1 Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami,
Miami, FL 33136, USA; jrc356@miami.edu (J.-R.C.); edikici@med.miami.edu (E.D.);
sdeo@med.miami.edu (S.K.D.)

2 Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo,
64100 Teramo, Italy

3 Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute (BioNIUM), University of Miami,
Miami, FL 33136, USA

4 Clinical and Translational Science Institute (CTSI), University of Miami, Miami, FL 33136, USA
* Correspondence: mmascini@unite.it (M.M.); sdaunert@med.miami.edu (S.D.)

Abstract: This research introduces a novel pipeline that couples machine learning (ML), and molecular
docking for accelerating the process of small peptide ligand screening through the prediction of
peptide-protein docking. Eight ML algorithms were analyzed for their potential. Notably, Light
Gradient Boosting Machine (LightGBM), despite having comparable F1-score and accuracy to its
counterparts, showcased superior computational efficiency. LightGBM was used to classify peptide-
protein docking performance of the entire tetrapeptide library of 160,000 peptide ligands against
four viral envelope proteins. The library was classified into two groups, ‘better performers’ and
‘worse performers’. By training the LightGBM algorithm on just 1% of the tetrapeptide library,
we successfully classified the remaining 99%with an accuracy range of 0.81–0.85 and an F1-score
between 0.58–0.67. Three different molecular docking software were used to prove that the process
is not software dependent. With an adjustable probability threshold (from 0.5 to 0.95), the process
could be accelerated by a factor of at least 10-fold and still get 90–95% concurrence with the method
without ML. This study validates the efficiency of machine learning coupled to molecular docking in
rapidly identifying top peptides without relying on high-performance computing power, making it
an effective tool for screening potential bioactive compounds.

Keywords: machine learning; small peptides; molecular docking; classification algorithms

1. Introduction

Peptide-based therapeutics that use bioactive peptides have garnered increasing atten-
tion due to their remarkable versatility [1,2]. In 2021, peptide-containing drugs constituted
24% of all FDA-approved drugs, a significant increase from the 10% observed between 2016
and 2020, underscoring the growing interest in this field [3]. Various in vitro techniques,
such as phage display, bacterial display, and yeast display, have been employed to identify
lead candidates [4]. However, these methods demand considerable expertise and resources,
and are costly and time-consuming, particularly when screening extensive libraries. Con-
sequently, researchers often turn to in silico approaches for the initial design of peptide
candidates, followed by in vitro and in vivo validation [5,6].

Protein-protein and peptide-protein interactions underpin most biological processes.
As such, mimicking these interactions presents a powerful strategy for modulating mecha-
nisms, enhancing, or inhibiting specific pathways, or detecting the presence of organisms
in samples [7]. The inherent flexibility of peptides poses a challenge when calculating
binding affinities for peptide libraries against proteins, often requiring substantial time
investments [8].
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Running molecular docking to large peptide libraries is a computationally expensive
screening step used by many researchers [9–11]. It represents an important part of the
investigation process, yet they can also be considered wasteful. This is because, despite the
significant resources they require, only a small fraction of the highest-scoring compounds is
typically selected for further experimental testing, highlighting the need for more efficient
approaches in the field [12].

For this reason, researchers have increasingly turned to machine learning approaches
to predict interactions, with the goal of accelerating the screening process [13–17]. In a
recent review by Ye et al. [18] these methods have been categorized into five main groups:
Linear-based, including linear regression and logistic regression; Tree-based, including
decision tree, random forest, and gradient boosting machines; Kernel-based, including
radial basis function, linear discriminate analysis, and support vector machine; Neural-
network-based, including convolutional neural-networks, recurrent neural networks and
generative adversarial networks; and Attention-mechanism-based, which includes trans-
formers and BERT.

Gradient boosting, first introduced in 1999 by Friedman [19], has been significantly
developed by the community through open-source packages in Python and R program-
ming languages, like the package ‘lightgbm’, used in this paper [20]. It is a particularly
advantageous choice for predicting peptide-protein interactions as it can handle complex
non-linear relationships, perform automatic feature selection, and provide interpretable
models, making it well-suited for biological data [21]. Among these, LightGBM has gained
traction for its rapid processing. Although previous studies employing sequence-based,
tree-based methods for peptide-protein interactions predictions primarily utilize a Random
Forest (RF) framework [16,17,22,23], our approach aims to predict binding for hundreds
of thousands of peptides, necessitating speed as a crucial factor. Therefore, we think
LightGBM can be more suitable to achieve our goal than RF.

In this work, we present a novel approach that combines rapid molecular docking and
sequence-based prediction using the LightGBM framework. Our goal is to accelerate the
peptide screening process by predicting which peptides will produce better docking results
and guide the researchers to a more targeted docking.

To validate the pipeline, we use binding score data from molecular docking experi-
ments carried out using as ligands the entire tetrapeptide library, comprised of 160,000 pep-
tides. The target binding sites selected were the glycosylation site from the envelope protein
of four different viruses: Chikungunya (CHIKV), Dengue (DENV), West Nile (WNV), and
Zika (ZIKV). All of these are viral diseases transmitted by mosquitoes, and they belong to
the Flaviviridae family (except for the Chikungunya virus, which belongs to the Togaviridae
family). The molecular docking was performed using Openeye software [24]; additionally,
the same receptors were also used to perform docking with AutoDockFR [25] to prove
that different software does not change the performance of the model. Both tools were
used in a rigid setup, through an ensemble docking method. These methods sample
peptide conformations as a pre-processing step without any prior knowledge of the re-
ceptor. These conformations are then docked rigidly or semi-rigidly into the receptors, a
technique that has been studied and documented to yield good accuracy for small and
medium-sized peptides, typically less than or equal to 9 amino acids, like the tetrapeptides
studied here [26–28]. However, it is wort noting that the robustness of the models does
not primarily depend on the specific docking software used. The models are designed
to predict the best peptides based on the distribution provided by the docking software
they are trained with. Therefore, the key to a successful model lies not in the software
chosen for docking but in the quality and distribution of the docking results utilized dur-
ing the model’s training phase. Finally, a case study was performed using a different
molecular docking software, AutoDock CrankPep (ADCP) [29], which was specifically
developed to study peptide-protein interactions by considering peptide flexibility. The
utilization of ADCP provides further evidence supporting the software-agnostic nature of
our research methodology.
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The 3-D protein structures listed in the Protein Data Bank, with accession numbers
3N40 for CHIKV, 4UTC for DENV, 3I50 for WNV, and 5IRE for ZIKV were used for the
docking [30–33].

