Integrated Approach to Highlighting the Molecular Bases of a Deep Vein Thrombosis Event in an Elite Basketball Athlete
Abstract
:1. Introduction
2. Results
2.1. Clinical History
2.2. Clinical Laboratory Determinations
2.3. Coagulation Assays
2.4. Genetic Tests
3. Discussion
4. Materials and Methods
4.1. Ethical Approval
4.2. Clinical Laboratory Determinations
4.3. Coagulation Assay
4.4. Molecular Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fioozi, S.; Sharma, S.; McKenna, W.J. Risk of competitive sport in young athletes with heart disease. Heart 2003, 89, 710–714. [Google Scholar] [CrossRef]
- Doyle-Baker, P.K.; Mitchell, T.; Hayden, K.A. Stroke and Athletes: A Scoping Review. Int. J. Environ. Res. Public Health 2021, 18, 10047. [Google Scholar] [CrossRef]
- Colberg, S.R.; Sigal, R.J.; Yardley, J.E.; Riddell, M.C.; Dunstan, D.W.; Dempsey, P.C.; Horton, E.S.; Castorino, K.; Tate, D.F. Physical activity/exercise and diabetes: A position statement of the American Diabetes Association. Diabetes Care 2016, 39, 2065–2079. [Google Scholar] [CrossRef] [Green Version]
- Galanti, G.; Stefani, L.; Gensini, G. Exercise as a prescription therapy for breast and colon cancer survivors. Int. J. Gen. Med. 2013, 6, 245–251. [Google Scholar]
- Lippi, G.; Banfi, G.; Botrè, F.; de la Torre, X.; De Vita, F.; Gomez-Cabrera, M.C.; Maffulli, N.; Marchioro, L.; Pacifici, R.; Sanchis-Gomar, F.; et al. Laboratory medicine and sports: Between Scylla and Charybdis. Clin. Chem. Lab. Med. 2012, 50, 1309–1316. [Google Scholar] [CrossRef]
- Brancaccio, M.; Mennitti, C.; Cesaro, A.; Monda, E.; D’Argenio, V.; Casaburi, G.; Mazzaccara, C.; Ranieri, A.; Fimiani, F.; Barretta, F.; et al. Multidisciplinary In-Depth Investigation in a Young Athlete Suffering from Syncope Caused by Myocardial Bridge. Diagnostics 2021, 11, 2144. [Google Scholar] [CrossRef]
- Hilberg, T.; Ransmann, P.; Hagedorn, T. Sport and Venous Thromboembolism—Site, Accompanying Features, Symptoms, and Diagnosis. Dtsch. Arztebl. Int. 2021, 118, 181–187. [Google Scholar]
- Carroll, S.; Dudfield, M. What is the relationship between exercise and metabolic abnormalities? A review of the metabolic syndrome. Sports Med. 2004, 34, 371–418. [Google Scholar] [CrossRef]
- Lombardo, B.; Izzo, V.; Terracciano, D.; Ranieri, A.; Mazzaccara, C.; Fimiani, F.; Cesaro, A.; Gentile, L.; Leggiero, E.; Pero, R.; et al. Laboratory medicine: Health evaluation in elite athletes. Clin. Chem. Lab. Med. 2019, 57, 1450–1473. [Google Scholar] [CrossRef]
- Smith, J.E. Effects of strenuous exercise on haemostasis. Br. J. Sports Med. 2003, 37, 433–435. [Google Scholar] [CrossRef] [Green Version]
- Di Felice, G.S.; Paletta, G.A., Jr.; Phillips, B.B.; Wright, R.W. Effort Thrombosis in the Elite Throwing Athlete. Am. J. Sports Med. 2002, 30, 708–712. [Google Scholar] [CrossRef]
- Para, I.; Leach, N.; Negrean, V.; Alexescu, T. Venous pathology in athletes. Palestrica Third Millenn.—Civiliz. Sport 2015, 16, 351–354. [Google Scholar]
- Spivak, J.L. Myeloproliferative Neoplasms. N. Engl. J. Med. 2017, 376, 2168–2181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tefferi, A.; Pardanani, A. Myeloproliferative Neoplasms: A Contemporary Review. JAMA Oncol. 2015, 1, 97–105. [Google Scholar] [PubMed]
- Okoli, S.; Harrison, C. Emerging treatments for essential thrombocythemia. J. Blood Med. 2011, 2, 151–159. [Google Scholar] [PubMed] [Green Version]
- Collins, P.; Budde, U.; Rand, J.H.; Federici, A.B.; Kessler, C.M. Epidemiology and general guidelines of the management of acquired haemophilia and von Willebrand syndrome. Haemophilia 2008, 14, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Federici, A.B. Acquired von Willebrand syndrome: An underdiagnosed and misdiagnosed bleeding complication in patients with lymphoproliferative and myeloproliferative disorders. Semin. Hematol. 2006, 43, S48–S58. [Google Scholar]
