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Abstract: Parkinson’s disease (PD) is a movement disorder caused by a dopamine deficit in the
brain. Current therapies primarily focus on dopamine modulators or replacements, such as levodopa.
Although dopamine replacement can help alleviate PD symptoms, therapies targeting the underly-
ing neurodegenerative process are limited. The study objective was to use artificial intelligence to
rank the most promising repurposed drug candidates for PD. Natural language processing (NLP)
techniques were used to extract text relationships from 33+ million biomedical journal articles from
PubMed and map relationships between genes, proteins, drugs, diseases, etc., into a knowledge
graph. Cross-domain text mining, hub network analysis, and unsupervised learning rank aggregation
were performed in SemNet 2.0 to predict the most relevant drug candidates to levodopa and PD
using relevance-based HeteSim scores. The top predicted adjuvant PD therapies included ebastine,
an antihistamine for perennial allergic rhinitis; levocetirizine, another antihistamine; vancomycin,
a powerful antibiotic; captopril, an angiotensin-converting enzyme (ACE) inhibitor; and neramex-
ane, an N-methyl-D-aspartate (NMDA) receptor agonist. Cross-domain text mining predicted that
antihistamines exhibit the capacity to synergistically alleviate Parkinsonian symptoms when used
with dopamine modulators like levodopa or levodopa–carbidopa. The relationship patterns among
the identified adjuvant candidates suggest that the likely therapeutic mechanism(s) of action of
antihistamines for combatting the multi-factorial PD pathology include counteracting oxidative
stress, amending the balance of neurotransmitters, and decreasing the proliferation of inflammatory
mediators. Finally, cross-domain text mining interestingly predicted a strong relationship between
PD and liver disease.

Keywords: Parkinson’s disease; antihistamines; repurposed drugs; machine learning; artificial
intelligence; movement disorders

1. Introduction

Parkinson’s disease (PD) is a common movement disorder in those over the age of
60 years caused by a dopamine deficit, which leads to an imbalance of motor, cognitive,
and emotional loops in the basal ganglia circuitry of the brain [1]. The loss of dopaminergic
neurons in the substantia nigra and impairment of nerve cells in the basal ganglia contribute
to the dopamine deficit within the brain [2]. Therefore, many treatments target dopamine
production to counteract this deficit.
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The common symptoms of PD include akinesia in combination with either tremor at
rest or rigidity. There is currently no treatment to stop the progression of the disease. How-
ever, there are treatments such as physiotherapies, medications, and surgeries to help relieve
the symptoms of PD. Many patients take a medication called L-Dihydroxyphenylalanine
(levodopa), a dopamine precursor that is widely used in the systematic treatment of PD.
Levodopa is highly effective in reducing motor symptoms because it can cross the blood–
brain barrier to be metabolized into dopamine [3]. However, as the storage capacity of
the central nervous system for levodopa and dopamine declines, the efficacy of levodopa
decreases. The medication demonstrates a “wearing-off” phenomenon due to dopamine
fluctuation throughout the day. This effect entails motor complications each day as the
medicine wears off [4]. The “wearing off” phenomenon of levodopa has inspired many
studies to look for new ways to delay or ameliorate motor complications by either prescrib-
ing drugs before the use of, or in combination with, levodopa. One such example is the
levodopa-carbidopa.

Likewise, this study seeks to identify repurposed drugs that could be used as adjuvant
therapies to further improve PD symptoms when used in combination with dopamine
replacement and/or other standard-of-care therapies. Drug repurposing is the identification
of new uses for approved or investigational drugs. Repurposed drugs have already been
tested in humans. As such, information on their pharmacology, formulation, and potential
toxicity is available. Repurposing builds upon previous research and development efforts,
which reduces overall development costs and timelines. Furthermore, new targets and
pathways can be revealed and exploited [5]. Examples of successful drug repurposing
include raloxifene, originally used for osteoporosis but now utilized for breast cancer
treatment [6], and the sedative thalidomide, which is now used to treat myeloma [7].

The objective of this study was to use artificial intelligence to rank the most promising
repurposed drug candidates for PD using text relationships extracted from 33+ million
biomedical journal articles contained within PubMed. Natural language processing (NLP)
techniques are used to extract text from journal articles and map relationships between
genes, proteins, drugs, diseases, etc., into a network called a “knowledge graph”. SemNet
2.0 [8,9] is a recently developed software that queries a biomedical knowledge graph and
utilizes unsupervised machine learning to determine the most “relevant” or important
concepts to user-specified targets.

This study evaluates existing pharmacologic substances in the knowledge graph
that a modified unsupervised learning rank aggregation algorithm deems [8] as most
relevant to PD and levodopa. Furthermore, a new form of hub network analysis for cross-
domain text mining [10] is performed. Hub analysis enables the inclusion of more distant
or under-represented literature relationships. Examples include relationships to more
distant domains (such as those outside of neurology), lesser-studied relationships, or novel
relationships that presently have fewer citations for their support. Aggregated analysis
and validatory literature review is then performed to better understand why the artificial
intelligence algorithm recommends specific drugs as beneficial adjuvant therapies for PD.

