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Abstract: Diabetes mellitus (DM) belongs to the category of socially significant diseases with epidemic
rates of increases in prevalence. Diabetic nephropathy (DN) is a specific kind of kidney damage that
occurs in 40% of patients with DM and is considered a serious complication of DM. Most modern
methods for treatments aimed at slowing down the progression of DN have side effects and do not
produce unambiguous positive results in the long term. This fact has encouraged researchers to
search for additional or alternative treatment methods. Hyperglycemia has a negative effect on renal
structures due to a number of factors, including the activation of the polyol and hexosamine glucose
metabolism pathways, the activation of the renin–angiotensin–aldosterone and sympathetic nervous
systems, the accumulation of advanced glycation end products and increases in the insulin resistance
and endothelial dysfunction of tissues. The above mechanisms cause the development of oxidative
stress (OS) reactions and mitochondrial dysfunction, which in turn contribute to the development
and progression of DN. Modern antioxidant therapies for DN involve various phytochemicals (food
antioxidants, resveratrol, curcumin, alpha-lipoic acid preparations, etc.), which are widely used not
only for the treatment of diabetes but also other systemic diseases. It has also been suggested that
therapeutic approaches that target the source of reactive oxygen species in DN may have certain
advantages in terms of nephroprotection from OS. This review describes the significance of studies on
OS biomarkers in the pathogenesis of DN and analyzes various approaches to reducing the intensity
of OS in the prevention and treatment of DN.

Keywords: diabetes mellitus; diabetic nephropathy; oxidative stress; biomarkers; antioxidant
therapies; vitamins

1. Introduction

Diabetes mellitus (DM) belongs to the category of socially significant, non-infectious
diseases with epidemic rates of prevalence. According to the International Diabetes Federa-
tion (IDF), 537 million people currently suffer from diabetes—a number that is expected to
increase by more than 50% to 784 million by 2045 [1]. Disease prognosis is usually extremely
unfavorable and, unfortunately, this trend has been maintained for many years [2]. Despite
successes in studying the mechanisms of DM development and impressive results in the
development of new drugs for the control of glycemia, the problems associated with DM
are still increasing [3]. There are social and economic burdens that are determined by the
development of micro- and macro-vascular complications, which are the causes of early
disability and mortality of patients [4]. Clinical DM complications are mainly represented
by stroke, coronary heart disease, peripheral artery disease, retinopathy, neuropathy and
nephropathy [5].

2. Diabetic Nephropathy (DN): Pathogenesis and Existing Correction Methods

DN is a specific kind of kidney damage that occurs in 40% of patients with DM,
according to recent data [6]. Chronic renal failure (CRF) due to DN significantly contributes
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to the mortality rate of patients with DM and is one of the main causes of mortality in
patients with type 1 DM (T1DM) [7]. In patients with type 2 DM (T2DM), DN ranks third
among the causes of death after cardiovascular diseases and oncological pathologies [8].

DN combines a number of changes in various renal structures (arteries, arterioles,
kidney glomeruli and tubules) with the development of glomerular hypertension, often
leading to the development of diffuse or nodular glomerulosclerosis and, subsequently,
CRF [9]. A number of structural and functional events consistently occur in the kidney
tissues of patients with DN. It is classically distinguished into several consequent stages:
albuminuria, proteinuria with preserved kidney function and the progressive decrease in
the functional activity of the kidneys until the terminal stage [10]. Currently, DN is not
considered to be a fatal complication of DM since its development can be prevented.

Additionally, the possibility of the early preclinical diagnosis of DN has significantly
expanded. Until recently, albuminuria was considered a key factor in glomerular damage
(i.e., “albuminuria was a centric” model of pathogenesis) [9,11]. However, morphological
studies have shown that the characteristic changes in kidney tissues are already present
under the conditions of normal albumin excretion and that the detection of albuminuria
indicates the presence of sclerosis in 20–25% of nephrons [12,13]. As a rule, by the time
of the occurrence of persistent albuminuria (proteinuria), 50–70% of the renal mass has
undergone sclerosis [13].

A key pathogenetic factor in DN development is persistent hyperglycemia [14]. Along
with possible genetic predisposition (i.e., a smaller than usual number of nephrons in the
kidneys, etc.), stable hyperglycemia is the basis for the formation of several complex and
not yet fully understood pathological mechanisms that damage various renal structures
(i.e., mesangial, tubular, interstitial and vascular structures) [10]. These effects are enhanced
in the presence of various vascular risk factors (obesity, smoking, metabolic syndrome,
etc.) [15]. Together, the impact of these factors is the formation of glomerular hyperfiltra-
tion (at the initial stage) and glomerular hypertension. Subsequently, the mechanism for
autoregulating the renal tubular arteriole tone is disrupted due to systemic arterial pres-
sure, directly affecting intraglomerular pressure, and glomerular hypertension develops
from transient to constant [16]. The emergence of podocyte (glomerular epithelial cell)
disorders and the development of podocytopathy are important factors in the develop-
ment of albuminuria. Albuminuria, in turn, is considered an important mechanism for
the further progression of glomerular damage, the formation of nodular glomeruloscle-
rosis, the increase in the mesangial matrix, glomerular hyalinosis and tubulo-interstitial
fibrosis [12,14]. At this stage, proteinuria and hypertension development is typical, which
additionally stimulates renal structure damage processes and contributes to a decrease in
kidney function, up to renal failure and the terminal stage [17].

Hyperglycemia has a negative effect on renal structures due to several factors, in-
cluding the accumulation of advanced glycation end products (AGEs), the activation of
the polyol and hexosamine glucose metabolism pathways, increased oxidative stress (OS)
reactions, the activation of the renin–angiotensin–aldosterone system (RAAS) and the sym-
pathetic nervous system and the increased insulin resistance and endothelial dysfunction
of tissues [7,14].

It is unequivocally recognized that all the above mechanisms cause the development
of OS reactions and mitochondrial dysfunction, which contribute to DN development and
progression [18].

The main principle of DN prevention and treatment is the correction of metabolic
and hemodynamic disorders, particularly the maintenance of good glycemic control
(glycated hemoglobin (HbA1c) < 7%), the normalization of systemic blood pressure
(<130/80 mm Hg), a reduction in intraglomerular hypertension and the elimination of
dyslipidemia [9,10,13,14]. In this regard, HbA1c-lowering drugs, insulinotropic drugs,
insulin-sensitizing drugs, anorectic drugs, incretin hormone mimic drugs, lipid-lowering
drugs, drugs that prevent glucose reabsorption in the kidneys, etc., have become impor-
tant [9,13,14,16]. RAAS blockers, such as angiotensin-converting enzyme (ACE) inhibitors
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and angiotensin II receptor blockers, remain the standard drugs approved for DN, accord-
ing to international treatment algorithms [13,14]. Their nephroprotective properties have
been evidenced in large clinical trials for the treatment of DN [9]. As a result, ACE inhibitors
are recommended as the first-line treatment for DN in both types of diabetes [9,16]. At
the same time, new classes of nephroprotective drugs are being developed that interrupt
the chain of pathological changes in the kidneys caused by hyperglycemia or other factors
(e.g., protein kinase C (PKC) inhibitors, cytokine and growth factor blockers, endothelin-1
antagonists, etc.) [9,13,14,16,17]. The idea of synthesizing drugs that could simultaneously
exert hypoglycemic effects and nephroprotective effects that are not mediated by glycemic
control is of great interest among scientists [16]. At the same time, most modern methods
for treatment aimed at slowing down the progression of DN have side effects and do not
produce unambiguous positive results in the long term [10]. As a result, alternative or
additional approaches to DN treatment that produce maximum kidney protection are being
studied [10,15,17]. These include various phytochemicals that have antioxidant activity as
well as high activity against OS reactions, which are not only used for the treatment of DM
but also other systemic diseases [3,6,9].