- Franchini, M.; Mannucci, P.M. Acquired von Willebrand syndrome: Focused for hematologists. Haematologica 2020, 105, 2032–2037. [Google Scholar]
- Mennitti, C.; Brancaccio, M.; Gentile, L.; Ranieri, A.; Terracciano, D.; Cennamo, M.; La Civita, E.; Liotti, A.; D’Alicandro, G.; Mazzaccara, C.; et al. Athlete’s Passport: Prevention of Infections, Inflammations, Injuries and Cardiovascular Diseases. J. Clin. Med. 2020, 9, 2540. [Google Scholar] [CrossRef]
- Pero, R.; Brancaccio, M.; Mennitti, C.; Gentile, L.; Arpino, S.; De Falco, R.; Leggiero, E.; Ranieri, A.; Pagliuca, C.; Colicchio, R.; et al. Urinary Biomarkers: Diagnostic Tools for Monitoring Athletes’ Health Status. Int. J. Environ. Res. Public Health 2020, 17, 6065. [Google Scholar] [CrossRef]
- Mont, L.; Pelliccia, A.; Sharma, S.; Biffi, A.; Borjesson, M.; Brugada Terradellas, J.; Carré, F.; Guasch, E.; Heidbuchel, H.; La Gerche, A.; et al. Pre-participation cardiovascular evaluation for athletic participants to prevent sudden death: Position paper from the EHRA and the EACPR; branches of the ESC. Endorsed by APHRS; HRS; and SOLAECE. Eur. J. Prev. Cardiol. 2017, 24, 41–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corrado, D.; Pelliccia, A.; Bjørnstad, H.H.; Vanhees, L.; Biffi, A.; Borjesson, M.; Panhuyzen-Goedkoop, N.; Deligiannis, A.; Solberg, E.; Dugmore, D.; et al. Cardiovascular pre-participation screening of young competitive athletes for prevention of sudden death: Proposal for a common European protocol. Consensus Statement of the Study Group of Sport Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology. Eur. Heart J. 2005, 26, 516–524. [Google Scholar]
- Calzavarini, S.; Brodard, J.; Quarroz, C.; Maire, L.; Nützi, R.; Jankovic, J.; Rotondo, L.C.; Giabbani, E.; Fiedler, G.M.; Nagler, M.; et al. Thrombin generation measurement using the ST Genesia Thrombin Generation System in a cohort of healthy adults: Normal values and variability. Res. Pract. Thromb. Haemost. 2019, 3, 758–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bleeker, J.S.; Hogan, W.J. Thrombocytosis: Diagnostic evaluation, thrombotic risk stratification, and risk-based management strategies. Thrombosis 2011, 2011, 536062. [Google Scholar] [CrossRef]
- Mital, A.; Prejzner, W.; Bieniaszewska, M.; Hellmann, A. Prevalence of acquired von Willebrand syndrome during essential thrombocythemia: A retrospective analysis of 170 consecutive patients. Pol. Arch. Med. Wewn. 2015, 125, 914–920. [Google Scholar] [CrossRef] [Green Version]
- Tripodi, A. Thrombin Generation Assay and Its Application in the Clinical Laboratory. Clin. Chem. 2016, 62, 699–707. [Google Scholar] [CrossRef] [Green Version]
- Maleknia, M.; Shahrabi, S.; Ghanavat, M.; Vosoughi, T.; Saki, N. Essential thrombocythemia: A hemostatic view of thrombogenic risk factors and prognosis. Mol. Biol. Rep. 2020, 47, 4767–4778. [Google Scholar] [CrossRef]
- Zadow, E.K.; Adams, M.J.; Kitic, C.M.; Wu, S.S.X.; Fell, J.W. Acquired and Genetic Thrombotic Risk Factors in the Athlete. Semin. Thromb. Hemost. 2018, 44, 723–733. [Google Scholar]
- Lavi, N. Calreticulin mutations in myeloproliferative neoplasms. Rambam Maimonides Med. J. 2014, 5, e0035. [Google Scholar] [CrossRef]
- Rumi, E.; Pietra, D.; Ferretti, V.; Klampfl, T.; Harutyunyan, A.S.; Milosevic, J.D.; Them, N.C.; Berg, T.; Elena, C.; Casetti, I.C.; et al. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood 2014, 123, 1544–1551. [Google Scholar] [CrossRef]