The benefits of drug repurposing using cross-domain text mining and artificial intel-
ligence are as follows: (1) it allows multiple types of relationships to be mapped across
domains, such as ontology, neurology, cardiology, etc.; (2) it removes human biases for
ranking and prioritizing promising repurposed drug candidates; and (3) the algorithm is
able to scour and map patterns at a pace and breadth that exceeds human domain expertise.
For example, SemNet was able to identify novel repurposed drugs for COVID-19 [11], and
approximately 40% were later clinically validated as positive adjuvant therapies [12].

The key contributions of this investigation are as follows: The results of this study
prioritize repurposed drug candidates that may synergistically improve symptom manage-
ment in PD when used with standard-of-care dopamine therapies, like levodopa and its
derivatives. The investigation utilizes an innovative cross-domain text-mining approach
that examines a large knowledge graph of 33+ million journal articles to identify the best
repurposed drug candidates. Unlike a manual systematic review or meta-analysis, this
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artificial intelligence approach enables a truly comprehensive evaluation of the literature
across multiple domains to identify and compare potential repurposed drug candidates
for PD. The key clinical finding of this study was that antihistamines were ranked as the
most promising repurposed pharmacological drug for PD by artificial intelligence. We
present the results of the cross-domain text-mining analysis and provide evidence as to
how antihistamines could potentially improve PD treatment by decreasing oxidative stress,
decreasing inflammation, and improving neurotransmitter imbalance.

2. Results

A series of multiple SemNet 2.0 simulations were required to perform a comprehen-
sive cross-domain text-mining analysis necessary to identify promising repurposed drug
candidates for PD. SemNet 2.0 [8] was utilized to identify drugs that showed a strong rela-
tionship with PD and related standard-of-care drugs like levodopa. A series of simulation
searches, as shown in Figure 1, was performed using a technique called hub analysis. Hub
analysis assisted in the identification of cross-domain relationships to repurposed drug can-
didates that have an important but less obvious connection to PD. Initial simulations were
performed with the target node set to “Levodopa” (Figure 1). The initial simulation layer
yielded a total of 1890 source node results. The hubs identified from one simulation became
targets for the next simulation, as depicted in Figure 1. The serial layers and identification
of hubs enabled less obvious or more distant cross-domain relationships to be included in
the ranking algorithm. The ranking of promising repurposed drug candidates was based
on (1) the resultant SemNet 2.0 HeteSim scores and (2) the recurrence of a high-ranking
source node across multiple search layers.
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Figure 1. Sequence of simulation searches in SemNet. For each simulation layer, specific “hub nodes”
were identified. Hub nodes have a predicted strong relationship (e.g., HeteSim score) with the target
node or query. The identified hub nodes were subsequently used as targets for the next layer of
searches. The synthesis of information from all the SemNet 2.0 simulation layers contributed to
the identification of antihistamines as a promising group of repurposed PD drugs. a = piroxicam;
b = leflunomide; c = loratadine; d = ebastine; e = levocetirizine; f = ebastine.
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2.1. Antihistamines Are a Category of Drugs Strongly Related to PD

As evidenced by relevant HeteSim scores of 0.911, the results most notably show
piroxicam, leflunomide, and loratadine as having comparatively high levels of relatedness
to levodopa (Figure 2). Piroxicam is a non-steroidal anti-inflammatory drug (NSAID) com-
monly used to treat rheumatic diseases [13]. Similarly, leflunomide is a disease-modifying
antirheumatic drug (DMARD) used to treat rheumatoid arthritis. The medication has anti-
inflammatory and immunoregulatory properties [14]. Loratadine is a second-generation
antihistamine commonly used to treat allergies [15]. Less related simulation results in-
cluded lovastatin, a medication used to treat high cholesterol. It yielded a HeteSim score
of 0.645, while mebendazole, an anthelmintic medication, had a HeteSim score of 0.146
(Figure 2).
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Figure 2. Representative source node results from SemNet 2.0 simulations with the target node “Lev-
odopa”. The source node type used was “Clinical Drug” (CLND). HeteSim scores were normalized
to enable comparison of nodes across multiple simulations.

To further investigate the antihistamine drug type and explore non-conventional
drugs predicted to modulate dopamine, additional simulations were performed with the
target nodes as “Dopamine” and “Antihistamine”, as shown in Figure 1. The number of
Unified Medical Language System (UMLS) source node types used was increased to expand
the scope of the search. Instead of only using the category “Clinical Drug” (CLND), the
source node types “Pharmacologic Substance” (PHSU) and “Therapeutic or Preventative
Procedure” (TOPP) were also added. These simulations yielded results from drug categories
like renin inhibitors (remikiren), antihistamines (ebastine), and antidepressants (selegiline).
Ebastine had a HeteSim score of 0.447 (Figure 3).