3. OS

During cell metabolism, free radicals (FRs) (otherwise known as reactive oxygen
species (ROS) or reactive nitrogen species (RNS)) are continuously formed [19]. They
can be of two types: some are the normal metabolic products of endothelial cells, which
are caused by the release of super-oxides via phagocyte and nitric oxide (NO) activation,
while others occur under altered environmental conditions (e.g., FRs in water and organic
molecules that are synthesized under the action of ultraviolet, ionizing radiation, toxic
substance or pathological conditions) [19–21]. FRs are highly reactive particles that contain
unpaired electrons; that is, one or more electrons are missing in the outer orbital [22]. The
main suppliers of FRs are mitochondria (mitochondrial nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase (NOX)) [23]. Superoxide radical (O2

•) plays an initiating role
in this process, since after formation in mitochondria, it can turn into more reactive forms,
such as hydroxyl (•OH), hydroperoxyl and peroxyl (ROO•) radicals, hydrogen peroxide,
singlet oxygen (1O2), nitric oxide radicals (NO•), nitrogen dioxide radicals (NO2

•), etc. [19].
In low and moderate concentrations, ROS act as important elements in the cellular links
of the immune system by regulating the synthesis of prostaglandins, leukotrienes and
thromboxanes, as well as participating in the destruction of xenobiotic molecules, the
renewal and modification of cellular biomembranes, the regulation of apoptosis, etc. [24].
ROS are regulators of the intracellular signal transmission pathways that control cell growth,
differentiation and numerous other processes [18,22].

Under pathological conditions, the balance of ROS production and detoxification
by the antioxidant defense system (AOD) is disturbed, which leads to system imbalance
and OS development [20–22]. Sies provided the following definition of OS: “a violation
of the balance between pro-oxidants and antioxidants towards the predominance of pro-
oxidants, which leads to a violation of redox signaling and redox control and/or damage to
molecules” [19]. The excessive production of ROS causes the oxidation of macromolecules
(i.e., lipids, proteins and deoxyribonucleic acid (DNA)), which ultimately leads to modifica-
tions and changes that can persist for a long time [25]. OS increases vascular permeability,
promotes leukocyte adhesion and causes changes both in the transduction of endothelial
signals and the processes that are regulated by redox-sensitive transcription factors [26].

OS is currently considered an important pathogenetic link in various diseases, includ-
ing cardiovascular diseases, oncological diseases, diabetes, arthritis, neurodegenerative
disorders and lung, kidney and liver diseases [27–30]. The likelihood of developing these
pathologies increases with age; therefore, OS is considered one of the main factors of aging
and aging-related diseases [31]. Recently, a modern OS concept has been formulated, which
asserts the necessary role of ROS in signaling, apoptosis and cell proliferation processes.
This concept not only takes into account direct damage to ROS proteins, lipids and DNA,
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but also indirect effects via redox- or ROS-dependent signaling pathways. It also considers
the relationship between OS and carbonyl stress, as well as distinguishing between sys-
temic and local OS and considering the promising clinical assessment of pro-antioxidant
status and the pathological correction of OS [19,24]. This concept could be applied to the
development of diabetic angiopathies, including DN [32].

OS Biomarkers

OS markers are important tools for assessing the status of redox potential and the
course and progression of disease, as well as antioxidant effects [33]. ROS are extremely
unstable and have short half-lives (only seconds), so it is almost impossible to measure
them [24]. Unlike ROS, oxidation products from biomolecules last longer (from hours to
weeks) and are commonly used to assess redox potential [22].

As a rule, the oxidation of macromolecules leads to the accumulation of certain
products. For example, lipid peroxidation (LPO) produces malondialdehyde (MDA), thio-
barbituric acid-reactive substances (TBARs), 4-hydroxynonenal (HNE) and F2-isoprostanes,
while nucleic acid oxidation produces 8-hydroxyguanosine (8-OHG) and 8-hydroxy-2′-
deoxyguanosine (8-OHdG), and protein oxidation produces advanced oxidation protein
products (AOPPs), AGEs, methylglyoxal (MGO) and protein carbonyls [19,24,34]. The
main way to protect against ROS is to neutralize them via the AOD system, which includes
non-enzymatic antioxidants (i.e., reduced glutathione (GSH), vitamins (ascorbic acid, toco-
pherols, retinol, carotenoids, etc.), ceruloplasmin, ferritin, carnosine, etc.) and a wide range
of antioxidant enzymes (i.e., superoxide dismutases (SODs), quinone oxidoreductase 1,
catalases (CATs), glutathione peroxidases (GPx: eight isoforms) and peroxiredoxins (Prdx:
six isoforms), glutathione S-transferases (GSTs), glutathione reductases (GRs), aldo-keto
reductases, heme oxygenases, etc.) [35].

It should be noted that due to the ubiquitous and non-specific nature of OS, it makes
sense to measure entire panels of biomarkers instead of just one since this reduces the
likelihood of false positive and false negative results [36].

4. DN: The Significance of Determining OS

The kidneys are the second organ after the heart in terms of the number of mitochon-
dria, which provide the best conditions for the synthesis of adenosine triphosphate (ATP)
and the absorption of ultrafiltrate and dissolved substances [37]. The functions of renal
structures depend on fatty acid β-oxidation and mitochondrial oxidative phosphorylation,
during which a large number of ROS are formed [38]. Thus, the balance between the
production of mitochondrial ROS and their neutralization via the AOD system is crucial for
the normal function of mitochondria in the kidneys [39]. Most studies have claimed that
mitochondrial dysfunction and the development of OS are the main pathogenetic factors
responsible for the initiation and progression of DN [3,40]. At the same time, mitochondrial
dysfunction is characteristic of various cells in renal structures, including endothelial cells
and podocytes [41,42]. OS can mediate podocyte cell death, especially podocyte apoptosis,
via many signaling pathways, as well as cell cycle arrest [43]. When certain pathways,
such as PI3K/Akt, transforming growth factor β1 (TGF-β1)/p38-mitogen-activated protein
kinases (p38-MAPK) and nuclear factor kappa B (NF-kB), are activated, this induces en-
dothelial cell apoptosis, inflammation, autophagy and fibrosis, which cause histological
and functional kidney disorders and, ultimately, kidney damage [44]. Recently, much
attention has been paid to the iron-dependent process of LPO (ferroptosis), which has
inspired a new idea for studying the progression of DN. Iron overload, reduced antioxidant
capacity and massive amounts of ROS and LPO were all found in the kidneys of DBA/2J
mice with streptozotocin (STZ)-induced diabetes, as well as in proximal tubule cells from
human kidneys that were cultured with a high glucose content [45].

