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Piotr Kmieć 1, Stephan Rosenkranz 2, Margarete Odenthal 3 and Evren Caglayan 4,*

1 Department of Endocrinology and Internal Medicine, Medical University of Gdańsk, 80214 Gdańsk, Poland;
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Abstract: Angiotensin II, a major culprit in cardiovascular disease, activates mediators that are also
involved in pathological cardiac remodeling. In this context, we aimed at investigating the effects
of two of them: aldosterone (Ald) and transforming growth factor beta-1 (TGF-β1) in an in vivo
model. Six-week-old male wild-type (WT) and TGF-β1-overexpressing transgenic (TGF-β1-TG) mice
were infused with subhypertensive doses of Ald for 2 weeks and/or treated orally with eplerenone
from postnatal day 21. Thehearts’ ventricles were examined by morphometry, immunoblotting to
assess the intracellular signaling pathways and RT qPCR to determine hypertrophy and fibrosis
marker genes. The TGF-β1-TG mice spontaneously developed cardiac hypertrophy and interstitial
fibrosis and exhibited a higher baseline phosphorylation of p44/42 and p38 kinases, fibronectin
and ANP mRNA expression. Ald induced a comparable increase in the ventricular-heart-weight-
to-body-weight ratio and cardiomyocyte diameter in both strains, but a less pronounced increase
in interstitial fibrosis in the transgenic compared to the WT mice (23.6% vs. 80.9%, p < 0.005). Ald
increased the phosphorylation of p44/42 and p38 in the WT but not the TGF-β1-TG mice. While the
eplerenone-enriched chow partially prevented Ald-induced cardiac hypertrophy in both genotypes
and interstitial fibrosis in the WT controls, it completely protected against additional fibrosis in
transgenic mice. Ald appears to induce cardiac hypertrophy independently of TGF-β1, while in the
case of fibrosis, the downstream signaling pathways of these two factors probably converge.

Keywords: k aldosterone; transforming growth factor beta-1; ventricular cardiac remodeling; transgenic
mice; mitogen-activated protein kinases

1. Introduction

Pathological cardiac remodeling (CR) comprises structural and functional changes in
the heart due to injury and/or chronic diseases. Ventricular hypertrophy and fibrosis are
two major alterations seen in CR. While hypertrophy may serve adaptive purposes at least
initially and/or in some cases, it has been established as a risk factor for cardiovascular
(CV) events. Pathological cardiac hypertrophy is accompanied by a fibrotic response,
which triggers both systolic and diastolic dysfunction, leading to heart failure [1]. Both
aldosterone (Ald) and transforming growth factor beta-1 (TGF-β1) have been implicated in
the development of hypertrophy and fibrosis in the course of CR [2,3].

Ald is a member of the renin–angiotensin–aldosterone system (RAAS) that regulates
blood pressure and fluid balance by increasing sodium and water reabsorption via its min-
eralocorticoid receptor (MR) present in the renal tubules. Apart from this classic effect, Ald
directly influences the CV system: MRs are present in vascular smooth muscle cells, fibroblasts
and cardiomyocytes, among others. The adverse effects of Ald include cardiac hypertrophy
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and fibrosis, endothelial dysfunction and inflammation [2]. Recent research in humans in-
dicates that the prevalence of primary aldosteronism as a cause of hypertension may be as
high as 20–30%, but it remains largely undiagnosed. This is unsatisfactory since patients with
primary aldosteronism suffer from much higher CV mortality and morbidity than those with
primary hypertension, despite the availability of anti-MR targeted pharmacotherapy [4–6].

TGF-β1 is recognized as a fundamental mediator of fibrotic processes in kidney, lung, liver
and heart diseases [7]. Elevated TGF-β1 expression has been shown in idiopathic hypertrophic
cardiomyopathy, dilatative myopathy and the transition from stable hypertrophy to heart failure.
At the molecular level, TGF-β1 acts as a local, para- and autocrine mediator as well as a secondary
messenger in response to angiotensin II, Ald and beta-adrenergic signaling [3,8–12]. Upon binding to
its receptor, TGF-β1′s intracellular signal is transduced via Smad transcriptional activators; additionally,
mitogen-activated protein kinases (MAPKs), i.e., the Erk, p38 and c-Jun N-terminal kinase, are activated
through TGF-β1-activated kinase 1.

In this study, we analyzed the individual effects of Ald and TGF-β1 on cardiac hyper-
trophy and fibrosis as well as the downstream signaling pathways in a murine model.