2.2. Levocetirizine and Ebastine Are Predicted as Promising Repurposed Drugs for PD

Based on the preliminary simulation results and corresponding HeteSim scores, addi-
tional simulations were run with the target nodes set to “Antihistamine” and “Levodopa”
(Figure 1). Levocetirizine displayed a high HeteSim relatedness score of 0.999, and the
HeteSim score for ebastine was 0.166 (Figure 4). The notable appearance and reappearance
of antihistamines like levocetirizine and ebastine, respectively, suggested the need for
further analysis of these specific drugs. As shown in Figure 4, other simulation results
included anxiolytics (diazepam), dopamine agonists (amantadine), and drugs used to treat
hepatitis C (ledipasvir).
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normalized to enable comparison of nodes across multiple simulations.
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Figure 4. Representative source node results from SemNet 2.0 simulation with target nodes of
“Antihistamine” and “Levodopa.” The source node type was “Clinical Drug” (CLND). HeteSim
scores were normalized to enable comparison of nodes across multiple simulations. Notice that
ebastine reoccurs as a source node.

2.3. Fourteen Highly Ranked Source Nodes Were Selected as Hubs for Further Analysis

In order to identify highly connected hub nodes of significance, a supplemental
simulation was run using “Parkinson’s disease” as the target node. The UMLS node types
were assigned to be “Disease or Syndrome” (DSYN), “Gene and Genome” (GNGM), or
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pharmacologic substance (PHSU). Using the hub analysis process detailed in Section 4.3,
source nodes with highly ranked HeteSim scores were selected for further analysis from the
simulation results (Figure 5). The 14 source nodes included DRD2, EEF1A2, GRM1, GYPE,
SLC33A1, hypomyelination, WH (Werdnig Hoffmann paralysis), granuloma (granuloma
of intestine), Langer (Langer mesomelic dysplasia syndrome), infection (infection in the
elderly), renal (high renal threshold for glucose), liver injury, dopamine, and antihistamines.
Note that dopamine and antihistamines were recurring source nodes.

2.4. Four Additional Drugs Were Discovered by Hub Analysis

Each of the 14 hub nodes were then designated as the target node for 14 additional
individual simulations. The UMLS node types were “Pharmacologic Substance” (PHSU),
“Amino Acid, Peptide, or Protein” (AAPP), and “Disease or Syndrome” (DSYN). Cross
evaluation of the simulation results from all the hub nodes led to the identification of
specific drugs that were highly ranked across multiple simulations. The antihistamine
ebastine was used to back-evaluate the hubs. Ebastine was chosen for back-evaluation
because it was highly ranked in all simulation layers. After further investigation and
validation of SemNet 2.0 rankings by manual inspection of the full text of the relevant
biomedical literature, several drugs were deemed to be promising (Table 1). The four drugs
most related to the 14 hub nodes were vancomycin, captopril, neramexane, levocetirizine,
and ebastine. As such, these four source nodes represent repurposed drugs that machine
learning predicts are the most promising repurposed adjuvant therapies for PD.
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Figure 5. Normalized HeteSim scores of returned source nodes selected as hubs using “Parkinson’s
Disease” as a SemNet 2.0 simulation target node. HeteSim scores were normalized to enable compari-
son of nodes across multiple simulations. Color code represents source node type: GNGM (gene or
genome), DSYN (disease or syndrome), or PHSU (pharmacologic substance). Descriptions of shown
source nodes: “Hypomyelination” is hypomyelination within brainstem and spinal cord; “WH” is
Werdnig Hoffmann paralysis; “Granuloma” is granuloma of intestine; “Langer” is Langer mesomelic
dysplasia syndrome; “Infection” is infection in the elderly; “Renal” is high renal threshold for glucose;
“Liver injury” is drug-induced liver injury.
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Table 1. Summarized results of hub analysis. The four drugs validated as most related to the 14 hub
nodes shown in Figure 5 were vancomycin, captopril, neramexane, levocetirizine, and ebastine. Thus,
the hub analysis results are organized into columns associated with either vancomycin, captopril,
neramexane, levocetirizine, or ebastine. The respective normalized HeteSim scores for each hub node
SemNet 2.0 simulation are listed in descending order. Only hubs with normalized HeteSim scores
greater than 0.2 are shown. The results collectively represent additional cross-domain source nodes
predicted by the algorithm as relevant to Parkinson’s Disease.

Vancomycin Captopril Neramexane Levocetirizine Ebastine *

Granuloma
(0.927)

Hypomyelination
(0.474)

SLC33A1
(0.765)

EEF1A2
(0.455)

SLC33A1
(0.585)

Liver Injury
(0.499)

Dopamine
(0.462)

Antihistamine
(0.706)

Dopamine
(0.391)

Antihistamine
(0.446)

Renal
(0.341)

Renal
(0.436)

EEF1A2
(0.629)

DRD2
(0.375)

DRD2
(0.399)

Hypomyelination
(0.333)

SLC33A1
(0.335)

DRD2
(0.505)

SLC33A1
(0.316)

EEF1A2
(0.398)

SLC33A1
(0.272)

GRM1
(0.271)

GRM1
(0.492)

GRM1
(0.369)

GYPE
(0.265)

GYPE
(0.249)

GYPE
(0.408)

DRD2
(0.251)

EEF1A2
(0.247)

EEF1A2
(0.245)

DRD2
(0.237)

* Ebastine was used as back-evaluation of the hubs.