Hyperglycemia triggers a cascade of biochemical transformations, leading to damage
to vascular walls and primarily activating the formation of super-toxic ROS molecules in
mitochondria [14]. Inside the mitochondria, these reactive elements damage respiratory
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chain enzymes and mitochondrial DNA. Going beyond the mitochondria, reactive radicals
trigger other mechanisms that are associated with the toxic effects of hyperglycemia, in-
cluding vascular endothelial dysfunction, the formation of AGEs, the activation of PKC and
NF-kB, epigenetic changes, etc. [46]. Despite that FRs live for less than a minute, proteins,
fats and nucleic acids that have been damaged by them exist for a long time. AGEs also
have a damaging effect on renal structures and their accumulation underlies the mechanism
of “metabolic memory”, which is when modifications to biomolecules caused by ROS can
lead to deviations in cellular function a considerable time after the initial manifestation
of DM [47]. As a result, it becomes important to achieve good glycemic control within
the first months of the occurrence of the disease. The spectrum of pathological effects of
AGEs is extremely large. For example, they increase the synthesis of cytokines and growth
factors, activate the processes of proliferation and sclerosis, activate platelet aggregation
and thrombosis, affect gene expression and increase the frequency of mutations [36,47].
Most of all, vascular walls suffer from the effects of AGEs. The binding of AGEs to AGE
receptors (RAGEs) stimulates the formation of ROS and leads to the development of OS [48].
AGEs and RAGEs are present in kidney cells and play significant roles in the induction
of invasion, cell cycle arrest and proinflammatory changes in those cells [46]. AGEs can
also increase the production of matrix metalloproteinases, which in turn cause kidney
dysfunction and DN [44].

5. DN and OS: Experimental Studies

The administration of multiple consecutive injections of STZ is widely used to induce
experimental models of DN as it selectively destroys beta cells in the pancreas, which leads
to a decrease in insulin secretion [49]. In addition to its cytotoxic effect, STZ also contributes
to the development of OS and mitochondrial dysfunction and the suppression of the activity
of enzymes that destroy ROS. Thus, in rats with STZ-induced DM, changes in mitochondrial
bioenergetics have been shown to precede the development of albuminuria and histological
changes in the kidneys [50]. Mitochondrial fragmentation and decreases in ATP content
have been observed in proximal tubule cells in the early stages (first four weeks) of DM
in the absence of albuminuria and specific glomerular pathologies [51]. The progression
of DM indicates mitochondrial dissociation, OS generation and glomerular changes [52].
The mitochondrial biosynthesis of ROS mediated by proliferator-activated receptor-γ
coactivator 1-alfa (PGC-1α) coactivators and NRF1 and TFAM transcription factors may be
key in maintaining mitochondrial function [50,53]. Mitochondrial abnormalities, such as
defective mitophagy, the formation of mitochondrial ROS and decreased mitochondrial
membrane potential, have been reported in the glomeruli of db/db mice (which are used
as models of obesity, DM and dyslipidemia), which were accompanied by a decrease in
PINK expression and increased apoptosis [51,54].

In mouse models of diabetic kidney disease (DKD), it has been found that lactic
acidosis and hypoxia contribute to mitochondrial abnormalities and fibrosis [55]. Rats with
STZ-induced DM have been found to have high blood glucose and MDA levels, OS indices
and general oxidant status [56]. High levels of inflammatory cytokines, the development of
OS and nitrosative stress have also been noted [57,58]. MDA, NO, NF-kB p65 and tumor
necrosis factor (TNF-α) levels have been shown to increase in the kidneys of rats with DN,
while GSH, SOD and anti-apoptotic protein (Bcl-2) levels were reduced [59]. High glucose
levels, decreased insulin, decreased kidney function, increased renal glomerular sclerosis
and interstitial fibrosis, the high activity of OS reactions and the increased expression
of TGF-β1, phosphorus-Smad2 and phosphorus-Smad3 have also been observed [60].
Significant decreases in the levels of GPx, GSH and SOD, as well as a significantly increased
levels of MDA, have been reported in rats with DN [61], along with decreases in GSH, SOD
and total antioxidant status (TAS) and increases in the levels of MDA and glucose in the
blood of diabetic rats [62]. There have also been reports of increases in MDA and nitrite
levels and myeloperoxidase activity and decreases in the activity of SOD, CAT and GSH [63].
Glomerular endothelial cells (GECs) become dysfunctional and pathological in relation to
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neighboring podocytes due to increases in the levels of mitochondrial super-oxides and
increases in the frequency of DNA damage (8-OHdG) [42].

Endothelial NO synthases decrease, leading to the increased production of ROS and
OS, which is associated with DN progression in experimental animal models [54]. In
rats with DN, significant increases in glucose, blood urea nitrogen (BUN), N-acetyl-β-D-
glucosaminidase and proteinuria levels have been found, along with concomitant decreases
in the glomerular filtration rate (GFR), elevated levels of 8-OHdG, TGF-β1, MDA and
GSH and reduced levels of GR and SOD [64]. Histological examinations have also re-
vealed significant changes, including glomerulosclerosis and interstitial fibrosis, in diabetic
groups [65]. Diabetic rats with STZ-induced DM have demonstrated hyperglycemia, which
was closely associated with marked increases in MDA and protein carbonyl content, de-
creases in GSH, SOD and CAT levels in the kidneys and high levels of blood creatinine,
BUN and urine albumin [66]. In addition, the increased expression of p65 NF-kB and
proinflammatory cytokines (e.g., TNF-α, interleukin 1β (IL-1β) and IL-6) has been noted
in the renal tissues of animal models [66]. Db/db mice have been shown to develop more
kidney damage associated with molecular-1 and neutrophilic gelatinase lipocalin in the
kidneys and urine, along with folds and disorders in renal tubule basement membranes,
the accelerated formation of ROS, NOX and MDA and decreases in SOD, CAT and GPx
levels [67]. The incubation of glyoxal (a byproduct of glucose autooxidation, involved
in protein/lipid glycation and AGEs and LPO product formation) has been reported to
reduce rat renal cell viability and lead to membrane lysis, the formation of ROS and LPO,
mitochondrial membrane potential collapse and lysosomal membrane leakage [68]. AGEs
have a toxic effect that contributes to the formation of DN via their accumulation in the
vessels and various structures of the kidneys (i.e., mesangium, endothelium, podocytes,
etc.). Experiments have shown that podocytes are the main target of AGEs, as evidenced
by their expression of RAGE receptors [53]. Thus, in vitro, decreases in nephrin expression
have been observed in podocyte cultures under the influence of glycated albumin, which
shows its effects when combined with RAGE receptors. The damaging effect of AGE
podocytes is also realized by activating apoptosis via the increased synthesis of the cell
cycle inhibitor p27 [52].