2. Results
2.1. Baseline Characteristics of TGF-β1 Mice

At baseline, the mice with a constitutive expression of the TGF-β1 transgene exhibited cardiac
hypertrophy, as indicated by a higher mean biventricular heart weight (vHW) to body weight (BW)
ratio (vHW/BW) (+28.6%, p < 10−4) and cardiomyocyte diameter (+24.2%, p < 10−4) compared
to the WT strain (Table 1 and Figure 1A–C). Furthermore, the atrial natriuretic peptide (ANP)
mRNA expression was 89.7% higher in the TGF-β1-overexpressing transgenic mice (TGF-β1-TG
or TG) compared to the wild-type (WT) mice, p = 0.041 (Figure 1D).

Table 1. Morphometric and qPCR data on wild-type and TGF-β1-TG mice.

WT TG p WT + Ald WT + Ald
+ Ep WT + Ep p

(WT) TG + Ald TG +
Ald + Ep TG + Ep p

(TG)

Ventricular HW
/BW

n 8 14 7 7 8 9 9 9

mg/g 4.1 ± 0.1 5.3 ± 0.7 <10−3 4.5 ± 0.1 * 4.4 ± 0.2 * 4.2 ± 0.2 #$ <10−4 5.7 ± 1.1 5.2 ± 0.7 5 ± 0.6 0.31

Cardiomyocyte
diameter

n 8 9 7 7 8 9 9 9

µm 8.8 (0.8) 10.9 (0.3) <10−4 12.3 ± 1.2 * 10.8 ± 0.6
*# 9.6 ± 0.8 #$ <10−4 13.4 (0.5) * 12.8 (1.1)

* 11 (0.5) # <10−4

ANP/GAPDH
mRNA

n 7 14 6 7 6 7 7 6

- 0.8 ± 0.2 1.4 ± 0.8 0.041 0.9 ± 0.06 1.2 ± 0.4 * 0.7 ± 0.1 $ 10−3 1.5 ± 0.3 3.4 ± 1.3
*#

1.2 ± 0.4
$ <10−4

Interstitial
fibrosis

n 8 9 7 7 8 9 9 10

% 1 ± 0.1 1.9 ± 0.1 <10−4 1.9 ± 0.1 * 1.5 ± 0.2 1.05 ± 0.1 # <10−3 2.4 ± 0.2 * 1.7 ± 0.1
#

1.61 ±
0.1 # <10−3

Perivascular
fibrosis

n 8 9 7 6 6 9 9 10

score 0.9 ± 0.3 1.1 ± 0.3 0.21 1 ± 0.3 1 ± 0.22 1.2 ± 0.4 0.27 1.2 ± 0.26 1 ± 0.3 1.1 ± 0.1 0.73

FBN/GAPDH
mRNA

n 7 15 7 7 7 7 9 7

- 1.1 ± 0.3 1.4 ± 0.4 0.15 1.7 ± 0.4 * 1.2 ± 0.4 0.8 ± 0.3 # <10−3 1.6 ± 0.3 1.4 ± 0.8 0.9 ± 0.3 0.06

Kidney W
/BW

n 8 14 7 10 8 9 9 9

mg/g 11.9 ±
0.3

12.8 ±
1.6 0.15 14.9 ± 1.6 * 13.7 ± 1.2 * 11.4 ± 1.5 #$ <10−4 15.9 ± 1.5 * 13 ± 0.8