3. Discussion

Cross-domain text mining of biomedical relationships [10] is a cutting-edge artificial
intelligence technique to identify and rank repurposed drugs that could serve as adjuvant
therapies for presently intractable diseases, including PD. Advanced artificial intelligence
techniques harness the power of NLP and machine learning to rank promising literature
relationships in an unsupervised and less biased manner. The overall results predicted
ebastine, levocetirizine, vancomycin, captopril, and neramexane as repurposed drug candi-
dates that are most likely to be beneficial to PD. That is, these repurposed drugs represent
promising adjuvant therapies that could improve the impact of current standard-of-care
PD therapies like levodopa and levodopa–carbidopa.

The cross-domain text mining of relationships from 33+ million PubMed articles
determined ebastine and levocetirizine to be among the highest-ranked repurposed phar-
macologic substances (Figure 2). Namely, ebastine had a connection to both antihistamines
and dopamine (Figure 3). Ebastine and levocetirizine are antihistamines primarily utilized
to treat perennial allergic rhinitis (e.g., seasonal allergies) [16]. While antihistamines are
not yet clinically proven for PD, there is evidence of their positive effect. In fact, one study
suggested that, when used with levodopa, ebastine and levocetirizine each significantly
improved PD-like side effects induced in mouse models. The benefit was further amplified
when the treatments were administered in combination with levodopa, and the mRNA
expression of PD markers was significantly lowered [17]. These preclinical findings show
the potential value of co-administering antihistamines with levodopa to better manage the
motor hallmarks of clinical PD.

Presently, there are four known categories of histamine receptors. These include the
H1, H2, H3, and H4 receptor types [18]. The most common antihistamines target the H1
and H2 receptors; however, antihistamine-like drugs inhibiting the effects of histamine
at H4 and H3 receptors have also been developed [19]. Several of the histamine receptor
types play a role in PD progression, and the brains of individuals with PD display dys-



Int. J. Mol. Sci. 2023, 24, 12339 8 of 17

regulation and abnormal distribution of histamine receptors [20,21]. Through H1 and H4
receptor activation, histamine facilitates reactive oxygen species (ROS) production as well
as microglial phagocytosis. These inflammatory mechanisms contribute to dopaminergic
neurotoxicity and cell death implicated in PD [22].

Considering the importance of histaminergic activity in PD pathology, the modulation
of histamine via antihistamines represents a promising therapeutic focus. The blockage of
H1 receptors safeguards against histamine-induced dopaminergic neuron death in vivo [22].
Additionally, H2 receptor antagonists improve PD motor symptoms and protect against
apoptosis in dopaminergic cells [23].

In rotenone-induced PD rat models, H4 receptor antagonists normalize dopamine
levels [24]. In MPTP-induced PD mice models, the inhibition of H3 receptors demonstrates
neuroprotective effects and reduces PD pathophysiology [20].

Interestingly, antihistamines were previously found to be a positive adjuvant therapy
for another neurodegenerative disease, Amyotrophic Lateral Sclerosis (ALS) [25]. The
hypothesized mechanism of action for their benefit in clinical ALS was initially thought to
be related to airway secretion clearance [25]. However, it is possible that antihistamines
have several of the same positive neuroprotective effects for ALS as they do in PD—namely,
combatting oxidative stress and decreasing inflammation.

3.1. Oxidative Stress in PD

Oxidative stress exacerbates neurodegeneration in PD [26]. PD-causing gene products
like alpha-synuclein, parkin, PINK-1, LRRK2, and DJ-1 increase the production of reactive
oxygen species (ROS) and free radicals [27]. As such, PD patients have a greater susceptibil-
ity to the effects of oxidative stress. A vicious cycle occurs as initial oxidative-stress-related
damages result in further insults to prominent pathogenic proteins that, in turn, induce
additional ROS production. The unfavorable modifications of molecular pathways caused
by compounding oxidative stress ultimately result in neuronal death. One potential way
to mitigate the effects of oxidative stress is to utilize antioxidants. Antioxidants play an
essential role in defending the body against oxidative damage. Specifically, antioxidants
prevent the formation of free radicals and can neutralize their effects [28]. In healthy indi-
viduals, protection against oxidative harm is maintained by a balance between oxidants and
antioxidants [29]. Facilitating the production of antioxidants helps restore ROS homeostasis,
which may decrease ROS-enhanced neurodegeneration.