6. DN and OS: Clinical Studies

In numerous clinical studies on DN development, the significant activation of OS
reactions is in the form of increases in the serum levels of TBARs, MDA, AGEs, protein
carbonyls and AOPP, as well as increases in urine 8-OHdG levels [40,69–72]. In patients
with DM, a large number of oxidants are formed by non-functioning mitochondria and
NOX1 in the liver [73].

A special pathogenetic role in DN is likely played by a set of negative factors that
have damaging effects on renal tubules. Thus, it has been shown that increased OS, in
combination with inflammation, cellular apoptosis and tissue fibrosis, leads to the steady
progressive loss of kidney function and alters the glomerular filtration barrier [74]. The
development of microalbuminuria is associated with insufficient glycemic control, hyper-
lipidemia, OS and the accumulation of AGEs [75]. In DN, the excessive accumulation
of lipids in podocytes has been described, which leads to mitochondrial OS lipotoxicity,
inflammatory reactions, actin cytoskeleton remodeling, insulin resistance (IR) and endoplas-
mic reticulum (ER) stress [53]. Hyperglycemia leads to the activation of signaling pathways
and the production of ROS, as well as increases in the levels of cytokines and chemokines,
such as IL-6, monocyte chemoattractant protein-1, TGF-β1 and vascular endothelial growth
factor (VEGF), which consequently leads to inflammation, fibrosis and increased vascular
permeability [76].

The hyperproduction of ROS leads to a consistent increase in TGF-β1, which con-
tributes to the development of fibrosis in the tubulointerstitial parts of the kidneys [77].
In patients with DN, significant increases in glucose levels, carbonyl groups and cerulo-
plasmin, CAT and thiol levels have been reported [78]. Recently, the importance of the
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determination of LPO, VEGF primary products, podocyte damage markers and immuno-
inflammatory factors in DN patients has been indicated [79]. According to our research,
men with T1DM in the initial stages of DN demonstrate increased oxidative damage to
lipids (primary products of LPO) and DNA. We also noted close relationships between
these indicators and the duration of the disease [80,81]. It has also been noted that increases
in the levels of circulating AGEs correlate with the increased risk of DN [79,82]. These
authors found that synthesis growth in the initial stages of DN affected the RAAS and the
functioning of TGF-β1, which contributed to chronic inflammation and glomerular and
tubular hypertrophy [82–84]. It was also established that the activation of AGE-mediated
receptors for AGEs (RAGEs) could cause the NOX-induced production of ROS and RNS,
which subsequently led to OS and kidney aging in DN [83–85].

Elevated values of the carbonyl stress indicator MGO have also been observed in our
studies [86]. 8-OHdG is a modified nucleoside base that is the product of oxidative DNA
damage, which is formed by cutting oxidized guanosine from mitochondrial and nuclear
DNA [19]. It has been found that the average level of 8-OHdG in the urine of patients
with T1DM is significantly higher, especially in patients with persistent or intermittent
microalbuminuria [87]. Data on the correlation between 8-OHdG and leukocyte content
in urine and the severity of DN development are of particular interest, which confirms
the importance of using these markers for predicting DN development and progression in
patients with DM [88]. Increased values of this parameter have been observed in patients
in the initial stages of DN, along with reduced values of telomere length [89]. In patients
with DM and DN, increased levels of AOPP, a marker of protein damage, have been found
to be more significant than in patients with DM without DN [90]. Decreases in the activity
of the AOD system play a significant role in the pathogenesis of DN. Decreases in TAS,
which reflects the overall activity of LPO inhibitors, undoubtedly have a negative impact
on the AOD system state of patients with DN. Negative changes in TAS levels have been
reported in patients in the initial stages of DN [91,92]. Decreases in vitamin E concentration
are associated with the development of DM complications and play a significant role in the
development of micro- and macro-albuminuria [3,92].

Statistically significant decreases in vitamin A, vitamin C and vitamin E concentrations
with simultaneous increases in fasting blood sugar, postprandial blood sugar, blood urea,
serum creatinine, HbA1c, sialic acid and microalbumin levels have been documented in
the urine of patients with DN [93]. In patients with T2DM, DN and concomitant obesity,
α-tocopherol and β-carotene levels in blood serum have been found to be below the optimal
level, along with the significantly reduced urinary excretion of vitamins B1 and B2 and
high vitamin D deficiency [94]. The same authors also found negative correlations between
the ratio of vitamin C and E concentrations, glucosuria and postprandial glycemia, which
indicated the need to maintain optimal levels of these vitamins [95]. Specific changes in the
levels of tocopherol metabolites, including both short-chain and long-chain metabolites,
have been reported, which regulate enzymatic and gene expression processes that are
important for lipid metabolism and xenobiotic detoxification, as well as controlling immune
and inflammatory processes [96,97].

In the literature, the available data on the activity of antioxidant enzymes in the initial
stages of nephropathy are quite contradictory [3,97,98], which may be due to a number
of factors, including the level of glycemic control, the duration of diabetes, concomitant
complications, etc. [3]. Some researchers have noted that there are no differences in the
activity of GR and GPx between patients with T1DM and controls [99]. However, other
studies have recorded reduced GPx values [93]. The insufficient activity of this enzyme
may indicate decreases in the utilization of phospholipids and hydroperoxides in fatty
acids via the oxidation of GSH [42,100]. The loss of antioxidant genes, such as GPx4, and
the activation of ACSL4 have also been observed in patients with DKD [53].
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7. Opportunities for Antioxidant Therapies

The timely and dosed use of effective antioxidant agents is of particular importance in
the treatment of diseases that have OS as their pathophysiological and pathobiochemical
basis and is also necessary for the correction of pro-oxidant and antioxidant systems and
oxidative metabolism in general. While in vitro studies have demonstrated the metabolic
effects of antioxidant supplements, particularly with regard to the biology and activity
of insulin [101], clinical studies are far from establishing the exact mechanisms of their
action [97]. Modern antioxidant therapies for DN include various phytochemicals (food
antioxidants, resveratrol, curcumin, preparations of α-LC, α-tocopherol, vitamin C, sele-
nium, etc.), which are widely used not only for the treatment of DM but also other systemic
diseases [102]. It has also been suggested that therapeutic approaches that target the exact
source of renal ROS in DN may have certain advantages in terms of nephroprotection
from OS [40].

7.1. Vitamins

The use of vitamins in patients with DN has shown promising results [102]. A large
amount of data has indicated the potential roles of vitamins in slowing the progression of
the disease and preventing the onset of its late stages [96].