While these specific datasets were used in this research, our approach is designed to
be a versatile tool applicable to all proteins with a 3-D structure, spanning all species and
biological contexts. An overview of the process of the proposed method is represented in
Figure 1.
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Figure 1. Overview of the process for training and testing the LightGBM in binary classification
model. Initially, a random 1% subset of the tetrapeptide space undergoes molecular docking. The
docking results are then categorized into better 20% performers and worse 80% performers. This
category is the target of the classification task. Ninety-nine sequence-based features from each peptide
were extracted and incorporated into a matrix alongside the target variable, forming the training
data for the LightGBM algorithm. The remaining 99% of the tetrapeptide space, which does not
undergo docking, is similarly processed to obtain sequence-based features which serve as the testing
data for the algorithm. A subset of 2–10% of peptides having the highest probability of being better
performers are selected. The selected peptides undergo a second molecular docking to validate the
goodness of the selection process.

2. Results and Discussion
2.1. Molecular Docking Results

The binding score of the entire tetrapeptide library, taken as ligands, was calculated
against the four receptors represented by the four different envelope proteins glycosylation
binding site (CHIKV, DENV, WNV, and ZIKV). The 3-D protein structures were downloaded
from the Protein Data Bank, with accession numbers 3N40 for CHIKV, 4UTC for DENV,
3I50 for WNV, and 5IRE for ZIKV. The binding score was calculated using two different
docking software, Openeye and AutodockFR suite, to have two different molecular docking
approaches to confirm that the ML procedure was not software dependent [24,25]. The
results of the binding score calculated by the two molecular docking software were reported
in Figure 2 for Openeye (a) and for AutodockFR suite (b) in the form of gaussian distribution
highlighting the two groups selected for the ML classification (20% better performers and
80% worse performers). All docking runs had a normal behavior with slight differences in
the average and standard deviation of the gaussian curve.
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Figure 2. Figure 2. Gaussian distribution of the docking scores obtained by molecular docking all
tetrapeptide library to the four envelope protein targets using Openeye software (a), or AutoDockFR
software (b).

The score values calculated by the molecular docking function were used to estimate
the affinity of peptides for proteins. Lower values indicate a more favorable docking
outcome between the peptide and the protein. This is because lower values represent a
more favorable interaction between the two molecules.

The overall binding tendency showed a similar trend between binding sites. This is
justified by the molecular docking functions that use noncovalent interactions, particularly
hydrogen bonds, to screen compounds that could potentially interact with the binding site.

The results of the molecular docking study were likely to be representative of the
diversity of peptides that could bind to a binding site. In fact, the peptide library ligands
consisted of all the tetrapeptide space, 160,000 peptides. Moreover, although the four target
proteins are from the same viral family, it’s important to note that the glycosylation sites
within these proteins showed the greatest variation in amino acid composition, hence
creating distinct chemical environments. This ensured that the results were as variable
as possible, as each peptide in the library had a different amino acid sequence and the
glycosylation binding sites had a high degree of amino acid sequence variability.

ADCP results are discussed in Section 2.5 Case Study.

2.2. Machine Learning Algorithm Selection

A comparison between various ML methods in terms of processing time, F1-score,
and accuracy, was done using the WNV molecular docking dataset, (Table 1). Notably,
all methods demonstrated similar F1-scores and accuracy ranging from 0.52 to 0.56 and
from 0.77 to 0.86 when using a probability threshold of 0.5. However, a distinct disparity
was observed in computation times. The LightGBM algorithm outperformed all others
with a significantly lowest processing time of 0.057 min. For comparison, the next fastest
algorithm, Naive Bayes, required 0.874 min. The most time-consuming methods were
Random Forest (RF) and SVM, which took 326 min and 1690 min, respectively, to finalize
the processing. Given similar F1-scores and accuracy across methods, it becomes crucial
to consider computation time as a deciding factor. Therefore, considering the balance of
accuracy and computational efficiency, the LightGBM method appeared to be the optimal
choice for the tetrapeptide dataset.
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Table 1. Comparison of various ML methods in terms of processing time and F1-score, obtained
from processing the dataset for WNV. The metrics were calculated using a probability threshold of
0.5. The time taken is measured in minutes. The methods include Light Gradient Boosting Machine
(LightGBM), Naive Bayes, Recursive Partitioning and Regression Trees (RPART), Gradient Boosting
Machine (GBM), Neural Network (NNET), K-Nearest Neighbors (KNN), Random Forest (RF), and
Support Vector Machine (SVM).

Method Time (min) F1-Score Accuracy

LightGBM 0.057 0.52 0.85
Naive Bayes 0.874 0.56 0.77

RPART 2.31 0.54 0.84
GBM 20.8 0.56 0.86

NNET 27.7 0.52 0.85
KNN 311 0.55 0.84

RF 326 0.52 0.83
SVM 1690 0.53 0.86

2.3. Evaluation of LightGBM Models

One of the primary considerations for our model task centers around determining the
size of the group of peptides that yield more favorable docking results while maintaining a
high level of performance and a small set of training peptides to ensure the efficacy of the
method. In that regard, our initial step was to fine-tune the model’s hyperparameters for
different group sizes.

2.3.1. Group Selection and Hyperparameter Tuning

Hyperparameter optimization is crucial in machine learning, as it can significantly
impact model performance. Identifying the optimal set of hyperparameters enhances a
model’s generalization ability, leading to more precise predictions and improved outcomes.
Our objective is to pinpoint the smallest groups of ‘better performing’ peptides and the
smallest training peptide groups, while maintaining a good model performance. Conse-
quently, we performed a fast Bayesian hyperparameter search, with 15 initial points and
15 iterations, across a range of groups to identify the best results.

Combinations of different training peptide groups (1% to 10%) and better-performing
groups (1% to 40%, plus a 67% value, representing the difference between positive and
negative docking scores) were tested. The metric utilized to optimize the performance of
the model was F1-score, which is a harmonic balance between precision and sensitivity
suitable for imbalanced datasets like this one, which has a small group (“better performers”)
and a large group (“worse performers”).

Our findings, shown in Table 2, indicate that there is a strong correlation between
the F1-score and the size of the better-performing group. When the size of the better-
performing group was 20% or higher, the F1-score was over 0.5, indicating a satisfactory
level of accuracy. On the other hand, we don’t see a correlation between F1-score and
the size of the training set. Detailed results are provided in the Supplementary Materials
(Table S1, Figure S1).

Based on these findings, setting the better-performing group to 20% and the training
group to 1%, was a good compromise yielding an F1-score close to 0.6. This means that
we can do an initial docking with 1% of the tetrapeptide library (1600 peptides) and train
the LightGBM algorithm to predict which peptides from the whole tetrapeptide space
(160,000 peptides) would be the 20% better performers.