#
12.3 ±
1.8 # <10−4

Legend: p for comparisons of WT and TG controls and four-group (each genotype) ANOVAs/Kruskal–Wallis test
is given; significant differences in Tukey’s/Dunn’s post-hoc tests are denoted with * vs. controls, # vs. ‘+Ald’ and
$ vs. ‘+Ald + Ep’. * For vHW/BW vs. WT + Ald, p = 3 × 10−4; WT + Ald + Ep, p = 6 × 10−3. For cardiomyocyte
diameter vs. WT + Ald, p < 10−4; WT + Ald + Ep, p = 10−3; TG + Ald, p < 10−4; TG + Ald + Ep, p = 0.006. For
ANP/GAPDH mRNA vs. WT + Ald + Ep, p = 0.004; TG + Ald + Ep, p < 10−4. For interstitial fibrosis vs. WT + Ald,
p < 10−3; TG + Ald, p = 0.0498. For FBN/GAPDH mRNA vs. WT + Ald, p = 0.029. For kidney W/BW vs.
WT + Ald, p < 10−3; TG + Ald, p < 10−4. # For vHW/BW vs. WT + Ep, p = 8 × 10−4. For cardiomyocyte diameter
vs. WT + Ald + Ep, p = 0.01; WT + Ep, p < 10−4; TG + Ep, p = 6 × 10−4. For interstitial fibrosis vs. WT + Ep,
p = 10−3; TG + Ald, p = 0.003; TG + Ep, p = 3 × 10−4. For FBN/GAPDH mRNA vs. WT + Ep, p = 3 × 10−4. For
kidney W/BW vs. WT + Ep, p < 10−4; TG + Ald + Ep, p = 10−3; TG + Ep, p < 10−4. $ For vHB/BW vs. WT + Ep,
p = 0.019. For cardiomyocyte diameter vs. WT + Ep, p = 0.049. For ANP/GAPDH mRNA vs. WT + Ep, p = 0.002.
For kidney W/BW vs. WT + Ep, p = 0.003. Ald—aldosterone; BW—body weight; Ep—eplerenone; GAPDH -
glyceraldehyde 3-phosphate dehydrogenase; HW—heart weight; TG—transgenic; W—weight; WT—wild type.
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Figure 1. Cardiac hypertrophy morphometric and ANP mRNA expression data. Significance level for the WT vs TG comparison is given; symbols annotate 
respective comparisons with control (*), ‘+Ald’ (#) and ‘+Ald + Ep’ ($) groups. (A)—ventricular heart weight/body weight; (B)—mean diameters of ventricular 
cardiomyocytes; (C)—ANP mRNA expression in ventricular heart tissues normalized to GAPDH; (D)—representative microphotographs of midventricular cross 
sections. At the same magnification (200×), differences in cardiomyocytes’ diameters can be noticed. HE staining. 
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Figure 1. Cardiac hypertrophy morphometric and ANP mRNA expression data. Significance level for
the WT vs TG comparison is given; symbols annotate respective comparisons with control (*), ‘+Ald’
(#) and ‘+Ald + Ep’ ($) groups. (A)—ventricular heart weight/body weight; (B)—mean diameters of
ventricular cardiomyocytes; (C)—ANP mRNA expression in ventricular heart tissues normalized
to GAPDH; (D)—representative microphotographs of midventricular cross sections. At the same
magnification (200×), differences in cardiomyocytes’ diameters can be noticed. HE staining.

Concerning cardiac fibrosis, the area occupied by the interstitial fibrous tissue in
the myocardium of the TG animals was almost twice that of the WT mice: 1.03 ± 0.2
vs. 1.91 ± 0.27%, p < 10−4 (Figure 2A,C). Moreover, the TGF-β1-TG mice showed a trend
toward higher fibronectin (FBN) mRNA expression in the ventricular tissue compared
to the WT animals (p = 0.15) (Figure 2D). In contrast, the perivascular fibrosis score was
similar for both strains (Figure 2B).Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 16 

 

 

 

 
Figure 2. Cardiac fibrosis morphometric and fibronectin mRNA expression data. Significance level for the WT vs TG comparison is given; symbols annotate 
respective comparisons with control (*), ‘+Ald’ (#) and ‘+Ald + Ep’ ($) groups. (A)—cardiac interstitial fibrosis under basal and experimental conditions; (B)—
fibronectin mRNA expression in ventricular heart tissues normalized to GAPDH mRNA; (C)—representative microphotographs, whereby at the same magnifica-
tion (400×), the amount of fibrotic material can be noticed. Masson’s trichrome staining: (D)—a scoring system was used to assess perivascular fibrosis as described 
in ‘Methods’.

Figure 2. Cardiac fibrosis morphometric and fibronectin mRNA expression data. Significance level for
the WT vs TG comparison is given; symbols annotate respective comparisons with control (*), ‘+Ald’ (#).
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(A)—cardiac interstitial fibrosis under basal and experimental conditions; (B)—fibronectin mRNA
expression in ventricular heart tissues normalized to GAPDH mRNA; (C)—representative micropho-
tographs, whereby at the same magnification (400×), the amount of fibrotic material can be noticed.
Masson’s trichrome staining: (D)—a scoring system was used to assess perivascular fibrosis as
described in ‘Methods’

A constitutive higher Erk (p44/42) and p38 kinase phosphorylation in the ventric-
ular heart tissue samples from the TGF-β1-TG compared to the WT mice was recorded:
7.8 (5.9–9.6)- and 11 (5.2–17.8)-fold, respectively (Figure 3A). 
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(A) MAPK phosphorylation in untreated WT and TGF-β1-TG mice. 

 

 

 

 
(B) Effects of Ald and Ep on MAPK phosphorylation in WT mice. 

Figure 3. Cont.
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(C) Effects of Ald and Ep on MAPK phosphorylation in TGF-β1-TG mice.  