7.1.1. Vitamin E

Vitamin E is a fat-soluble vitamin that is an important micronutrient and a powerful
antioxidant, which can prevent oxidative damage to the lipid components of cell mem-
branes and participates in the modulation of protein and gene functions [103]. It exists
in eight different forms: alpha (α), beta, gamma and delta tocopherols and alpha, beta,
gamma and delta tocotrienols, with α-tocopherol being the most active form. Experimental
and clinical trials have demonstrated the role played by vitamin E in preventing kidney
damage [103,104]. Thus, α-tocopherol has the ability to modulate both tubulointerstitial
damage and glomerulosclerosis, inhibit TGF-β1 expression and reduce MDA concentra-
tions in plasma and the kidneys [104]. A 10-week intake of 600 IU of α-tocopherol has been
shown to improve the levels of endothelial function biomarkers, the intracellular adhesion
of molecule-1 and the vascular cellular adhesion of molecule-1; however, it had no effect
on the serum concentrations of IL-6 or C-reactive protein (CRP) in patients undergoing
hemodialysis [105]. The positive effect of tocotrienols and tocopherols on patients with
DN with micro- or macro-albuminuria has been demonstrated [96]. In a randomized,
double-blind, placebo-controlled study, it was demonstrated that taking vitamin E that was
enriched with tocotrienol for 12 months could improve the progression of DN, especially
in patients with stage 3 CKD (eGFR 30–60 mL/min/1.73 m2) [96]. Vitamin E supplementa-
tion that is enriched with tocotrienol has also been shown to improve kidney function, as
evidenced by significant decreases in serum creatinine levels and significant increases in
GFR levels compared to the controls [106].

It has been shown that tocotrienol helps to maintain glycemic levels in patients
with DM and delay the appearance of diabetic complications due to its antioxidant, anti-
inflammatory, antihypertensive and fibrolytic properties [107]. Vitamin E therapy for DN
has been investigated using both oral vitamin E protocols and vitamin E-coated hemodialy-
sis and has shown promising results in the secondary prevention of cardiovascular diseases,
as well as immune and hematological complications [95,108]. Vitamin E intake can signifi-
cantly reduce the levels of HbA1c, fasting glucose, fasting insulin and HOMA-IR in patients
with DM, especially in patients with T2DM. The best dose of vitamin E for controlling
HbA1c and insulin levels is from 400 to 700 mg/day; however, this prescription in patients
with DN should be used with caution [109] as it is likely that vitamin E affects kidney
function in various biochemical ways within the context of DN [96]. It has been found that
the effectiveness of vitamin E for various cellular targets, such as podocytes, endothelial
cells and mesangial cells [93], correlates with increases in the blood serum levels of proin-
flammatory mediators. Vitamin E supplements have been shown to reduce interstitial renal



Int. J. Mol. Sci. 2023, 24, 12378 9 of 22

fibrosis and tubule epithelial cell apoptosis [96]. The results of one meta-analysis showed
that short-term treatment with antioxidant vitamins could benefit patients with diabetes
and albuminuria in terms of kidney function and systolic pressure; however, this treatment
does not have a significant effect on glucose or lipid metabolism [92].

7.1.2. Vitamin D

Vitamin D is involved in many physiological processes, and its active form (1,25(OH)2D3)
modulates serum calcium–phosphate homeostasis and skeletal homeostasis [110]. Experi-
mental studies, observational studies and clinical trials have shown the possible effects of
vitamin D in terms of protection against DN progression and the preservation of the integrity
of the glomerular filtration barrier; however, there are currently no recommendations for the
optimal dosage or timeframe of vitamin D supplementation for the treatment of DN [110].
The use of vitamin D has been shown to significantly improve kidney podocyte function
and reduce proteinuria [103]. A meta-analysis of 20 randomized clinical trials (RCTs) in-
volving 1464 patients with DN showed that vitamin D supplementation had a beneficial
effect on daily urine protein and inflammation indices in patients with DN, but not on serum
creatinine, estimated GFR or glycemic control indices [111]. Vitamin D deficiency has been
independently associated with microalbuminuria and reduced levels of high-density lipopro-
teins (HDLs) and positively associated with DN [112]. One study found that the prevalence of
DN significantly increased with decreased serum 25(OH)D levels and that patients with DN
had the lowest blood serum concentrations of 25(OH)D [113]. Vitamin D supplementation
has been reported to significantly increase vitamin D levels and decrease serum levels of
triglycerides (TGs), low-density lipoproteins (LDLs) and total cholesterol (TC) in patients
with DN and T2DM compared to controls; however, changes in oxidative/antioxidant mark-
ers and HDL levels have been found to be insignificant after vitamin D intervention [114].
The selective activator of the vitamin D receptor paricalcitol has been observed to reduce
proteinuria, slow kidney podocyte damage caused by high glucose levels via the regulation
of key molecules (e.g., nephrin and podocin) and improve structural changes in mice with
induced T1DM [115]. The use of calcitriol treatment in rats with DN has been found to
reduce the severity of proteinuria and renal tubule epithelial cell apoptosis by activating
vitamin D receptors, which inhibit p38-MAPK signaling [116]. Treatment with vitamin D
has also been found to result in significant increases in insulin concentrations in rats with
diabetes, which in turn could reduce hyperglycemia [117]. In addition, the expression of
fructose-6-phosphate aminotransferase, a key regulatory enzyme in the hexosamine path-
way, has been shown to be significantly reduced after the administration of vitamin D. An
analysis of 9 RCTs involving 1547 people showed that patients receiving vitamin D treatment
demonstrated statistically significant decreases in their urine creatinine/albumin ratios and
albumin excretion coefficient values [118].

7.1.3. Vitamin C (Ascorbate)

Vitamin C (ascorbate) is a water-soluble vitamin with active antioxidant activity, which
can also restore other antioxidants. Vitamin C is found in large quantities in citrus fruits,
green vegetables, etc. [119]. Some in vivo studies have revealed the potential pro-oxidant
effects of this vitamin [3,93]. It has been reported that in diabetic rats, vitamin C treatment
can significantly reduce proteinuria, albuminuria and the number of apoptotic cells and
stop glomerular and tubulointerstitial sclerosis and the accumulation of MDA [101]. It has
also been noted that vitamin C treatment, together with captopril, sodium hydrosulfide
(NaHS), metformin and spironolactone, produces significant improvements in OS markers
and renal hemodynamics [62]. Vitamin C can also significantly reduce LPO products,
increase the activity of AOD enzymes (SOD, CAT, GPx, etc.) and decrease albuminuria and
the thickness of glomerular basement membranes [119].
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7.2. Resveratrol