Ebastine was one of the highly ranked repurposed drugs predicted by cross-domain
text mining. Ebastine induces a dose-dependent increase in the activity of antioxidant
enzymes like SOD, CAT, and GSH as well as a decrease in accompanying biomarkers
of oxidative stress like MDA and nitrite [17]. Additionally, levocetirizine, another highly
ranked cross-domain text-mining result, similarly fosters a significant increase in the activity
of SOD [30]. The ability of ebastine and levocetirizine to increase the levels of antioxidant
enzymes suggests that these antihistamines may help ameliorate neurodegeneration by
increasing the number of compounds that can counteract oxidation. As such, ebastine and
levocetirizine may help neutralize the PD-inducing insults caused by free radicals and ROS.

3.2. Neurotransmitter Imbalance in PD

Due to the degeneration of dopaminergic neurons in the midbrain, the concentra-
tions of dopamine are reduced [31]. This dopamine deficiency disrupts the balance be-
tween dopamine and acetylcholine as the level of acetylcholine begins to surpass that of
dopamine [32]. Adequate and appropriately balanced concentrations of both neurotrans-
mitters are required to maintain proper motor function; therefore, with skewed levels,
PD motor symptoms are unable to return to normal. In addition to decreased dopamine,
imaging has also illustrated decreased noradrenergic and serotonergic transmission in the
brains of PD patients [33]. The use of antihistamines may be able to re-establish suitable
levels of these neurotransmitters and improve related Parkinsonian symptoms. Ebastine
and levocetirizine have been experimentally shown to increase the levels of dopamine,
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serotonin, and noradrenaline to improve the motor and non-motor features of PD. The
reinstatement of a proper balance between dopamine and acetylcholine is another pos-
sible mechanism of action for ebastine and levocetirizine to improve PD. Ebastine and
levocetirizine have been found to decrease acetylcholine levels in mouse models [17]. The
alleviation of neurotransmitter imbalances indicates the potential utility of antihistamines
as a repurposed drug or adjuvant therapy for PD.

3.3. Inflammation in PD

Chronic inflammation is regarded as a pronounced agitator in PD due to its role in
causing neurotoxicity and cell death [34]. The concomitant dysregulation of inflammatory
mediators is a related aggravator [35]. In PD patients, the production and activity of
inflammatory mediators like histamine and TNF-α are upregulated. Abnormally height-
ened brain concentrations of histamine and increased density of histaminergic fibers in
the substantia nigra of PD patients likely contribute to progressive dopaminergic neuron
death [36–38]. Elevated TNF-α cytokine levels found in the blood, cerebrospinal fluid, and
brain of PD patients have also been implicated in the progression of the disease due to the
molecule’s role in inciting inflammatory activity and cell apoptosis [39,40]. Modulating
the supply and activity of inflammatory regulators may protect against PD-related neu-
ral pathology [1,20]. Antihistamines may improve neurodegeneration by countering the
inflated concentrations of inflammatory regulators. Compared to the excess amounts of
histamine and TNF-α in untreated haloperidol-induced PD animal models, animals treated
with ebastine and levocetirizine demonstrated a dose-dependent decrease in the levels
of inflammatory molecules [17]. The observed lowering of histamine and TNF-α content
following the administration of ebastine and levocetirizine reflects the potential value of
using antihistamines in combatting inflammation-induced progression in PD.

Beyond antihistamines, cross-domain text mining with hub analysis identified strong
relationships to vancomycin, captopril, and neramexane, which also have anti-inflammatory
properties. (Table 1). Previous studies have identified the utility of anti-inflammatory
drugs in PD [41,42]. Captopril, a vasodilator with anti-inflammatory effects, downregu-
lates the angiotensin II system by blocking the activity of angiotensin-converting enzyme
(ACE) [43]. Angiotensin II plays a prominent role in the degeneration of dopaminergic
neurons via activation of the AT1 receptor [44]. Vancomycin, a glycopeptide antibiotic
with anti-inflammatory effects, inhibits monoamine oxidase B (MAO-B), which is an en-
zyme that metabolizes dopamine [45]. Due to its antibacterial nature, vancomycin alters
gut microbiota and fecal short-chain fatty acid levels [46]. This, in turn, can decrease the
expression of the TLR4/MyD88/NF-κB/TNF-α signaling pathway in the brain and the
gut. Through the suppression of this signaling pathway, the activities of astrocytes and
microglia are limited, which mitigates worsening inflammation [45]. With the inhibition
of MAO-B by vancomycin in PD patients, dopamine levels can be increased and main-
tained at appropriate levels [47]. Neramexane, an NMDA antagonist with neuroprotective
and anti-inflammatory properties, counteracts induced decreases in dopamine levels in
the substantia nigra pars compacta of rats [48]. The antagonistic activity of this drug on
NMDA receptors protects dopaminergic neurons in the striatum and substantia nigra pars
compacta from neurotoxicity that could eventually lead to PD-related oxidative stress and
inflammation [48].