Figure 4. Western blot analysis. Representative Western blot scans of p-Erk and p-p38 of WT and TG 1 
animals with total Erk and p38 loading control. (A)—control (untreated) WT and TG animals; 2 
(B,C)—untreated, Ald-infused (‘+Ald’), Ald-infused and Ep-treated (‘+Al + Ep) eplerenone-treated 3 
(‘+Ep) wild-type (WT) and TGF-β1-transgenic (TG) mice. Four or five separate experiments were 4 
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parisons between groups were insignificant. 6 
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Figure 3. Western blot analysis. Representative Western blot scans of p-Erk and p-p38 of WT and
TG animals with total Erk and p38 loading control. (A)—control (untreated) WT and TG animals;
(B,C)—untreated, Ald-infused (‘+Ald’), Ald-infused and Ep-treated (‘+Al + Ep) eplerenone-treated
(‘+Ep) wild-type (WT) and TGF-β1-transgenic (TG) mice. Four or five separate experiments were
performed for each strain. Significance level for ANOVAs on WT mice is given, and post-hoc
comparisons between groups were insignificant. RasGap - Ras GTP activating protein.

2.2. Effects of Ald and Ep on Cardiac Hypertrophy

The 14-day Ald infusion led to a 9.8 ± 2.5% increase in the vHW/BW in the WT
mice (p < 10−4), while in the TGF-β1-TG animals, the increase was insignificant (p = 0.31),
and the change in the vHW/BW due to Ald was comparable between strains at p = 0.57
(Figure 4A). The increase in the cardiomyocyte diameter was more pronounced in the WT
than TG mice: 36 ± 13% versus 24.6 ± 2.7%, p = 0.026 (Figure 4B). In contrast, the ANP
mRNA expression did not differ between the respective untreated and Ald-infused mice of
each strain (Figure 1D).
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Figure 4. Relative changes in morphometric parameters due to Ald infusion in WT and TG mice:
(A) vHW/BW, (B) cardiomyocyte diameter, (C) interstitial fibrosis. n.s.—not significant; TG—TGF-β1
transgenic; vHW/BW—ventricular-heart-weight-to-body-weight ratio; WT—wild type.
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Under basal conditions, eplerenone (Ep) had no effect on the vHW/BW or cardiomy-
ocyte size in either mouse strain (Figure 1A–C). Accordingly, no differences were recorded
in ANP mRNA expression between the control and Ep-enriched-chow groups (Figure 1D).

In the Ald-infused animals, the vHW/BW was not significantly affected by the concur-
rent administration of Ald and its receptor antagonist in mice of either genotype, although
a trend toward hypertrophy attenuation could be observed in the TGF-β1-TG animals
(Figure 1A). The Ep administration with a concurrent Ald infusion led to a 13.5% decrease
in the cardiomyocyte diameter in the WT mice versus those only treated with Ald, but
not in the TGF-β1-overexpressing mice (Figure 1B). No significant differences in the ANP
mRNA expression were found between the groups infused with Ald only and those treated
with both Ald and Ep (Figure 1D).

2.3. Effects of Ald and Ep on Cardiac Fibrosis

While both strains exhibited more interstitial fibrosis in the ventricles upon completion
of the two-week Ald infusion, the increase was substantially higher in the WT mice:
80.9 ± 32% versus 23.6 ± 30%, p = 0.002 (Figure 4C). These morphometric observations
were supported at the molecular level, as Ald induced a significant increase (+47.7%) in
cardiac FBN mRNA expression only in the WT mice (p = 0.029, Figure 2D).

Importantly, the increase in cardiac interstitial fibrosis recorded in the WT strain
was significantly higher than the increases in the vHW/BW and cardiomyocyte diameter
(ANOVA, p < 0.0001, Figure 4). This was not the case in the transgenic animals (p = 0.175).

As expected, the Ep treatment itself had no gross morphological effect on cardiac
interstitial and perivascular fibrosis in either the WT or TGF-β1-TG mice (Figure 2A–C).
However, a trend was recorded toward a lower myocardial expression of FBN mRNA in
the Ep-treated groups compared to their respective controls of both genotypes (Figure 2D).

Further, Ep effectively decreased Ald-induced cardiac interstitial fibrosis in the TGF-
β1-TG mice, i.e., by 28% (TG + Ald + Ep versus TG + Ald). A similar trend was seen in the
WT animals, although it failed to reach statistical significance (Figure 2A). Importantly, the
Ep treatment nearly completely abolished the Ald-induced upregulation of the FBN mRNA
in both the WT and TGF-β1-TG mice (Figure 2D). These results indicate that Ald-induced
cardiac interstitial fibrosis is mainly mediated by the MR and can be effectively attenuated
by receptor antagonism.