Resveratrol (RESV) is a well-known natural phenolic compound that is found in plants,
food and beverages and is the main component of traditional medicines, grapevines and
red wine [6]. RESV has beneficial effects due to its cardioprotective, renoprotective, hepato-
protective, neuroprotective, anti-inflammatory, antidiabetic and antitumor properties [120].
It has been found that RESV can act as a good drug against DN since it actively participates
in the regulation of various signaling pathways that are responsible for the production of
ROS and AGEs, ER inflammation, the development of lipotoxicity, autophagy, the activa-
tion of the 5′adenosine monophosphate-activated protein kinase (AMPK) pathway and
the modulation of angiogenesis [121]. It has been found that RESV protects against OS
mainly by reducing the formation of ROS/RNS, the direct removal of FRs, the stimulation
of the activity of endogenous antioxidant enzymes (for example, SOD, CAT, GPx, etc.),
the stimulation of antioxidant molecules, the expression of related genes that are involved
in the biogenesis of mitochondrial energy (mainly via the AMPK/SIRT1/Nrf2, ERK/p38-
MAPK and PTEN/Akt signaling pathways) and the induction of autophagy via mTOR- or
TFEB-dependent pathways [122]. The ability of RESV to stimulate AOD in DN has been
demonstrated in a number of studies on cell cultures and preclinical trials [123,124]. In a dia-
betic rat model, it was found that RESV treatment had a beneficial effect on the mechanisms
of “metabolic memory”, reduced quantitative BUN, serum creatinine and 24 h urinary
microalbumin levels, improved the expression of inflammatory factors (RAGE, NF-kB (P65)
and NOX4) and reduced pathological phenomena in the structure of the kidneys [125].

RESV treatment has also been found to prevent increases in MDA levels, the release
of lactate dehydrogenase and the deposition of laminin and type IV collagen in diabetic
kidneys due to its antioxidant effect and its modulation of the Keap1/Nrf2 signaling path-
way [126]. The effect of RESV has been shown to be tissue-specific: it reduces LPO in
skeletal muscles, decreases GPx activity in blood serum and decreases CAT levels in the
livers of Goto-Kakizaki (GK) rats (which were used as models of type 2 diabetes without
obesity) [127]. RESV has been shown to effectively attenuate kidney damage by suppress-
ing OS-mediated podocyte apoptosis, which depends on AMPK activation [128]. That
study also revealed a possible mechanism for protecting podocytes from apoptosis in DN.
A study on co-treatment with RESV (15 mg/kg/day) and ramipril (10 mg/kg/day) in
rats with STZ-induced DN showed that glomerulosclerosis in the early stages of DN was
reversible [129]. It has been found that RESV facilitates proteinuria, reduces the content of
MDA, while increasing the activity of Mn-SOD in the renal cortex, inhibits the apoptosis of
renal tubule glomerular podocytes and epithelial cells, improves pathological manifesta-
tions and restores the expression of the silencing information modulator 2 (sir2)-related
enzyme 1 (SIRT1) and PGC-1α) in the kidney tissues of mice with DN [41]. In addition,
these authors established its inhibitory effect on the production of mitochondrial ROS and
its beneficial effects on the activity of complexes I and III in the respiratory chain, increases
in mitochondrial membrane potential and the inhibition of the release of cytochrome C
and DIABLO proteins from mitochondria into cytoplasm [41]. Their results showed that
OS was the pharmacological target of RESV and that its powerful antioxidant properties
probably significantly contributed to its protective effect against podocyte damage in mice
with DN, which was mediated through the SIRT1-PGC-1α pathway [41,96]. Patients with
DN demonstrate significant increases in AGEs, resulting from the binding of glucose to
amino groups of proteins, lipids and/or nucleic acids in the bloodstream. These products
have a significant damaging effect on kidney tissues [52,53].

RESV, curcumin and gallic acid inhibit the formation of ROS and LPO and weaken re-
nal cytotoxicity caused by the action of glyoxal [68]. The administration of RESV (5 mg/kg
during the last 45 days of a 90-day hyperglycemic period) to male Wistar rats with STZ-
induced T1DM reduced renal hypertrophy, structural changes (i.e., tubular atrophy, mesan-
gial expansion or wrinkling, diffuse glomerulonephritis and fibrosis), the accumulation of
AGEs, OS, DNA damage (8-OHdG) and 4-HNE, caspase-3 and cleaved caspase-3 levels,
but not RAGE expression [130]. RESV has an antioxidant effect in DN by modulating
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Nrf2–Keap1 and related elements of the antioxidant response (ARE) and improving kidney
function [131]. The oral administration of RESV (5 mg/(kg/day)) significantly improved
kidney function, reduced the expression of proinflammatory cytokines and enhanced AOD
by normalizing the expression of Nrf2–Keap1 and its underlying regulatory proteins in
rats with T2DM [121]. In addition, RESV suppresses ROS production in mesangial cells
by suppressing the activity of NOX, which is a pro-oxidant enzyme and a generator of
superoxide anions [6]. Combined therapy with RESV (20 mg/(kg/day)) and insulin can
lead to maximum improvements in DN due to the hypoglycemic effect of insulin and the
ability of both drugs to increase the activity of antioxidant enzymes in the renal cortex,
inhibit LPO and activate Na+/K+−ATPase, independently of each other [132]. Moreover,
the use of RESV as an adjuvant to traditional antidiabetic therapy may be an effective
approach for the treatment of DN in humans. A study of 60 DN patients using losartan
(12.5 mg/day) plus RESV (500 mg/day) for 90 days showed that RESV could be used as a
potential supplement to angiotensin receptor blockers to reduce urinary albumin excretion
in patients with DN [133].

Based on the above results, it may be concluded that RESV inhibits actions that are
caused by hyperglycemic ROS formation and associated OS via multiple pathways, which
has a pronounced nephroprotective effect on DN.

7.3. Curcumin

Curcumin (1,6-heptadiene-3,5-dione-1,7-bis(4-hydroxy-3-methoxyphenyl)-(1E,6E)) is
a polyphenol compound derived from the traditional Chinese herb turmeric, which is
commonly used as a spice and additive [134]. Numerous studies have shown that curcumin
has positive biological properties, such as anticancer, anti-inflammatory, hypoglycemic,
antioxidant and anti-apoptotic properties [135]. Based on the remarkable effectiveness
of curcumin, scientists have begun to actively use it to treat DM and related chronic
complications [136]. Curcumin can help to improve IR and glycemia control and reduce
TG and TC in patients with T2DM [137].

When studying the effects of curcumin and metformin on OS in the kidneys of rats
with T1DM, it was found that curcumin had a more pronounced effect and reduced MDA
in kidney tissues, as well as restoring the overall antioxidant status and SOD, GPx and
CAT activity [136]. In rats with STZ-induced DM, curcumin has been found to prevent
renal tubule and mitochondria damage, mesangial cell expansion and basement membrane
thickness. Curcumin also reduced the levels of inflammatory cytokines, improved the
markers of mitochondrial function and suppressed the release of cytochrome C and the
activation of caspase-3 [138]. The same authors found that curcumin lowered the levels
of ROS, increased the levels of mRNA, MnSOD and gamma-glutamilligase and increased
the levels of GSH and Bcl-2. Curcumin also prevented kidney damage in diabetic rats
by activating Nrf2, inhibiting NF-kB, suppressing NOX and suppressing/inhibiting the
PKCßII/p66Shc axis [138]. The antioxidant effect of curcumin is achieved by breaking the
bond between NrF2 and KEAP1, which triggers the activation of the NRF2/KEAP1/ARE
pathway and leads to antioxidant enzyme synthesis [139,140]. Curcumin with chitosan
nanoparticles improves podocyte activity in DN by reducing OS (decreased MDA and ROS
levels with increased SOD activity) and inflammation (decreased TGF-β1, TNF-α and IL-6
levels with the increased secretion of IL-10) [141].