3.4. Possible Role of Liver in PD

As shown in the results, several of the identified source nodes had ties to liver disease
or injury (Figures 4 and 5, Table 1). Liver-related drugs or treatments also repeatedly
appeared over multiple simulations. In fact, ledipasvir, a drug used to treat hepatitis, was
one of the key nodes found as part of the antihistamine hub node analysis (Figure 4). The
mechanistic connection to liver disease is not entirely clear but is nonetheless interesting. A
study of 120 patients with liver cirrhosis found that 52% of participants also displayed signs
of PD [49]. Additionally, a retrospective cohort study of various types of hepatitis reported
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increased rates of subsequent PD in individuals with hepatitis B and hepatitis C [50].
Growing evidence suggests that the prevalence of liver disease history among PD patients
is connected to the inability of the liver to clear the blood of neurotoxins like α-syn and
manganese (Mn), which can then accumulate in the liver [51,52]. Compromised hepatic
ability resulting from liver disease may sabotage the removal of pathological proteins,
allowing neurotoxins to enter cerebral circulation and facilitate PD pathogenesis [52]. The
entrance of toxic substances into the brain is further provoked by portosystemic shunting,
which often occurs as a result of advanced liver diseases like acquired hepatocerebral
degeneration (ADH) [52]. Portosystemic shunting has been implicated in the accrual of
Mn in the basal ganglia, leading to the appearance of Parkinsonian symptoms [49]. Other
hypotheses suggest liver infections like hepatitis C release inflammatory cytokines, which
can promote the progression of PD [53]. Ties to liver disease have also been suggested
in other neurodegenerative diseases, including ALS [54] and, more recently, Alzheimer’s
Disease [55].

3.5. Limitations for Clinical Implementation of Antihistamines for PD

As a note of importance, the feasibility of using some machine-learning-identified
repurposed drugs for PD treatment may vary. In particular, unlike levocetirizine and
captopril, ebastine has not been approved by the Food and Drug Administration in the
United States of America. However, ebastine has been approved in other countries. At the
time of this writing, the use of neramexane is unlikely due to its clinical mass production
being presently discontinued. Vancomycin may also be a less feasible option considering
the risk of antibiotic resistance. Thus, not all the identified promising drugs in this study
can be immediately clinically utilized at this time. Nonetheless, their identification is
helpful for elucidating the mechanisms of action that could be leveraged in future drug
development for PD.

Another concern is the reduced effectiveness of second-generation antihistamines
due to the limited ability of such drugs to cross the blood–brain barrier. Compared to
first-generation antihistamines, second-generation H1 antihistamines translocate across
the blood–brain barrier to a lesser extent [56]. In order to address this, further studies
regarding drug delivery at the blood–brain barrier should be conducted. Strategies may
include the use of carrier mechanisms or the enhancement of lipid solubility [57] or direct
administration using intrathecal drug delivery.

The potential side effects of antihistamines may warrant questions about their util-
ity compared to, or in addition with, other commercially available medications, namely
levodopa modulators or replacements. Beyond the “wearing off” effect of levodopa, the
common side effects of levodopa–carbidopa include dizziness, loss of appetite, nausea,
diarrhea, dry mouth, mouth and throat pain, constipation, change in taste, forgetfulness or
confusion, anxiety, nightmares, insomnia, headache and weakness, hoarseness, dyskinesias,
and rapid heart rate [58]. Some of the more common side effects with antihistamines
include drowsiness, dry mouth, blurred vision, dizziness, headache, low blood pressure,
mucous thickening, rapid heart rate, and difficulty urinating [59]. Notably, there is some
overlap in the side effects of levodopa–carbidopa and antihistamines that would require
further assessment and careful dose titration. As previously shown, diet and vitamin
therapy may be one way to offset the side effects of Parkinsonian therapies [60].

Despite the possibility of side effects, the potential benefit of incorporating antihis-
tamines into PD treatment is that antihistamines address multiple facets of the PD pathology,
including oxidative stress, inflammation, and neurotransmitter imbalance. Moreover, de-
spite the value of levodopa in rectifying the depletion of dopamine, levodopa treatment has
also been reported to aggravate PD progression by fostering the release of inflammatory
cytokines [61]. Therefore, the possible advantages of incorporating antihistamines as part
of a comprehensive PD treatment should not be overlooked. In summary, antihistamines
are not a replacement for dopamine therapies. However, antihistamines are a possible
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adjuvant therapy that could potentially address the multi-factorial nature of PD pathology
beyond the lack of dopamine.

3.6. Investigation Limitations and Future Directions

This investigation utilized cross-domain text mining of 33+ million journal articles
in PubMed and artificial intelligence methods to rank repurposed drug candidates that
have the most potential as adjuvant PD therapies. A key limitation of this study is the
identification of relationships from the existing literature in PubMed. While the SemNet
technology has been shown to identify the majority of relationships from the literature,
infrequent or differently worded relationships may not be transformed properly into the
knowledge graph [8,9]. Additionally, the investigation can only identify already pub-
lished relationships and integrate them across domains into a comprehensive knowledge
graph. The unsupervised learning ranking algorithm has corrections (e.g., such as a degree
weighted path count) to ensure that relationships with a lower count or few citations are
not completely overlooked in the HeteSim importance rankings [8]. However, there is
still a possibility that newer or less cited work may be under-ranked. Finally, there is no
correction for data source quality in the knowledge graph. Rather, all data sources in the
knowledge graph are treated equally rather than being weighted by a quality index, impact
factor, or citation rate.