With these group sizes, a deeper Bayesian hyperparameter optimization, with 25 initial
points and 15 iterations, was performed using the same search space, and to further en-
hance the robustness of our results, this search was repeated 50 times to determine the final
best hyperparameters. The selected hyperparameters were: num_leaves: 29; max_depth: 2;
learning_rate: 0.014; scale_pos_weight: 3; min_data_in_leaf: 35; feature_fraction: 1; bag-
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ging_freq: 5; pos_bagging_fraction: 0.71; neg_bagging_fraciton: 0.84. A deeper explanation
about these parameters and the search space used can be found in the Section 3.

Table 2. F1-score across different groups. A Bayesian hyperparameter optimization was performed
using a fast search with 15 initial points and 15 iteration points to explore the performance of different
group sizes.

“Better Performers” Size (%) Training Size (%) F1-Score

1% 1% 0.10
1% 5% 0.13
1% 10% 0.16

10% 1% 0.46
10% 5% 0.43
10% 10% 0.44

20% 1% 0.58
20% 5% 0.58
20% 10% 0.61

30% 1% 0.67
30% 5% 0.68
30% 10% 0.67

40% 1% 0.74
40% 5% 0.75
40% 10% 0.74

2.3.2. Performance of the Models

The performance of each model was evaluated using five different metrics, namely
the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC), accuracy,
specificity, sensitivity, and F1-score.

The hyperparameters obtained in the previous section were employed to evaluate
all datasets. The AUC-ROC was calculated in triplicates for all datasets. The triplicates
forecast very similar results in each run. The triplicates were averaged, and the values
obtained were plotted in Figure 3. AUC-ROC values vary between 0.84 and 0.91 across
the datasets.
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Figure 3. Performance of the prediction for different datasets. AUC-ROC values are used to compare
the performance of different datasets. The ROC curve was extracted three times after three different
random subsampling, obtaining similar results. Legend shows the average AUC of the triplicates,
and the best threshold for each dataset. (a) Openeye datasets (b) AutoDockFR (AD) datasets. AUC:
Area Under the Curve; Th: Threshold; TPR: True Positive Rate; TNR: True Negative Rate; AD:
AutoDockFR.
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AUC-ROC is a useful metric that provides a single value reflecting both the true posi-
tive rate (TPR) and false positive rate (FPR) of a model. This enables a robust comparison
of classification accuracy across various models. Our AUC-ROC values suggest that our
model performs reasonably well across the datasets evaluated. Furthermore, with the ROC
curve, we can calculate the best classification threshold to increase the sensitivity (TPR)
and specificity.

To further evaluate the models, a Monte Carlo cross-validation approach was imple-
mented, which involved 100 random subsamples for each dataset, then the metrics obtained
were averaged. For each iteration, the dataset was randomly split into two subsets: 1%
for training the algorithm and 99% for testing. The results shown in Table 3, indicate that
we can obtain a prediction with an accuracy oscillating between 0.83 and 0.85, an F1-score
between 0.6 and 0.67, a sensitivity between 0.64 and 0.76, and a specificity between 0.86
and 0.88. Values for each Monte Carlo iteration are available in Table S2.

Table 3. Performance metrics across all datasets, at a 0.5 classification threshold. Groups sizes are
20% for ‘better performers’ group, and 1% for training set group. Optimal hyperparameters were
used. For full data, see Table S2. AD = AutoDockFR.

Metric CHIKV DENV WNV ZIKV

X σ X σ X σ X σ

Accuracy 0.85 0.01 0.83 0.01 0.82 0.01 0.85 0.01
Sensitivity 0.76 0.02 0.66 0.02 0.67 0.03 0.73 0.08
Specificity 0.87 0.01 0.87 0.01 0.86 0.02 0.88 0.02
F1-score 0.67 0.01 0.61 0.004 0.61 0.003 0.66 0.07

Metric CHIKV (AD) DENV (AD) WNV (AD) ZIKV (AD)

X σ X σ X σ X σ

Accuracy 0.81 0.01 0.82 0.01 0.83 0.01 0.84 0.01
Sensitivity 0.64 0.03 0.64 0.03 0.66 0.03 0.72 0.03
Specificity 0.86 0.02 0.86 0.02 0.87 0.01 0.87 0.01
F1-score 0.58 0.004 0.58 0.004 0.60 0.004 0.65 0.004

Additionally, to prove that our approach is not software-dependent, the AutoDockFR
datasets were also evaluated. The results, in the second part of Table 3, were like those
obtained with the Openeye datasets, with an accuracy ranging from 0.81 to 0.84, an F1-score
between 0.58 and 0.65, a sensitivity between 0.64 and 0.72 and a specificity between 0.86
and 0.87.

The prediction threshold for a classification task, which is the cut-off value that
determines the class label for a given prediction probability, was also examined in our
study. In the datasets studied, we observed that sensitivity increases within a threshold
range of 0.33 to 0.41. This behavior can be attributed to the imbalanced nature of the data.
The datasets are unequally divided, with one group representing 20% of the total data
(“better performers” group) and the other, a significantly larger portion, representing 80%
(“worse performers” group).

Upon lowering the prediction threshold, we inevitably include more false positives in
the data. However, given the size discrepancy between the negative and positive groups,
we still maintain a substantial count of true negatives. This sustains high specificity while
concurrently improving sensitivity. If the prediction threshold is lowered, approximately
50,000 peptides would be predicted as positive, which constitutes nearly one-third of the
entire tetrapeptide space. Moreover, with a threshold approximating 0.35, the positive
predictive value (PPV) hovers around 50%, as shown in Figure 4. Figure 4 shows Openeye
datasets; AutoDockFR datasets (Figure S2) present similar results.
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Figure 4. Positive Predictive Value, True Positives and False Positives representation for the Openeye
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positively predicted values. The plots (a–d) show the PPV (red), true positives (blue) and false positives
(orange) across different prediction thresholds for (a) CHIKV, (b) DENV, (c) WNV, (d) ZIKV datasets.

The process of selecting an appropriate prediction threshold is critical and must be
delicately handled in accordance with specific circumstances. Opting for a higher prediction
threshold can lead to a manageable number of candidate peptides (true positives), at the
risk of overlooking certain potential candidates. On the other hand, a lower prediction
threshold could ensure the selection of all possible candidates but may also include some
false candidates (false positives) in the process.