2.4. Effects of Ald and Ep on MAPK Signaling

Since MAPK signaling is an important pathway mediating cardiac hypertrophy, we
analyzed the phosphorylation of the main MAPKs, Erk (p44/42) and p38 in the ventricular
heart tissues of the WT and TGF-β1-TG mice. In the WT animals, both signaling pathways
were activated with Ald infusion (Figure 3B). In the TGF-β1-TG mice, Erk and p38 phos-
phorylation had already been higher at baseline and did not further increase in response to
Ald (Figure 3A,C).

A trend was observed toward the attenuation of Ald-induced Erk (p44/42) and p38
phosphorylation in the ventricular heart tissues of the WT mice as indicated by a significant
ANOVA result but insignificant post-hoc comparisons of the four groups (Figure 3B,C). In
contrast, Ep had no statistically significant effect on either Erk (p44/42) or p38 phosphory-
lation in any of the TG groups, suggesting that the activation of these pathways by TGF-β1
occurs independently of the MR.

3. Discussion

To our knowledge, this study is the first to examine the effects of continuous Ald
infusion and oral Ep treatment on cardiac remodeling in transgenic mice overexpressing
TGF-β1. Therefore, direct comparisons with previous research are not possible.

Our main finding is that the effect of Ald on cardiac hypertrophy is additive to that of
TGF-β1, while with respect to interstitial fibrosis, the downstream signaling mechanisms
of these two mediators likely converge. Possible explanations include: the enhancement
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of profibrotic genes such as connective tissue growth factor by both molecules [13,14],
immune cell modulation by TGF-β1 antagonizing Ald’s actions [15,16], Ald-mediated os-
teopontin upregulation that inhibits the antifibrotic TGF-β1 activation of the β2-adrenergic
receptor [17,18], interactions within the RAAS system and also an inhibitory effect of excess
TGF-β1 on Ald secretion [19].

The differential effects on CR can be deduced by comparing the WT and TG strains:
in the former, interstitial fibrosis increased significantly more than the cardiac hypertro-
phy parameters in response to Ald infusion, whereas the change in the morphometric
parameters was comparable in the setting of excess TGF-β1 (Figures 4 and 5). Furthermore,
the Ep treatment alleviated the profibrotic effect of the Ald infusion in the TG animals,
while only a partial reduction was observed for the cardiomyocyte diameter (Figure 5).
Concerning the Erk and p38 activation, no significant alterations were observed in the case
of the TGF-β1-overexpressing mice across all groups: control, Ald and/or Ep treated, while
in the WT animals, MAPKs were stimulated by Ald.
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Figure 5. Schematic presentation of morphometric data. Circle diameter for WT controls was used
as reference for other WT groups and TGF-β1-TG controls; since two parameters were used for
cardiac hypertrophy, the circle diameter reflects an intermediate value between the difference in
vHW/BW and cardiomyocyte diameter versus controls. * Mean between difference in vHW/BW
and c-myocyte diameter for the TGF-β1-TG vs. WT controls comparison is given. Ald—aldosterone;
c-myocyte dia—cardiomyocyte diameter; Ep chow—eplerenone-enriched chow; n.s.—not significant;
TGF-β1-TG—TGF-β1-overexpressing transgenic mice; WT—wild-type mice; vHW/BW—ventricular-
heart-weight-to-body-weight ratio.

Previous studies concerning the effects of both mediators on CR are scarce. Both
molecules were investigated in vivo in mice with a graded TGF-β1 expression to reveal
that its excess inhibited adrenal steroid synthesis, including Ald. However, the cardiac
morphology was not reported [19]. Conversely, in a study by Nishioka et al., a four-week
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Ald infusion along with 1% NaCl drinking water induced TGF-β1 mRNA expression and
marked cardiac fibrosis [20]. Next, Ald stimulated TGF-β1 expression in cardiac fibroblasts
and rat mesangial cells [21,22]. Still, a difficulty arises in discriminating the effect of Ald
and Ang II on downstream signal transduction via TGF-β1 in light of interactions within
the RAAS [23–26]. While Ang II has been established as a TGF-β1-inducing molecule, its
antagonism has not been effective at abolishing TGF-β1’s cardiac effects [27].