- Kim, H.Y.; Han, Y.; Jang, J.H.; Jung, C.W.; Kim, S.H.; Kim, H.J. Effects of CALR-Mutant Type and Burden on the Phenotype of Myeloproliferative Neoplasms. Diagnostics 2022, 12, 2570. [Google Scholar] [CrossRef] [PubMed]
Parameters | Results |
---|---|
Iron (65–175 µg/dL) * | 143 |
Ferritin (22–275 ng/dL) * | 90 |
C-reactive protein (CRP) (0–5 mg/dL) * | 0.3 |
Leucocytes (4.8–10.8 × 103/µL) * | 6.43 |
Erytrocytes (4.2–5.6 × 106/µL) * | 3.94 ↓ |
Haemoglobin (12–17.5 g/dL) * | 14.1 |
Haematocrit (37–54%) * | 39.8 |
Platelets (130–400 × 103/µL) * | 898 ↑ |
Parameters | Results |
---|---|
Prothrombin Time (PT) (0.8–1.20 Ratio) ** | 1.18 |
Activated Partial Thromboplastin Time (aPTT) (0.8–1.20 Ratio) ** | 1.21 |
FIBRINOGEN (160–350 mg/dL) ** | 207 |
D-DIMER (0–500 ng/mL) ** | 424 |
ANTITHROMBIN III (70–120%) ** | 107 |
Lupus anticoagulant (LAC) (0.8–1.20 Ratio) ** | 0.98 |
Anti-Cardiolipin IgG (<20 U/mL) ** | 7.8 |
Anti-Cardiolipin IgM (<20 U/mL) ** | 1.1 |
Anti-β2 glycoprotein I IgG (<20 U/mL) ** | 3.9 |
Anti-β2 glycoprotein I IgM (<20 U/mL) ** | 0.3 |
APC Resistance (>0.75 NTR) ** | 1.04 |
Protein C (>62%) ** | 88 |
Free Protein s (>58%) ** | 103 |
Factor VIII (FVIII) (50–130%) ** | 57 |
Factor IX (FIX) (50–120%) ** | 76 |
Factor XI (FXI) (50–120%) ** | 95 |
Factor XII (FXII) (50–120%) ** | 67 |
vWF:Ag (Blood type 0 44–116% non–0 Blood type 63–159%) ** | 33.5 |
vWF:RCo (Blood type 0 44–116% non–0 Blood type 63–159%) ** | 21.3 |
vWF:CB (Blood type 0 44–116% non–0 Blood type 63–159%) ** | 24.8 |
TGA Parameters | Results |
---|---|
Lag Time (1.1–1.3 ratio) ° | 0.88 |
Peak Height (45–66%) ° | 125.7 |
Time To Peak (1.2–1.3 ratio) ° | 0.97 |
ETP (59–80%) ° | 100.4 |
ETP Inhibition (60–73%) ° | 16.05 |
Velocity Index (36–57%) ° | 124 |
Gene | Transcript | Exon | Forward 5′->3′ | Reverse 5′->3′ | Product Lenght (bp) |
---|---|---|---|---|---|
JAK2 | NM_004972.4 | 14 | GGTTTCCTCAGAACGTTGATGG | TTGTTTGGGCATTGTAACCTTCT | 492 |
CALR | NM_004343.4 | 9 | CAAGTCTGGCACCATCTTTGAC | AGGAGGGGAACAAAACCAAAATC | 524 |
MPL | NM_005373.3 | 10 | TAGGGGCTGGCTGGATGAG | ACAGAGCGAACCAAGAATGC | 250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mennitti, C.; Miele, C.; Scarano, C.; Veneruso, I.; Gentile, A.; Mormile, R.; Saviano, F.; D’Alicandro, G.; Mazzaccara, C.; Frisso, G.; et al. Integrated Approach to Highlighting the Molecular Bases of a Deep Vein Thrombosis Event in an Elite Basketball Athlete. Int. J. Mol. Sci. 2023, 24, 12256. https://doi.org/10.3390/ijms241512256
Mennitti C, Miele C, Scarano C, Veneruso I, Gentile A, Mormile R, Saviano F, D’Alicandro G, Mazzaccara C, Frisso G, et al. Integrated Approach to Highlighting the Molecular Bases of a Deep Vein Thrombosis Event in an Elite Basketball Athlete. International Journal of Molecular Sciences. 2023; 24(15):12256. https://doi.org/10.3390/ijms241512256
Chicago/Turabian StyleMennitti, Cristina, Ciro Miele, Carmela Scarano, Iolanda Veneruso, Alessandro Gentile, Rosaria Mormile, Francesca Saviano, Giovanni D’Alicandro, Cristina Mazzaccara, Giulia Frisso, and et al. 2023. "Integrated Approach to Highlighting the Molecular Bases of a Deep Vein Thrombosis Event in an Elite Basketball Athlete" International Journal of Molecular Sciences 24, no. 15: 12256. https://doi.org/10.3390/ijms241512256
APA StyleMennitti, C., Miele, C., Scarano, C., Veneruso, I., Gentile, A., Mormile, R., Saviano, F., D’Alicandro, G., Mazzaccara, C., Frisso, G., Capasso, F., D’Argenio, V., & Scudiero, O. (2023). Integrated Approach to Highlighting the Molecular Bases of a Deep Vein Thrombosis Event in an Elite Basketball Athlete. International Journal of Molecular Sciences, 24(15), 12256. https://doi.org/10.3390/ijms241512256