While the observed increase in sensitivity, accompanied by a robust specificity, is of
notable interest, it diverges from the primary objective of this research. Our central aim is
to identify peptide candidates and reduce the time expended to evaluate the whole peptide
space. With a classification threshold of ~0.35, out of the 50,000 peptides predicted as
positive, only half are true candidates, while the remaining half are false positives. This
already constitutes a significant time reduction when docking one-third of the peptides
as opposed to the full library. However, with larger peptide spaces in mind, such as
pentapeptide (3.2 million peptides) or hexapeptide (64 million peptides), we strive for even
greater efficiency.

The key to verifying the authenticity of selected candidates lies in a subsequent
step of peptide docking. The predictive model’s threshold, therefore, should be carefully
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calibrated based on the computational resources and time available to the research team.
A high threshold may be suitable if computational power is limited, ensuring that only
the most likely candidates are selected. In contrast, a lower threshold would be more
computationally demanding but would ensure no potential candidates are missed. This
subject is further discussed in the Section 2.4 LightGBM versus Molecular Docking Results
where we compare this method to a molecular docking method without ML.

The classification task yielded promising results, however we decided to evaluate the
application of the LightGBM algorithm for a regression task, with the goal of predicting
precise docking scores. Like before, the model was trained with 1% of the dataset, and
tried to predict the remaining 99%. As in classification, the training matrix consisted of
the docking score plus 99 features that were extracted for each peptide as described in the
Section 3. The overall performance of this regression model yielded outcomes that were
measured by Root Mean Square Error (RMSE), using as reference the molecular docking
score obtained by Openeye software. The regression prediction (Figure S3) revealed notable
differences in the RMSE values across different ranges of the molecular docking score
distribution. The RMSE for the entire dataset was 1.2. However, when the dataset was
divided into three subsets—lower bound (worst performing peptides), middle bound,
and upper bound (better performing peptides)—distinct variations in RMSE values were
observed. The lower bound and upper bound subsets, representing the tails of the score
distribution, showed significantly higher RMSE values of 1.9 and 2.3, respectively. These
results indicate that the model’s prediction accuracy was notably poorer for scores at the
extremes of the distribution, which are the ones we are most interested in, specifically the
top peptide ligands.

In contrast, the RMSE for the middle-bound subset, representing the bulk of the data,
was only 1.04. This suggests that the model performed relatively well in predicting scores
in this middle range but struggled when predicting more extreme scores.

These results highlight a key limitation of the regression-based approach: its dimin-
ished predictive accuracy for scores at the tails of the distribution. This means that we
cannot successfully predict a molecular docking score using the regression approach. As
such, we continued with the classification approach.

2.3.3. Importance of Choosing the Right Features

Choosing the right features, i.e., peptide properties that the model uses to make
accurate predictions, is important because they provide the necessary information for
the LightGBM algorithm to learn and discern patterns. These peptide properties can
significantly enhance the predictive power of the model as they enable the model to capture
the underlying relationships that determine the outcome. Furthermore, the interaction
between these features can reveal complex dependencies that a simpler model might
miss. The features used in this paper are obtained from the ‘Peptides’ R package (https:
//github.com/dosorio/Peptides/ (accessed on 12 June 2023) [34]). All sequence-based
properties from this package were considered. However, following a comprehensive
screening of similarities across the entire tetrapeptide library via Principal Component
Analysis (PCA), only 99 properties were chosen from the potential 168 properties. More
detailed information about these properties can be found in the Section 3.

By analyzing the importance of each feature post-training, we can gain valuable
insights into which peptide properties are most influential in our predictions, guiding
future research and model refinement. The five most important features for all datasets are
reported in Table 4.

In this table, it becomes clear that even with very similar datasets, the same algorithm,
and an identical feature set, each dataset seems to highlight different essential features.
This can be attributed to several reasons.

First, each dataset, while similar, is not identical. Subtle differences in peptide com-
position or distribution can lead to variations in the impact of individual features. For
example, if one dataset is representing a small binding pocket, the molecular weight will

https://github.com/dosorio/Peptides/
https://github.com/dosorio/Peptides/
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most likely be a very important feature, while if it represents a big binding pocket the size
will not be as limiting, and the molecular weight will be less important.

Table 4. Five most important features for each dataset from both docking experiments.

OpenEye AutoDockFR

Dataset Feature Gain Feature Gain

CHIKV

Molecular Weight 27% ProtFP2 29%
VHSE 26% T-scales 28%

ProtFP2 10% Molecular Weight 5%
Kidera Factors 10% Z-scales 5%

T-scales 2% Hydrophobicity (Wolfenden) 5%

DENV

ProtFP2 28% T-scales 53%
Cruciani (3) 14% Cruciani (1) 8%

Molecular Weight 10% VHSE 6%
ProtFP3 6% Fasgai Vectors (6) 4%

Cruciani (1) 4% Kidera Factors 3%

WNV

Molecular Weight 45% T-scales 36%
PP3 10% VHSE 13%

Z-scales 8% ProtFP2 10%
Fasgai Vectors 7% Fasgai Vectors (5) 9%
Kidera Factors 6% Cruciani (1) 5%

ZIKV

Molecular Weight 60% T-scales 28%
Cruciani (3) 7% Fasgai Vectors (6) 19%

T-scales 6% ProtFP2 7%
VHSE 4% Fasgai Vectors (5) 6%

Kidera Factors 2% Charge (EMBOSS) 5%

Second, different software tools use different scoring functions to predict binding
affinity, meaning they emphasize different features. These differences in emphasis can,
in turn, affect the importance of certain features when training machine learning models
on these data. Many molecular docking software tools consider steric (van der Waals)
interactions, hydrogen bonding, electrostatic interactions, solvation effects, and entropy
effects in their scoring functions. However, they may weigh these parameters differently,
leading to different importance scores in feature analysis post-training. The importance of
all features that were used in this study can be found in the Supplementary Figure S4 and
Table S3.

2.4. LightGBM Versus Molecular Docking Results

To compare the results obtained from our new method, which incorporates molecular
docking and machine learning, we referred to our previously utilized approach as a
benchmark [11,35]. This conventional method involved a two-step process: first, molecular
docking of the entire tetrapeptide library, consisting of 160,000 peptides, was performed,
followed by a comprehensive structural analysis. This analysis compares amino acid
distribution at each residue position (i.e., first, second, third, or fourth) between the top
and bottom 5% of performing tetrapeptides. Analyzing residue occurrences that show
significant divergence between these two groups, at the 90% confidence level, generates a
selection of tetrapeptides, which are then trimmed to include only those that fall within the
top 5% of docking scores.