A larger body of data has been generated with respect to TGF-β1’s role in cardiac
remodeling alone. Previous studies using the same transgenic model also revealed cardiac
hypertrophy and fibrosis [28–30]. Methodological differences and the possible less homoge-
nous expression of the TGF-β1 transgene years after the cited reports (apparent in greater
variation in the vHW/BW) may account for lower hypertrophy indices, while findings
concerning ANP mRNA expression and interstitial fibrosis are comparable [29–31]. Data
from studies with other animal models echo ours. Nakajima et al. showed that TGF-β1
overexpression increased heart-weight-to-tibia-length ratios as well as cardiomyocyte size,
and although a profibrotic effect was seen only in the atria, this discrepancy had been
partially explained by the distinct approaches to TGF-β1 overexpression as well as the low
activity of the factor [29,30,32]. Further, TGF-β1 −/− and Rag1 −/− double-knockout
mice did not develop cardiac hypertrophy induced by subpressor Ang II doses, as was the
case for the controls [10]. Moreover, age-associated myocardial fibrosis was ameliorated in
single-knockout TGF-β1 +/−mutant mice [33]. Finally, a TGF-β1 neutralizing antibody
prevented diastolic dysfunction in pressure-overloaded rats [34].

Analogically to morphometric findings, ample research exists supporting higher
MAPK phosphorylation due to TGF-β1, which induces both Erk 1/2 [35–37] and p38 phos-
phorylation (particularly via the noncanonical, i.e., non-Smad-related, TGF-β1-activated
kinase 1 pathway) [3,38,39]. Evidence has been accumulating for the role of p38 in the
development of cardiac fibrosis and Erk primarily in hypertrophy [40–43].

In discussing the effects of Ald on CR, the current study contrasts with most preceding
ones in that neither nephrectomy nor salt loading was applied. Also, here, Ald was infused
at doses known not to induce hypertension (although a lack of blood pressure measure-
ments is a limitation of our data). In this setting, Ald’s actions could be extracted from the
influence of other factors. With respect to the MR antagonist, Ep was initiated three weeks
prior to the Ald infusion, while other researchers have applied simultaneous treatments.

Bearing these in mind, in a study similar to ours, Yoshida et al. applied an Ald infusion
at a rate of 0.75 µg/h for 14 days in male Sprague Dawley rats. A minor blood pressure in-
crease was successfully reduced by an antioxidant without preventing cardiac hypertrophy
(revealed by echocardiography and a 34% increase in the cardiomyocyte cross-sectional
area). Spironolactone effectively attenuated Ald-induced cardiac hypertrophy [44]. A simi-
lar methodology, yet with 1% NaCl instead of drinking water, was applied by Nakano et al.
to demonstrate a higher LV weight/BW ratio with Ald infusion and a prevention thereof
by spironolactone [45]. In another model, Ep ameliorated the cardiac hypertrophy and
fibrosis exhibited by mice overexpressing 11-beta-hydroxysteroid dehydrogenase 2 (which
promotes Ald-MR binding) [46]. In contrast, Iglarz et al. did not record macroscopic cardiac
hypertrophy after a 6-week Ald infusion in rats [47].

As for cardiac interstitial fibrosis, an approximate 80% increase and higher FBN mRNA
expression were recorded here in the Ald-infused WT mice compared to the untreated
controls, which is in line with previous studies: that of Iglarz et al. mentioned above and
another: by Johar et al., who also demonstrated a higher FBN expression in Ald-infused
rodents [47,48]. Both Ep and spironolactone were effective at preventing fibrosis [20,49,50].

Prior in vitro research also supports the trend toward higher Erk and p38 phosphory-
lation in response to Ald recorded here, e.g., [51]. In vivo data are scarce, yet the results by
Nakano et al. mentioned above include this observation for Erk [45].

In the current study, Ep only partially prevented Ald-induced cardiac hypotrophy
(there was a significant difference in the cardiomyocyte diameter, but not the vHW/BW)
and interstitial fibrosis (the WT + Ald + Ep group was not significantly different from
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the WT and WT + Ald groups) (Figure 5), which contrasts with other reports [44–46,52].
Possibly, compensatory mechanisms to the Ep treatment developed in postnatal weeks 3–6,
which rendered MR antagonism ineffective once Ald was administered in weeks 6–8. These
might include a higher MR expression and Ald secretion, as well as altered Ang II signaling.
The hypothesis of Ald escape is supported further by the data on the kidney-weight-to-
BW ratios from the ‘+Ald + Ep’ group, which were higher than those of the untreated
controls (Table 1).

4. Materials and Methods
4.1. Treatment of Animals

Male WT, i.e., C57Bl/J6 (Harlan and Winkelmann), and TGF-TG were used in this study.
The TGF-β1-TG mice were originally generated by Sanderson et al. by using a murine

albumin promoter and enhancer linked to a porcine TGF-β1 construct and the 3′ region of
the human growth hormone gene, containing a polyadenylation signal [28]. The preferential
secretion of mature TGF-β1 resulted from cysteine/serine substitutions at amino acid
residues 223 and 225 in the TGF-β1 c-DNA. Line 25 mice were used here, in which solely
the males were transgenic and exhibited a 10-fold increased plasma TGF-β1 concentration
compared with their age-matched controls [53]. The line was maintained by continued
backcrosses to the WT F1 mice (which served as ourcontrols).