Future work in cross-domain text mining should address the integration of multiple
different databases (beyond PubMed), improved semantic extraction of relationships for
integration into the knowledge graph, and the ability to assess perceived data source
quality [8]. Additionally, future work may be able to use existing relationships from the
literature to predict unreported, novel relationships that have yet to be published. One
such method is link prediction. For example, link prediction was used in conjunction with
SemNet technology to identify novel relationships for the treatment of COVID-19 [11]. In
addition to drug repurposing, link prediction models may also aid in the development of
novel drug targets and formulations.

4. Materials and Methods
4.1. Overview of SemNet 2.0

SemNet 2.0 is a text-mining tool that optimizes literature-based discovery within an in-
teractive Python-based framework [8]. Compared to its predecessor, SemNet version 1 [62],
SemNet 2.0 uses a much faster processing speed to query the National Library of Medicine’s
SemMedDB repository to create a knowledge graph, composed of numerous nodes and
edges, that identifies relationships among biomedical concepts. Nodes correspond to a
United Medical Language System (UMLS) biomedical concept (PD, COVID-19, etc.) along
with an associated semantic type (therapeutic or preventative procedure, disease or syn-
drome, etc.). This study differentiates its target and sources by referencing them as a “target
node” and “sources-node”. An edge refers to a connection between concepts, a target and
source, that encodes a UMLS prediction (treats, inhibits, causes, etc.) [8].

With natural language processing and machine learning techniques, SemNet 2.0 can
manipulate the knowledge graph by constraining it based on UMLS node type (pharma-
cologic substance, pathological function, therapeutic or preventative procedure, etc.) and
relation type (inhibits, teats, affects, etc.). Therefore, metapaths present more related source
nodes. A metapath connects the user-specified target node to the related source node
through a series of sequential node and relationship types in the graph. These metapaths
are used to calculate HeteSim scores. This score lies within the interval (0.1) and is a
normalized measure of relatedness between concept nodes that considers all metapaths
(e.g., the paths that connect nodes of interest) [8]. Each simulation uses the standard
unsupervised learning rank aggregation algorithm in SemNet 2.0 to examine published
relationships in the constructed knowledge graph. For the current study, a total of 19
simulations were performed.
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Figure 6 illustrates the overview of the cross-domain text-mining method. Data were
extracted from the text of journal articles contained within the PubMed database. Then, text
relationships were identified as subject–object–predicate triples, which connect two nodes
together. A collection of relationship triples constitutes a knowledge graph. By ranking
such relationships, potential repurposed drugs for PD were identified. Figure 7 depicts an
example subgraph from the larger knowledge graph. The visualized subgraph is highly
pruned (>99.9% pruned). The full knowledge graph cannot be shown as it is too large and
intractable to visualize with the human eye. The shapes in Figure 7 represent nodes, which
are biomedical concepts found in the literature as defined by the UMLS ontology. Example
node types included are “Pharmacologic Substance” (PHSU), “Amino Acid, Peptide, or
Protein” (AAPP), and “Disease or Syndrome” (DSYN). Finally, cross-domain text-mining
analysis to identify repurposed drug candidates for PD was performed using a form of hub
node network analysis we previously described [10]. Hub node network analysis enables
more distant cross-domain relationships in the knowledge graph to be fairly represented in
the resultant drug candidate rankings.
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Figure 6. Overview of the cross-domain text-mining method. Over 33+ million journal articles from
PubMed are text mined. Relationships are extracted according to the Unified Medical Language
System (UMLS) ontology to construct a large-scale knowledge graph in a recently developed cross-
domain text-mining software called SemNet 2.0 [8]. Artificial intelligence methods mine relationship
patterns to identify promising candidates using “levodopa” and “Parkinson’s Disease” as the primary
target nodes for the initial series of searches. Specifically, unsupervised learning rank aggregation
assigned a ranking to filter the most promising repurposed drugs for PD.

SemNet 2.0 utilizes unsupervised learning rank aggregation to rank the most impor-
tant nodes by examining metapath patterns within the knowledge graph. HeteSim scores
provide a predicted importance ranking with respect to the user-defined target node(s).
The mathematical derivation and calculation of the HeteSim score and its specific algo-
rithmic implementation in SemNet 2.0 has been previously described [8]. HeteSim scores
are normalized between simulations and used to compile an aggregated list of the most
promising repurposed drug candidates for PD. In the present work, HeteSim scores vary
between 0 and 1, with scores closer to 1 representing higher ranked nodes the algorithm
deems as “more relevant” or “more important” to the specified target nodes.