The new strategy introduced here consists of docking 1% of the tetrapeptide space
(1600) and classifying the remaining 99% of the library as better performers and worse
performers using ML algorithm, LightGBM. Then a classification threshold is selected to
obtain a reduced selection of peptides. Finally, this selection is validated by docking the
selected peptides to the target to obtain a binding score. As mentioned earlier, the selection
of the prediction threshold is a critical step that establishes a balance between the time taken
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for the second docking step and the accuracy in detecting true candidates. By carefully
adjusting this threshold, we can optimize the trade-off between computational efficiency
and the precision of candidate identification.

To select the best threshold we consider two factors, the first one is the number of
peptides classified as better performers with that threshold. Since we will need to dock
these peptides, we want to choose a small group that, at the same time, includes as many
real better performers as possible. This number of selected peptides will determine the size
of the second docking where we will check if the candidates selected are indeed ranked as
better performers. The second factor we consider is the comparison of peptides selected
through our proposed method with those selected using the former method of docking
and structural analysis without ML. We calculate the concurrence as a percentage, which is
determined by dividing the number of peptides selected by the proposed method that are
also selected by the conventional method divided by the number of peptides selected by
the conventional method only. This gives us a measure of how well the proposed method
aligns with the conventional approach. Results are represented in Table 5 as an average of
all datasets for each molecular docking software.

Table 5. Time reduction and concurrence of selected peptides. A number of peptides with the
highest probability to be better performers, as predicted by the classification algorithm, is selected.
These peptides are compared to the peptides obtained by the conventional method by concurrence
percentage (percentage of peptides selected by the conventional method that are also selected by the
proposed method). Time reduction is calculated by dividing the entire tetrapeptide library (160,000)
by the number of selected peptides by ML.

Peptides Selected by ML Concurrence Time Reduction Factor

Openeye AutoDockFR

50,000 100% 100% ×3.2
32,000 99% 98% ×5
16,000 95% 90% ×10
8000 85% 81% ×20
4000 69% 67% ×40
2000 50% 51% ×80
1000 33% 38% ×160
500 19% 27% ×320

The results obtained provide strong evidence in support of our newly proposed
approach, which combines rapid molecular docking with subsequent machine learning.
This methodology was found to be highly effective and on par with the conventional
method in the identification of peptide candidates. The high concurrence rates substantiate
the efficacy of our proposed strategy.

The choice to increase the prediction threshold, and therefore reduce the number of
peptides to dock, should be taken carefully and knowing that the lower the number of
peptides to dock the higher the risk of overlooking some candidates. Nevertheless, we can
see in Table 5 that by choosing the most probable 16,000 better binders, we are reducing the
time by a factor of 10 while keeping 90–95% of the peptides that would have been selected
by the conventional method. By selecting the most probable 8000 peptides we would be
getting between 81–85% concurrence with the conventional method while reducing the
time by a factor of 20. In that regard, our proposed method demonstrates a remarkable
combination of accuracy and efficiency. Future work could explore methods to further
optimize this balance.

It is important to note that the pool of 8000–16,000 peptides represent the maximum
number to be molecularly docked and it can be further refined based on the specific
objectives of the researcher. If a researcher is particularly interested in certain functional
groups or peptide properties, such as levels of hydrophobicity or the presence of positive
or negative charges, they can filter the peptides accordingly, since these are theoretical
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properties. This refinement should be performed prior to the second round of docking, as
it can significantly reduce the computational time required for the screening process.

2.5. Case Study

Here, we provide a practical example of our methodology, applying each step in
sequence. Initially, we randomly selected 1600 tetrapeptides, i.e., 1% of the sample pool.
These are subjected to a flexible docking procedure against the WNV receptor using
AutoDock CrankPep (ADCP) a tool featured in ADFR software specifically designed for
peptide-protein docking [29]. This tool is capable of automatically generating 3-D structures
of peptides. However, as it only accepts peptides containing five or more residues, we
appended a Gly residue to the end of all tetrapeptides in the sample.

Upon the completion of docking, we extracted features for both the random 1% sample
and the remaining 99% of the peptide library. Subsequently, we divided the random 1%
sample into two groups to establish the target labels for the LightGBM classification task:
“better performers” and “worse performers”. The algorithm training was carried out
using the random 1% sample and the hyperparameters obtained in Section 2.3.1—‘Group
Selection and Hyperparameter Tuning’. The trained model was then deployed to predict
the remaining 99% of the library.

Following the prediction, we ranked the full list of peptides according to their pre-
dicted probability of falling into the “better performers” category. It’s important to re-
member that the selection of the probability threshold, which determines the number of
peptides chosen for the second docking round, is dependent on the available resources
of the researchers. In this case study, we selected the top 8000 peptides, equivalent to a
probability threshold of 0.83. For illustration purposes, we also included the bottom 8000
peptides, those with the least likelihood of being categorized as “better performers”, even
though this would not typically be done in a real-world application of the method.

A second round of flexible docking was conducted for these groups, using identical
parameters as the first round. The docking results for these three groups (random 1%
sample, top 8000, and bottom 8000) are presented in Figure 5, which illustrates a significant
difference (mean top: −9.8; mean bottom: −7.3; p < 0.005; CI95: 2.44–2.48) between the top
and bottom groups and displays a normal distribution for the random sample.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 13 of 21 
 

 

performers” group were correctly classified as “worse-performers”. These preliminary re-

sults confirmed the success of the pipeline proposed by this work. 

In order to maximize the utilization of resources, we conducted the flexible docking 

across all available nodes of the Pegasus Supercomputer cluster of the University of Mi-

ami. The computational capacity of these nodes varied; some had 8 cores, while others 

had 16 cores available. ADCP is able to detect the available cores and distribute the dock-

ing calculations accordingly in parallel. When performed with 8 cores, each peptide dock-

ing process lasted approximately 29 min. However, with 16 cores, the docking time was 

reduced to about 7 min. Here we used all available nodes, consisting of a mix of 8 and 16 

cores nodes. We calculated the average docking time per peptide which was found to be 

15.33 min. It’s worth noting that the number of available nodes in the cluster varies de-

pending on current demand. The task of docking 17,600 peptides, fully utilizing the ca-

pacity of the University’s supercomputer, took us approximately 10 days. By extrapola-

tion, considering we used the full supercomputer capacity, we can estimate that docking 

an additional 90% peptides would have required roughly 90% more time, translating to a 

duration exceeding three months.  