The administration of curcumin to diabetic rats with ischemia and reperfusion showed
increases in inulin clearance, decreases in serum creatinine and NGAL and improvements
in renal hemodynamics [142]. These effects were accompanied by decreases in oxidative
and nitrosative metabolites and increases in thiol antioxidant reserves. Despite the wide
spectrum of curcumin’s actions, it is characterized by poor solubility and poor absorption
in its free form in the gastrointestinal tract, as well as rapid biotransformation into inactive
metabolites [143]. Recently, nanocurcumin, which has better solubility, good digestibility
and high efficiency, has been increasingly used in the treatment of DN [144,145]. In a
randomized, double-blind, placebo-controlled study on nanocurcumin consumption in
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patients with DM on hemodialysis, significant decreases in fasting glucose, insulin, TG,
very-low-density lipoproteins (VLDLs), TC, LDL, CRP and MDA levels were found, along
with significant increases in TAS plasma content [146]. A qualitative analysis of 17 stud-
ies showed that polyphenolic intervention (including the use of curcumin) significantly
reduced the levels of HbA1c, proteinuria and MDA, and increased GFR levels [147]. The
daily oral administration of curcumin nanoparticles for 10 weeks, together with long-acting
insulin, in rodent models of DN led to the significant suppression of renal NLRP3, IL-1β,
NF-κB, Casp3 and MAPK8 mRNA levels, which indicated the normalization of inflam-
mation and apoptosis pathways [148]. In rats with STZ-induced DN, it was shown that
the systematic consumption of curcumin (orally and through a gastric tube) weakened
renal dysfunction, macrophage infiltration and fibrosis, probably due to its antioxidant
properties [149].

7.4. α-Lipoic Acid

α-Lipoic acid (α-LA) (1,2-dithiolane-3-pentanoic acid or thioctic acid) is a natural
dithiol that is enzymatically synthesized in plants, animals and humans and found in meat,
the heart, kidneys and liver, fruits and vegetables [150]. α-LA is a powerful antioxidant
due to its redox properties and its ability to directly capture ROS [151]. The common mech-
anisms of the protective action of α-LA for the kidneys, which include reducing oxidative
damage, increasing antioxidant capacity, countering inflammation, softening renal fibrosis
and weakening nephron cell death, have recently been identified [152]. α-LA also signifi-
cantly reduces hyperglycemia, the loss of renal function, the expansion of the mesangial
matrix and the development of glomerulosclerosis [40]. In diabetic rats, α-LA has been
found to improve systemic glucose and urea levels, reduce AGE formation in the kidneys
and maintain the structural integrity of the kidneys [153]. However, profibrotic phenomena
provoked by DM were not facilitated by α-LA since collagen synthesis/deposition and the
expression of TGF-β1 and α-actin in smooth muscles (α-SMA) remained elevated [153]. The
α-LA supplement also partly restored the function of β-cells, promoted normoinsulinemia
and normoglycemia, prevented renal pathology and significantly reduced elevated serum
and tissue levels of MDA, collagen deposition, α-SMA expression, apoptosis and serum lev-
els of IL-1β and IL-6. At the same time, α-LA significantly increased the content of GSH in
the kidneys and the level of HDL in plasma [153]. α-LA probably prevents the progression
of DN through the p38-MAPK pathway by reducing the expression of IL-6, TNF-α, NF-kB
p65 and TGF-β1 [154]. Clinical trials on α-LA supplements have shown positive results
regarding asymmetric decreases in dimethylarginine in DN patients [155]. α-LA has been
reported to reduce the 24 h urinary albumin excretion and urine albumin/creatinine ratio
of patients with DM, and the effect of α-LA alone did not differ from the results of studies
in which α-LA was studied in combination with additional medications [156]. The use of
α-LA in combination with valsartan significantly reduced urine levels of albumin and OS,
increased the blood levels of SOD and TAS and facilitated renal dysfunction in patients
with DN [157]. Our data showed decreases in the levels of TG, VLDL and Schiff bases and
increases in the levels of retinol in patients with T1DM and DN [3,158]. The combined use
of α-LA and α-tocopherol had a positive effect on kidney histopathology in a rat model
with STZ-induced DM [159]. The administration of alpha lipoamide, a derivative of α-LA,
significantly improved mitochondrial dysfunction and tubulointerstitial fibrous lesions in
db/db mice, as well as increasing CDX2 and CFTR expression and decreasing β-catenin
and snail expression in the kidneys of the mice [160].

7.5. Coenzyme Q10

Coenzyme Q10 (CoQ10), or ubiquinone, is a fat-soluble antioxidant, which is a key
component of the electron transport chain in mitochondria, is necessary for the formation of
ATP and actively participates in reducing the synthesis of ROS/RNS and cell biosubstrate
modifications [161]. CoQ10 has shown promising clinical efficacy against DN as it affects
OS reactions [147]. A meta-analysis of four RCTs and four experimental studies showed
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that the use of CoQ10 in combination with other drugs demonstrated a positive effect
on the laboratory parameters of fasting plasma glucose, HbA1c, TC, HDL, TG and MDA
levels [162]. Combined treatment with CoQ10 and N-acetylcysteine has been reported to
improve STZ-induced renal damage (i.e., the normalization of histological characteristics,
moderate changes in the appearance of glomeruli and tubules, decreases in OS intensity and
increases in the activity of antioxidant enzymes) [63]. CoQ10, as an effective antioxidant in
mitochondria, has also demonstrated a beneficial effect on DN in terms of mitophagy, restor-
ing Nrf2/ARE signal transmission and reducing mitochondrial ROS levels [51]. Treatment
with CoQ10 has been found to significantly reduce the levels of urea, creatinine and uric
acid, as well as demonstrating clear improvements in renal tissues [163]. The synergistic
effect of a 4-week treatment with lycopene (5 mg/kg orally) and CoQ10 (10 mg/kg orally)
was manifested by decreases in the levels of biomarkers for renal disfunction and OS and
increases in the levels of GSH and the activity of membrane-bound Na+/K+-ATPases [164].
CoQ10 intake by DM patients on hemodialysis for 12 weeks was associated with increases
in TAS and NO levels and decreases in the levels of highly sensitive CRP, but it did not
have any positive effects on MDA or GSH levels [165]. CoQ10 has been shown to normalize
biochemical and antioxidant parameters, as well as histopathological characteristics, in
experimental rats [166]. Combined CoQ10 and metformin therapy improved endothelial
dysfunction and inflammatory changes in patients with T2DM, along with improvements
in metabolic profiles [167]. Over the past few years, many analogs of CoQ10 have been
developed to have improved characteristics, such as solubility in water and enhanced
accumulation in mitochondria [168,169].