4.2. Preliminary Simulations

An initial SemNet 2.0 [8] simulation was performed with the target node as “Lev-
odopa”. Since it is widely used as a current standard-of-care PD therapy, levodopa was
specified as the first target node to start searching for potential related source nodes that
could suggest additional drugs that may be relevant to PD. Based on HeteSim scores, the
most promising identified source nodes were predominantly anti-inflammatory drugs
and antihistamines. As such, simulations were subsequently constrained to find connec-
tions between inflammation, antihistamines, dopamine, and levodopa. Table 2 details the
specific simulations run with target nodes and node types. Node types are based on the
UMLS ontology.
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Table 2. A list of preliminary SemNet 2.0 simulations used in the current study. The objective column
briefly explains why the simulation was performed. The target node with CUI column specifies
the biomedical concept(s) utilized as user-specified target node(s) in SemNet 2.0, along with their
corresponding UMLS concept unique identifier (CUI). The node types column specifies the UMLS
node types examined: CLND: “Clinical Drug”, TOPP: “Therapeutic or Preventive Procedure”, PHSU:
“Pharmacologic Substance”.

Simulation Objective Target Node with CUIs Node Types

1
Explored connections to
levodopa that may be an

uncommon relation to PD.

levodopa
(C0023570) CLND

2
Examined anti-inflammatory

properties of drugs/substances
relevant to dopamine.

inflammation (C0021368),
dopamine (C0013030) CLND, TOPP, PHSU

3 Examined relations between
antihistamines and dopamine.

antihistamine (C3536809),
dopamine (C0013030) CLND, TOPP, PHSU

4
Explored potential antihistamine
adjuvants with properties related

to levodopa.

antihistamine (C3536809),
levodopa (C0023570) CLND, TOPP, PHSU

5
Examined potential relevance of

antihistamines to tremor, a
common PD symptom.

antihistamine (C3536809),
tremor (C0023570) CLND, TOPP, PHSU
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4.3. Hub Analysis

Hub analysis is frequently used in bioinformatics to trace downstream gene relation-
ships to hub genes and analyze complicated networks [10,62–64]. Much like a wheel where
spokes converge to the wheel hub, a hub node is a node that has a large degree of connected,
related nodes in the network [65]. Analogous to hub network analysis in bioinformatics,
hub analysis [10] can be performed on a knowledge graph to look at relationships that
are further downstream from the user-defined target of interest. This is accomplished by
examining relationships around a set of selected “hub nodes” that are connected to the
target of interest. Hub nodes were selected to explore similar drugs that have less exposure
in the treatment of PD. As shown in the preliminary results, dopamine, anti-inflammatory
drugs, and antihistamines were the returned highest-ranking source nodes and, thus, were
chosen as hubs for further analysis.

Genetic connections in the pathology and mechanisms of similar diseases can be
exploited to find less-studied drugs. Thus, diseases and genes were also explored as
hubs. To find the specific nodes that can be used as hubs, simulations were run with
“Parkinson’s disease” as the target and “Disease or Syndrome” (DSYN) and “Gene and
Genome” (GNGM) as UMLS node types. These results are displayed in Figure 5.

After hubs were selected, a simulation was run on each hub using the following
UMLS node types: “Pharmacologic Substance” (PHSU), “Amino Acid, Peptide, or Protein”
(AAPP), and “Disease or Syndrome” (DSYN). These node types were chosen to better
filter specific substances that may be useful. A back-evaluation of the hubs was conducted
to evaluate their efficacy. The back-evaluation assessed whether the most promising
drug identified from the preliminary simulations, ebastine, was reproduced within the
highly ranked candidates from hub analysis. Identification of candidates within both
the preliminary simulations and the hub analysis provided additional credence for their
inclusion in the final repurposed drug recommendation list. Finally, a cross-evaluation
was conducted to find nodes with relevant HeteSim scores across multiple simulations.
HeteSim scores were then compiled to determine the final list of predicted promising PD
drug candidates and their likely mechanisms of action for ameliorating the PD pathology.

5. Conclusions

The goal of this study was to utilize innovative text mining and artificial intelligence
algorithms to suggest helpful repurposed drugs as adjuvant therapies that may improve
PD treatment in combination with standard-of-care drugs like levodopa–carbidopa. Cross-
domain text mining and hub analysis were performed with SemNet 2.0 using a knowledge
graph of relationships extracted from 33+ million PubMed journal articles. Machine learn-
ing predicted the best repurposed drug candidates to potentially serve as positive adjuvant
therapies for PD: ebastine, levocetirizine, vancomycin, captopril, and neramexane. Not all
the aforementioned drugs may be clinically feasible at this time. Nonetheless, the identi-
fication of these drugs as promising to PD provides insight into underlying mechanisms
that could be exploited in future PD drug development. Antihistamines were among
the highest-ranked repurposed therapies predicted by artificial intelligence. In particu-
lar, cross-domain text-mining analysis suggests that antihistamines provide protection
against neurodegeneration by ameliorating oxidative stress, improving neurotransmitter
balance, and decreasing inflammation. In summary, antihistamines may synergistically
alleviate Parkinsonian symptoms when used with dopamine modulators like levodopa or
levodopa–carbidopa. Therefore, antihistamines warrant further experimental investigation
as a potential future adjuvant therapy for PD.
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