Docking the top 8000 peptides would likely have taken under 5 days, considering the 

increased availability of resources that would result from the bottom 8000 peptides not 

occupying those resources. This underscores the substantial difference between conduct-

ing a broad-spectrum peptide docking process that would exceed three months, versus 

performing a targeted docking approach facilitated by machine learning, which would 

take a maximum of 5 days. This not only optimizes resource allocation but also drastically 

reduces the time needed for the procedure, underscoring the efficacy and scientific value 

of this machine learning-guided approach. It is worth noting that the specific time taken 

will depend on the researcher’s resources and computational power, and that this exam-

ple is used only to illustrate our point. 

All the files to replicate the case study are in Supplementary Materials. Table S4: ran-

dom sample docking results; Table S5: prediction results for 99% remaining; Table S6: 

docking scores for top 8000 peptides; Table S7: docking scores for bottom 8000 peptides; 

Scripts are in the scripts folder.  

 

Figure 5. After using the results from the random sample of 1% of the library (gray) to train the 

LightGBM algorithm, the remaining 99% is predicted. The peptides are ordered based on their prob-

ability to belong to the better performers group, and 8000 peptides with the highest probability are 

chosen for docking (blue). To better illustrate the case study, the 8000 peptides with the lowest pre-

dicted probability to belong to the better performers group (red) is also docked. 

  

Figure 5. After using the results from the random sample of 1% of the library (gray) to train the
LightGBM algorithm, the remaining 99% is predicted. The peptides are ordered based on their
probability to belong to the better performers group, and 8000 peptides with the highest probability
are chosen for docking (blue). To better illustrate the case study, the 8000 peptides with the lowest
predicted probability to belong to the better performers group (red) is also docked.
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As shown in Figure 5 the model built using the 1% random sample worked very well
in predicting the tails behavior of the gaussian distribution. Considering 1% sample as
representative of the tetrapeptide space, the peptides that have a docking score below the
docking score of the best 20% of this sample (score = −9.2) are in the “better-performers”
group, while the peptides with a docking score above this are in the “worse-performers”
group. The validation step confirmed that 87.4% of the 8000 peptides with the highest
probability to belong to the “better-performers” group are in that group. On the other hand,
99.9% of the 8000 peptides with the lowest probability to belong to the “better-performers”
group were correctly classified as “worse-performers”. These preliminary results confirmed
the success of the pipeline proposed by this work.

In order to maximize the utilization of resources, we conducted the flexible docking
across all available nodes of the Pegasus Supercomputer cluster of the University of Miami.
The computational capacity of these nodes varied; some had 8 cores, while others had
16 cores available. ADCP is able to detect the available cores and distribute the docking
calculations accordingly in parallel. When performed with 8 cores, each peptide docking
process lasted approximately 29 min. However, with 16 cores, the docking time was reduced
to about 7 min. Here we used all available nodes, consisting of a mix of 8 and 16 cores nodes.
We calculated the average docking time per peptide which was found to be 15.33 min.
It’s worth noting that the number of available nodes in the cluster varies depending on
current demand. The task of docking 17,600 peptides, fully utilizing the capacity of the
University’s supercomputer, took us approximately 10 days. By extrapolation, considering
we used the full supercomputer capacity, we can estimate that docking an additional 90%
peptides would have required roughly 90% more time, translating to a duration exceeding
three months.

Docking the top 8000 peptides would likely have taken under 5 days, considering the
increased availability of resources that would result from the bottom 8000 peptides not
occupying those resources. This underscores the substantial difference between conduct-
ing a broad-spectrum peptide docking process that would exceed three months, versus
performing a targeted docking approach facilitated by machine learning, which would
take a maximum of 5 days. This not only optimizes resource allocation but also drastically
reduces the time needed for the procedure, underscoring the efficacy and scientific value of
this machine learning-guided approach. It is worth noting that the specific time taken will
depend on the researcher’s resources and computational power, and that this example is
used only to illustrate our point.

All the files to replicate the case study are in Supplementary Materials. Table S4:
random sample docking results; Table S5: prediction results for 99% remaining; Table S6:
docking scores for top 8000 peptides; Table S7: docking scores for bottom 8000 peptides;
Scripts are in the scripts folder.

3. Materials and Methods
3.1. Molecular Docking

Molecular docking calculations were performed using a high-performance computer
equipped with 19 Intel Xeon X5690 processors running at 3.47 GHz, and 94.5 GiB of RAM.
The system was operating under the Kernel Linux 2.6.32–642.1.1el6.×86_64, GNOME
2.28.2 environment. Molecular docking results using Openeye were obtained as described
by Mascini et al. [11]. In the first step peptide libraries were designed and prepared
using HyperChem 8.0.5 [36]. Peptides libraries were designed in zwitterionic mode using
the Amber molecular mechanics method. Hydrogen atoms were added at pH 7, and
the “Steepest Descent” algorithm was used to achieve convergence at 0.08 kJ mol −1 in
32,767 cycles. The secondary structure setting was set to default (beta-sheet). The script
running in HyperChem automatically eliminated peptide duplicates. In the second step
each peptide library was compacted into a single file and fast minimized in a vacuum using
Openeye software tools. The energy minimization process was conducted using SZYBKI
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1.5.7 in its default parameterization [37]. Ten conformers were generated for each peptide
using OMEGA 2.4.6 with MMFF as the force field [38].

In the third step, the active grid box along with the multi-conformer rigid body docking
were carried out using OEDocking 3.0.0 [24]. The envelope proteins used as receptors were
from four different targets: Chikungunya (CHIKV), Dengue (DENV), West Nile (WNV),
and Zika (ZIKV) viruses. The 3D protein structures are listed in the Protein Data Bank,
with accession numbers 3N40 for CHIKV, 4UTC for DENV, 3I50 for WNV, and 5IRE for
ZIKV [30–33].

ADFR suite was also used to prove the cross-software ability of our model. The
peptide library was also prepared differently from before using a Python script to automate
the molecule building through PyMOL (Schrödinger). The script build_proteins.py can
be found in the Supplementary Materials. Initially, protein sequences are read from a file
and then processed in parallel threads according to the number of available CPU cores.
Each sequence is turned into a peptide structure through a process of building, geometry
optimization, and hydrogen removal. Each optimized structure is saved as a pdb file in
the designated output directory. This method allows the efficient creation and saving of
peptide structures derived from an extensive list of sequences. This library was prepared
using a laptop with an Intel i7-11800H processor with 64 GiB of RAM. Once the molecules
are built, all remaining hydrogens are removed and then added using the tool ‘reduce’
with default parameters. Receptors were prepared using the tool ‘prepare_receptor’ and
ligands were prepared using the tool ‘prepare_ligand’, both with default configuration.
These tools transform the pdb-formatted files into AutoDock’s format pdbqt. The target
file was generated using the tool ‘agfr’. The grid box was built manually using the same
residues used for building the grid box for Openeye procedure. The binding pockets were
determined using AutoSite1.0, and all binding pockets identified were selected. The target
files were saved with trg format. The molecular docking was run in the same cluster as the
OpenEye docking. The tool ‘adf’r was used with the parameters --nbRuns 2 --maxEvals
10000 -T -NG backbone. Results were processed by extracting the best result from each run.
ADFR suite was also used in the case study as described below.