7.6. Other Methods of Protection against ROS

Over the past decade, mitochondrial-directed antioxidants (MTAs) have become a
promising therapeutic option for the treatment of diseases caused by OS [170]. This has
led to the development of a wide range of bioactive molecules and probes that can be
delivered to mitochondria in vivo via oral, intravenous, intraperitoneal and subcutaneous
administration [170].

Thus, the therapeutic efficacy of mitoquinone mesylate (MitoQ) was investigated in
mice with DKD, and it was found that the intraperitoneal administration of MitoQ reversed
tubule damage due to improved mtROS and mitochondrial fragmentation, which was
caused by enhanced mitophagy mediated by Nrf2 and PTEN-induced PINK1 kinase 1 [52].

Among the methods for protecting against excess ROS, a special place is occupied by
the mimetics of antioxidant enzymes and substances that aim directly at the exact source
of renal ROS in DN. It has been shown in various experimental models of kidney disease
that catalytic antioxidants, especially the simulators of specific redox enzymes (such as
SOD, CAT and GPx), have therapeutic benefits [171]. Treatment with recombinant human
SOD1 significantly reduces ROS and improves kidney function by reducing TNF-α levels
in tissues [172]. SOD1-transgenic mice have been found to show reduced albuminuria
levels and the reduced expression of TGF-β1 and collagen IV, along with the expansion of
the mesangial matrix and decreases in OS markers [173]. Pretreatment with recombinant
SOD2 significantly increased SOD activity and improved renal function decline and tubular
necrosis in a rat model of DN [174]. Therapy with ebselen, a GPx1 mimetic, has been found
to have a protective effect on the development of atherosclerosis and DN due to decreases in
proatherogenic biomarkers [175]. The inhibition of NOX activity by apocinin in mice with
STZ-induced DM led to decreases in the signs of podocyte damage and albuminuria [176].

In a mouse model of DN with T1DM, the protective properties of SOD were demon-
strated via decreases in ROS formation, the restoration of the expression of α3-integrins by
podocytes and decreases in albuminuria [171]. The overexpression of CAT has been shown
to weaken renal OS and prevent arterial hypertension, albuminuria, renal hypertrophy,
tubulointerstitial fibrosis and apoptosis, as well as suppressing the expression of profibrotic
and proapoptotic genes [170].
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NrF2 is a transcription factor and the main regulator of the AOD system, which com-
prises a set of detoxification genes that are activated in response to increased ROS levels [40].
NrF2 increases the expression of various antioxidants, such as CAT, GSH, hemoxygenase-1,
SOD and NADPH-quinone reductase [40]. Despite its increased expression in the initial
stages of DN, the ability of this protein to translocate into the nucleus is reduced, which
indicates an imbalance. A wide range of preclinical and clinical studies have shown the
benefits of using NrF2-inducing strategies for the treatment of DN, such as the use of NrF2
activators (e.g., bardoxolone methyl, curcumin, sulforaphane and their analogs) and other
natural compounds with antioxidant properties [177,178]. The addition of NrF2-factor
activators sulforaphane and cinnamic aldehyde in mice with STZ-induced DM led to the
growth of detoxifying enzymes, the preservation of renal function and reductions in renal
damage [179]. Epigallocatechin-3-gallate has the ability to indirectly increase Nrf2, mainly
by activating the Nrf2/ARE signaling pathway at several stages, i.e., by suppressing Keap1
and increasing the levels of Nrf2 [179].

The inhibitors of NOX (which catalyzes the main pathways of ROS synthesis) are
currently considered to be the most important components that suppress OS [40]. One
study found that diosgenin inhibited the expression of NOX4, restored the expression
of the I–V complex in the mitochondrial respiratory chain, reduced ROS production,
facilitated pathological kidney damage and inhibited mitochondrial apoptosis, thereby
improving the course of DN [180]. Thus, in a mouse model of DM, the administration of the
inhibitor GKT136901 reduced the production of hyperglycemia-induced ROS in proximal
tubules and reduced the degree of albuminuria [178]. In addition, the administration of
GKT137831, a low-molecular inhibitor of NOX1 and NOX4, to mice with DM revealed its
renoprotective, anti-atherosclerotic and anti-inflammatory properties [128]. This substance
also provides a high degree of renoprotection compared to that observed in NOX4-knockout
mice [54]. A new pan-NOX inhibitor, APX-115, can prevent certain kinds of kidney damage,
such as albuminuria, glomerular hypertrophy, tubule damage, podocyte damage, fibrosis,
inflammation and OS [54].

The inhibitory effects of antidiabetic, antihypertensive and antidyslipidemic agents
on OS have recently been proven [3,40,54]. Thus, in an animal model of DN, pioglitazone
significantly reduced hyperglycemia, insulin resistance, glomerular sclerosis, hypertrophy,
tubulointerstitial fibrosis and albuminuria, which contributed to decreases in OS [181,182].
It has also been established that the inhibitors of the sodium-glucose cotransporter 2
and the agonists of the glucagon-like peptide-1 receptor have beneficial effects on many
pathophysiological disorders in DN, including OS and endothelial dysfunction [183].

8. Conclusions

T1DM and T2DM and their complications constitute serious public health problems
worldwide and have high morbidity and mortality rates. DN is considered one of the
serious complications and combines changes in various renal structures with the develop-
ment of glomerular hypertension, often leading to the development of diffuse or nodular
glomerulosclerosis and, subsequently, CRF. Most modern methods for treatments aimed at
slowing down the progression of DN have side effects and do not produce unambiguous
positive results in the long term. In most experimental and clinical studies, it has been
claimed that OS and mitochondrial dysfunction are the main pathogenetic factors that
are responsible for the initiation and progression of DN and that the balance between the
production of mitochondrial ROS and their neutralization via the AOD system is crucial
for the proper functioning of kidney mitochondria. Modern antioxidant therapies for DN
include various substances (e.g., fat- and water-soluble vitamins, resveratrol, curcumin and
α-lipoic acid preparations), which are widely used for the treatment of not only diabetes
but also other systemic diseases. It has also been suggested that therapeutic approaches
that target the source of ROS in DN may have certain advantages in terms of nephropro-
tection. Promising therapeutic options for the treatment of diseases caused by OS include
mitochondrial-targeted antioxidants, which can be delivered to mitochondria in vivo via
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different administration methods. Thus, the measurement of OS biomarkers and AOD com-
ponents may have advantages in terms of early diagnosis and intervention and deserves
to be considered as an additional analysis tool. It is also important to develop individual
approaches for treating patients with DN using therapeutic antioxidant agents.
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