All the investigations were performed in accordance with the National Institute of
Health’s ‘Guide for the Care and Use of Laboratory Animals’ and Institutional Animal Care
and Use Guidelines.

Eight study groups (7 to 14 mice per each group) were investigated, i.e., four WT and
four TGF-β1-TG groups: controls with a regular chow diet and without an Ald infusion
(WT, TG), with an Ald infusion (WT + Ald, TG + Ald), with an Ep-enriched chow diet
(WT + Ep, TG + Ep) and both fed an Ep-enriched chow dietand with an Ald infusion
(WT + Ald + Ep, TG + Ald + Ep).

The selective MR antagonist Ep was provided from Pfizer in powder form and added
to mouse chow by Harlan Laboratories (1.5 mg of Ep per gram of chow). A daily dosage
of approximately 200–300 mg per kg BW was obtained. Ald (ordered from Sigma) was
dissolved in 20% ethanol to a concentration of 2 mg/mL and stored at 4 ◦C. Dilution with
0.9% NaCl to a final 1 mg/mL concentration took place immediately prior to filling the
solution into miniature infusion pumps (Alzet, model 1002). The manipulations were
performed in sterile conditions.

The treatment with Ep started immediately after weaning (at 3 weeks of age) by
providing the drug-enriched chow, which lasted 5 weeks (until the age of 8 weeks), while
Ald was infused via a minipump between day 42 and 56 (Figure 6).
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Figure 6. Mice treatment scheme. There were four study groups for both WT and TG mice. Regular
or eplerenone-enriched chow was given from day 21 to 56, while Ald was infused subcutaneously via
a minipump from day 42 to 56. Ald—aldosterone-infused groups; Ald + Ep—both Ald-infused and
Ep-enriched-chow-fed groups; Con—control groups; Ep—eplerenone-enriched-chow-fed groups.

Infusion pumps with Ald were implanted subcutaneously at the age of 6 weeks during
isoflurane anesthesia. A total of 100 microliters of the Ald solution was infused continuously
for 14 days with an appropriate flow moderator, equivalent to a circa 0.35 mg/kg BW/day
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dose, i.e., a subhypertensive one [54]. Three control mice received pumps containing 0.9%
NaCl to verify whether the pump implantation had any effect on their cardiac morphology,
which was not the case.

4.2. Organ Extraction and Sample Preparation

At the age of 8 weeks, the animals’ organs were collected. Following isoflurane anes-
thesia, their BW was measuredthe mice were sacrificed by cervical dislocation, their hearts
were excised and perfused with cold saline to remove the blood. The vHW was recorded
after excising the atria. The hearts were sliced to obtain samples for: immunohistochemistry
(the heart base was cut off at the organ’s equator and stored in a 4% formaldehyde solution
overnight), immunoblotting (the heart was snap frozen with liquid nitrogen and stored
at −80 ◦C) and mRNA quantification (the RNA-Later-containing tube was stored at 4 ◦C).
Had a minipump been implanted, it was excised and weighed after the organ extraction,
and the BW of the mouse was reduced accordingly.

4.3. Morphometric Analysis

Cardiac hypertrophy was assessed by determining the vHW/BW (in milligrams per
gram) as well as the mean cardiomyocyte diameter. The latter was acquired by measuring
at least 100 cell diameters per animal. Horizontal sections at the equator of the heart were
stained with hematoxylin-eosin. Ten sections were analyzed for each mouse. For each
section, the diameter from at least ten cardiomyocytes was determined and the averages
were recorded. To ensure consistency, only the cells with nuclei at their circumference were
chosen. Here, the shortest myocyte diameter was measured.

The midventricular sections were stained with Masson’s trichrome to evaluate the
amount of fibrous tissue in the muscle. Cardiac interstitial fibrosis was quantified in 9 to
12 randomly chosen areas for each mouse heart (from a single heart section) in a blinded
manner. A 20× magnification was used. The regions with blood vessels as well as peri-
cardium or endocardium were omitted. For every chosen area, the percentage of fibrous
tissue was computed by using a color analysis method with Olympus’ CellˆP 5.0 software.
Blue- and grey-stained fibrotic elements were discriminated from white, artefactual, in-
tracellular areas and black nuclei by setting color thresholds. The white artefacts were
subtracted from the frame area set for each region to acquire an accurate percentage of the
fibrotic material. Perivascular fibrosis was assessed in a semiquantitative way of randomly
labeled Masson’s trichrome stains. Coronary vessels were photographed—at least 5 for
each animal—and scored on a 0 to 4 scale (with “0” representing no fibrosis, “1” minimal
and “4” massive fibrosis). The average cardiac perivascular fibrosis score was calculated
for each mouse.