3.2. Case Study

The case study was performed using the ADFR suite with flexible docking with the
tool ‘adcp’ (AutoDock CrankPep) [29]. This tool is specifically designed to evaluate peptide-
protein interactions. First, a random sample of 1600 (1%) tetrapeptides was selected. The
same tool generates the library; however, it only works with pentapeptides or larger pep-
tides, therefore, a Gly was added at the end of all the tetrapeptides tested. The parameters
used were, -t H3i50_E.trg -s SEQUENCE_HERE -c 8 -N 50 -n 5000000. 1 million steps
per amino acid was chosen as recommended by the developers (5 million total -n) and
50 replicas. After the docking was performed, the LightGBM algorithm was trained with
the results using the best parameters obtained in Section 2.3.1 Group Selection and Hy-
perparameter Tuning, and the features described in next Section 3.3 Datasets and Feature
extraction. Once trained, the algorithm was then utilized to predict the performance group
for the remaining 99% of the peptides in the library. Finally, the peptides predicted as top
5% (8000 peptides) were chosen as well as the bottom 5% (8000 peptides) to compare. The
adcp tool was then used again with the same parameters to obtain a docking score. To
compare both groups, after checking the equality of variance and normality, a Student’s
t-test was performed.

3.3. Datasets and Feature Extraction

The datasets utilized in this study were obtained as described above. Four different
targets from: CHIKV, DENV, WNV, and ZIKV capsid proteins were evaluated. Each dataset
contained results from 160,000 tetrapeptides docked. 99 numerical sequence-based features
were extracted using the R package ‘Peptides’ (https://github.com/dosorio/Peptides/

https://github.com/dosorio/Peptides/
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(accessed on 12 June 2023) [34]) and a binary target variable, 1 or 0, which represents the
‘better performers’ group and the ‘worse performers’ group respectively.

All features from the ‘Peptides’ package can be deeply explored using the package
reference manual (https://cran.r-project.org/web/packages/Peptides/Peptides.pdf (ac-
cessed on 12 June 2023) ). Here, we selected the following features from the package:
Cruciani properties (physicochemical properties of peptides calculated using Cruciani’s
method, which includes molecular weight, molecular volume, and other properties) [39];
amino acid indices used to describe the physicochemical properties of the amino acids
present in the peptide (FASGAI vectors [40], Kidera factors [41], ProtFP [42], T-scales [43],
VHSE scales [44], Z-scales [45]); isoelectric point (pI) computed using different pK scales
(EMBOSS, Bjellqvist, Lehninger, Murray, Rodwell, and Sillero) [46]; mass shift for 15N (the
mass shift of the peptide when all nitrogen atoms are replaced by 15N isotope); charge
(the net charge of the peptide at pH 7) [47]; hydrophobicity, calculated using various hy-
drophobicity scales (Aboderin, AbrahamLeo, BlackMould, BullBreese, Casari, Chothia,
Cid, Cowan3.4, Cowan7.5, Eisenberg, Fasman, Fauchere, Goldsack, Guy, HoppWoods,
interfaceScale_pH2, interfaceScale_pH8, Janin, Jones, Juretic, Kuhn, KyteDoolittle, Levitt,
Manavalan, Miyazawa, octanolScale_pH2, oiScale_pH2, oiScale_pH8, Parker, Ponnuswamy,
Prabhakaran, Rao, Rose, Roseman, Sweet, Tanford, Welling, Wilson, Wolfenden, Zimmer-
man) [48,49]; amino acid index (aIndex, a measure of the relative volume occupied by the
side chains of the amino acids in the peptide) [50]; Boman index (estimate of the peptide’s
binding potential to other proteins) [51]; helical moment (hmoment, a measure of the
amphipathicity of the peptide, calculated for two different angles, 100 and 160 degrees) [52];
instability index (instaIndex, a measure of the peptide’s stability in a test tube) [53]; and
molecular weight (mw1, the monoisotopic molecular weight of the peptide) [49]. The
importance of these features varies depending on the dataset (Table S3, Figure S4). The
treatment of the datasets can be summarized as follows:

1. The datasets containing the tetrapeptide sequences and the molecular docking scores
were combined with the peptide’s properties.

2. A binary target variable (0 or 1) was added to distinguish between ‘better performers’
and ‘worse performers’ groups. The size of these groups varied depending on the
stage of the process. A range between 1% to 40% for ‘better performers’ and 60% to
99% for ‘worse performers’ groups was evaluated.

3. The datasets are divided into train and test sets. Train sets varying from 1% to 10%
were evaluated.

3.4. Algorithm Selection

Other algorithms were tested using the dataset from WNV dataset. 1600 peptides were
selected as train and 158,400 peptides were selected as test set. The R package ‘caret’ was
used to evaluate different models available in the package, namely: Naive Bayes, Recursive
Partitioning and Regression Trees (RPART), Gradient Boosting Machine (GBM), Neural
Network (NNET), K-Nearest Neighbors (KNN), Random Forest (RF), and Support Vector
Machine (SVM). The Light Gradient Boosting Machine framework is not available in ‘caret’
package, so the ‘lightgbm’ package was used.

3.5. Light Gradient Boosting Machine

A binary classification task was performed using Light Gradient Boost Machine (Light-
GBM) where we wanted to distinguish between better performers and worse performers.
We selected LightGBM for our analysis based on its speed advantage over other tree-based
methods and machine learning frameworks. Moreover, LightGBM presents suitable fea-
tures like, scalability, it is specifically designed for large datasets, making it an ideal choice
for handling the 160,000 peptides in our study; computational efficiency, reduces mem-
ory usage and training time by employing a histogram-based algorithm; and robustness
to overfitting, thanks to gradient-based one-side sampling (GOSS) and exclusive feature
bundling (EFB). More information about the LightGBM algorithm can be found in the
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documentation page (https://lightgbm.readthedocs.io/en/v3.3.2/index.html (accessed on
12 June 2023) [20]).

The parameters for the model were chosen as described in the next section, 3.6 Hy-
perparameters Tuning. Each model underwent 5000 improvement iterations; however, an
early stopping criterion of 50 iterations was implemented to avoid overfitting. Scripts of
the R implementation can be found in the Supplementary Materials.

3.6. Hyperparameters Tuning

To obtain the optimal hyperparameters for the LightGBM model, we employed
Bayesian optimization using the R package ‘rBayesianOptimization’ (https://github.com/
yanyachen/rBayesianOptimization (accessed on 12 June 2023) [54]). Bayesian optimization
is a method used to find the best solution in a search space by creating a simplified model,
often called a surrogate model, to estimate the unknown target function. This approach
balances the exploration of new areas in the search space and the exploitation of areas
where the model already has some knowledge.

We began by defining the search space for each hyperparameter, considering their
respective ranges and the potential for overfitting:

num_leaves: integer values from 8 to 31
max_depth: integer values from 1 to 10
learning_rate: continuous values from 0.001 to 0.9
scale_pos_weight: integer values from 1 to 50
min_data_in_leaf: integer values from 5 to 90
feature_fraction: continuous values from 0.1 to 1
bagging_freq: continuous values from 0.1 to 1
pos_bagging_fraction: continuous values from 0.1 to 0.9
neg_bagging_fraciton: continuous values from 0.1 to 0.9

Where num_leaves controls the complexity of the tree structure, max_depth limits the
depth of the tree to avoid overfitting, learning_rate controls the step size during training
to balance between convergence speed and optimization performance, scale_pos_weight
adjusts the balance between positive and negative class weights, min_data_in_leaf sets the
minimum number of data samples in a leaf node to control overfitting, feature_fraction
controls the percentage of features used in each iteration to reduce the correlation among
trees, bagging_freq controls the frequency of bagging, and pos_bagging_fraction and
neg_bagging_fraciton set the fraction of positive and negative bags to use in each iteration
for imbalanced data. All the possible parameters can be found in ‘Parameters—LightGBM
3.3.2 documentation’ [55]. As evaluation metric we used the F1-value because it considers
the highly imbalanced dataset that we have. The formula can be written as:

F1 − score =
2 × Sensitivity × Precision

Sensitivity + Precision
(1)

The dataset utilized for all the hyperparameter optimizations was the WNV dataset.
We aimed to identify the smallest groups of better-performing peptides and training

set, while maintaining a high F1-score. Therefore, hyperparameters were tuned for each
of the possible groups to find the best results. Combinations of better performing peptide
groups (1% to 40%) and training peptide groups (1% to 10%) were used for the hyperpa-
rameter optimization. Detailed R scripts can be found in the Supplementary Materials.

3.7. Metric Calculation

In this study, we used the performance metrics, AUC-ROC, accuracy, F1 score, sensi-
tivity, and specificity. The analysis was conducted using R programming language, with
packages including ‘caret’ [56], and ‘pROC’ [57].

The best model hyperparameters were obtained as described in the ‘Hyperparameter
Tuning’ step from this section and were used to train the LightGBM algorithm. The datasets

https://lightgbm.readthedocs.io/en/v3.3.2/index.html
https://github.com/yanyachen/rBayesianOptimization
https://github.com/yanyachen/rBayesianOptimization
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were treated as described in the section ‘Datasets and Feature Extraction.’ Next, the model
was trained and evaluated 100 times through a Monte-Carlo random sub-sampling cross-
validation for each data sequence. The model performance was evaluated by generating a
confusion matrix using the ‘caret’ package which calculates the metrics of interest, accuracy,
sensitivity, specificity, precision (or positive predictive value), and F1 score. The metrics
can be defined as follows:

• Accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN
, (2)

• Sensitivity (TPR):

Sensitivity =
TP

TP + FN
, (3)

• Specificity:

Speci f icity =
TN

TN + FP
, (4)

• Precision (PPV):

PPV =
TP

TP + FP
, (5)

where TP = true positives; TN = true negatives; FP = false positives; and FN = false negative.
F1-score was defined in the previous section.

Additionally, the R package ‘pROC’ was used to calculate the AUC-ROC. The ROC
curve plots the sensitivity, also known as true positive rate (TPR), against the complement
of specificity (1—specificity), or false positive rate (FPR). The AUC-ROC value measures
the ability of the classifier to distinguish the positive and negative values.

3.8. Data Analysis and Availability

In this study, we conducted data analysis using the R programming language. The
packages used for the analysis are: ‘dplyr’ [58], ‘data.table’ [59], and ‘ggplot2’ [60].

The datasets and scripts used in this research can be found in the GitHub repository:
‘https://github.com/jrcodina/LightGBM_Machine_Learning_Peptide_Screening.git’ The
repository contains all the necessary data files and scripts to reproduce the results reported
in this paper. By providing open access to the data and code, we aim to ensure transparency,
and reproducibility.

4. Conclusions

In conclusion, our study presents a novel pipeline that significantly accelerates the
process of screening an entire peptide space. It has been demonstrated that this method can
drastically reduce the time that it takes for such docking screening method, by a factor of at
least 10-fold, depending on the chosen strategy. A key distinction from traditional molecular
docking is that our method does not score individual peptides. Instead, it utilizes a selection
process that categorizes them into two groups in the context of molecular docking ranking:
better performers and worst performers. Following this categorization, only the peptides
anticipated to be ranked higher are subjected to individual scoring through molecular
docking. This approach facilitates a more efficient and targeted screening process, saving
time by focusing on promising candidates. Moreover, the structural information about the
binding of the selected peptides is not lost.

It is crucial to highlight that this is not a substitute for molecular docking; it rather
enhances the screening by shortening the process. Specifically, the proposed process begins
with the docking of 1% of the entire peptide space, followed by the application of machine
learning. The last step involves using molecular docking for a second time to validate the
peptides that show the greatest probability of being suitable as better ligands.

https://github.com/jrcodina/LightGBM_Machine_Learning_Peptide_Screening.git


Int. J. Mol. Sci. 2023, 24, 12144 18 of 20

A potential alternative to the initial docking could involve utilizing publicly accessible
data; however, the efficacy of this alternative within the pipeline has not yet been evaluated
and verified, and it could limit the process to only published data. The proposed pipeline,
on the other hand, offers a broad application across virtually any desired target, regardless
of whether it belongs into published data domains or not.

With the growing trend of enhanced computational power, we anticipate that exploring
larger peptide spaces will become increasingly feasible and yield a wealth of valuable data.
As a natural progression, our future research will aim to scale this process to accommodate
larger peptide spaces, like pentapeptides and hexapeptides. We envision that the potential
impact of this pipeline could transform the speed and efficiency of bioactive peptide
screening, offering new avenues for exploring biological systems and accelerating the
development of effective diagnostics and therapeutics where these peptides could be used
as binders or therapeutic agents.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms241512144/s1.
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