4.4. Western Blotting

The following antibodies were provided by Cell Signaling technology: the phospho-
p44/42 MAP kinase (Thr202/Tyr204) antibody (product number 9101), p44/42 MAP kinase
antibody (product number 9102), phospho-p38 MAP kinase (Thr180/Tyr182) antibody
(product number 9211) and p38 MAP kinase antibody (product number 9212). The antirab-
bit monoclonal antibody was supplied by Sigma. The 69.3 anti-Ras GTP activating protein
(RasGap) antibody was kindly supplied by professor A. Kazlauskas from Harvard Medical
School [55].

Ventricular heart lysates were prepared from liquid-nitrogen snap-frozen pieces by
homogenization in a 1 mL RIPA proteinase inhibiting buffer at 4 ◦C. Subsequently, the
homogenates were incubated for 2 h at 4 ◦C while experiencing gentle agitation and were
next centrifuged for 20 min at 10,000 g. The supernatant was collected, aliquoted and stored
at−80 ◦C. For Western blotting, the samples were thawed on ice. The protein concentration
was quantified by NanoDrop (NanoDrop Technologies, Inc., Wilmington, DA, USA) and
ranged from 14 to 27 mg/mL. The aliquots were diluted with RIPA to acquire equal sample
concentrations. The homogenates were suspended in a 4 × SDS sample buffer. Samples
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with equal protein amounts were run on SDS–PAGE and transferred to PVDF membranes.
The blots were probed with appropriate antibodies to reveal protein bands on the hyperfilm,
which were quantified by using ImageJ 1.54d software as described previously [56].

4.5. Real-Time qPCR

The cardiac expression of the mRNAs of two marker genes was investigated: ANP for
cardiac hypertrophy and FBN for fibrosis.

Rodent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) primers and a probe
with a VIC reporter dye were supplied by Applied Biosystems (product number 4308313).
The ANP and FBN primers and FAM reporter dye probes were ordered from Eurofins
MWG Operon: ANP probe 5′-TCGCTGGCCCTCGGAGCCTAC-3′, forward primer 5′-
GAAAAGCAAACTGAGGGCTCTG-3′, reverse primer 5′-CCCCGAAGCAGCTGGAT TGC-
3′, FBN probe 5′-TCGGAGCCATTTGTTCCTGCACGT-3′, forward primer 5′-TGT-AGGA-
GAACAGTGGCAGAAAGA-3′ and reverse primer 5′-CCGCTGGCCTCCGAA-3′.

The total RNA was extracted from the heart tissues stored in RNA Later by using
the TRIzol (Invitrogen, Carlsbad, CA, USA) RNA extraction method [57]. Equal amounts
of the isolated RNA were subsequently transcribed into cDNA by using a high-capacity
cDNA reverse transcription kit (Applied Biosystems, Waltham, MA, USA) as per the
manufacturer’s instructions. The iQ SYBR Green Supermix (Bio-Rad, Hercules, CA, USA)
kit was applied to perform a qPCR. The mRNA expression was analyzed via the ∆Ct
method. The Ct values of the target genes (ANP and FBN) were normalized to that of
GAPDH (reference gene) by using the equation ∆Ct = Ct(reference) − Ct(target) and were
expressed as ∆Ct.

4.6. Statistical Analysis

The control WT and TG animals were tested for differences with a Student’s t-test or
its nonparametric variant, the Mann–Whitney U test, depending on the data distribution,
which was verified with the Shapiro–Wilk test. For each strain, the parameters in the four
groups (control, Ald infused, Ald infused and Ep treated and Ep treated) were tested for
differences by using parametric (with Tukey’s post-hoc test) or nonparametric (Kruskal–
Wallis) ANOVAs depending on the data distribution. The results are presented as the mean
± standard deviation (SD) or median (interquartile range, IQR), and the graphs present the
mean and SD values. Statistical significance was set at 0.05.

5. Conclusions

In the current and previous studies, TGF-β1 has been shown to be a vital cardiac
pro-fibrotic and prohypertrophic mediator. The data obtained here also suggest that in the
myocardium, the profibrotic actions of TGF-β1 and Ald overlap, while they are at least in
part divergent in the case of cardiac hypertrophy. Further research is necessary to elucidate
the cross talk between all components of the RAAS and TGF-β1.
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