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Abstract: Current cancer therapies focus on reducing immunosuppression and remodeling the tumor
microenvironment to inhibit metastasis, cancer progression, and therapeutic resistance. Programmed
death receptor 1 (PD-1) is expressed on immune T cells and is one of the so-called checkpoint proteins
that can suppress or stop the immune response. To evade the immune system, cancer cells overexpress
a PD-1 inhibitor protein (PD-L1), which binds to the surface of T cells to activate signaling pathways
that induce immune suppression. This research aimed to synthesize PD-L1 inhibitory peptides
(PD-L1-i) labeled with lutetium-177 (177Lu-DOTA-PD-L1-i) and actinium-225 (225Ac-HEHA-PD-L1-i)
and to preclinically evaluate their potential as radiopharmaceuticals for targeted radiotherapy at the
tumor microenvironment level. Using PD-L1-i peptide as starting material, conjugation with HEHA-
benzene-SCN and DOTA-benzene-SCN was performed to yield DOTA-PD-L1-i and HEHA-PD-L1-I,
which were characterized by FT-IR, UV-vis spectroscopy, and HPLC. After labeling the conjugates
with 225Ac and 177Lu, cellular uptake in HCC827 cancer cells (PD-L1 positive), conjugate specificity
evaluation by immunofluorescence, radiotracer effect on cell viability, biodistribution, biokinetics, and
assessment of radiation absorbed dose in mice with in duced lung micrometastases were performed.
225Ac-HEHA-PD-L1-i and 177Lu-DOTA-PD-L1-i, obtained with radiochemical purities of 95 ± 3%
and 98.5 ± 0.5%, respectively, showed in vitro and in vivo specific recognition for the PD-L1 protein
in lung cancer cells and high uptake in HCC287 lung micrometastases (>30% ID). The biokinetic
profiles of 177Lu-DOTA-PD-L1-i and 225Ac-DOTA-PD-L1-i showed rapid blood clearance with renal
and hepatobiliary elimination and no accumulation in normal tissues. 225Ac-DOTA-PD-L1-i produced
a radiation dose of 5.15 mGy/MBq to lung micrometastases. In the case of 177Lu-DOTA-PD-L1-i, the
radiation dose delivered to the lung micrometastases was ten times (43 mGy/MBq) that delivered to
the kidneys (4.20 mGy/MBq) and fifty times that delivered to the liver (0.85 mGy/MBq). Therefore,
the radiotherapeutic PD-L1-i ligands of 225Ac and 177Lu developed in this research could be combined
with immunotherapy to enhance the therapeutic effect in various types of cancer.

Keywords: PD-L1 radioinhibitors; actinium-225; lutetium-177; targeted radiotherapy

1. Introduction

Tumors are pathological tissues that comprise cancer cells and the tumor microen-
vironment (TME). The TME includes endothelial and immune cells communicating in a
dynamic network through messenger molecules and acellular factors, mainly chemokines,
inflammatory enzymes, growth factors, cytokines, and extracellular matrix components [1].
The function of immune cells and messenger molecules associated with the TME is a
relevant topic in the research field of cancer biology.
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Therefore, current cancer therapies converge on inhibiting cancer progression and ther-
apeutic resistance by reducing immunosuppression and remodeling the TME [2,3]. In this
context, previous research on the development of imaging radioligands targeting proteins
of the tumor microenvironment, such as nanobodies against proteins of the extracellular
matrix [4], radioligands to target the chemokine receptor-4 (CXCR-4) [5–7], fibroblast acti-
vation protein (FAP) radioinhibitors [8–12], and radiotracers directed to integrins and the
prostate-specific membrane antigen (PSMA) expressed in the tumor neovasculature [13–19],
among others, have proven to be helpful in detecting spatial and temporal changes in the
tumor microenvironment phenotype of different cancer entities, which have been essen-
tial in defining the treatment of patients according to the expression or suppression of
proteins involved in the disease. In particular, the immunotherapeutic pathway has been
exploited with various agents, such as monoclonal antibodies, radioimmunoconjugates,
and nano-immune systems [20,21].

Immune checkpoint inhibitor (ICI) therapy is an important treatment option for vari-
ous cancers [22,23]. Among the targeted immune checkpoints, programmed death receptor
1 (PD-1) and its ligand (PD-L1) are the key molecular targets for ICI therapy. Expressed on
immune T cells, PD-1 is one of the checkpoint molecules that can suppress or stop immune
responses [22]. Therefore, to evade the immune system, cancer cells overexpress a PD-1
inhibitor protein (PD-L1) that binds to the surface of T cells to activate signaling pathways
that induce immune suppression. Thus, PD-L1 is a reproducible biomarker that allows
therapeutic decisions to be made and the success of the treatment to be monitored. PD-L1
gene expression imaging, which is highly dynamic, can be monitored in a highly specific
manner by SPECT/CT and PET/CT imaging techniques, which are used to determine
whether a patient is a candidate for immunotherapeutic treatment with anti-PD-L1 or
anti-PD-1 antibodies [24–27]. However, PD-L1 inhibitor radiotherapeutic peptides have
not yet been investigated. Lutetium-177 is a β-emitting radionuclide with a mean tissue
penetration of 0.67 mm (maximum energy: 497 keV), and actinium-225 is an alpha-emitting
radionuclide with a maximum tissue penetration of a few cell diameters (emission of four
high-energy alpha particles with an energy of 6 MeV). Therefore, both radionuclides have
sufficient energy and tissue penetration to kill target tumor cells with limited effect on
adjacent healthy cells.

This research aimed to synthesize lutetium-177- and actinium-225-labeled PD-L1
inhibitory peptides (177Lu-DOTA-PD-L1-i and 225Ac-HEHA-PD-L1-i) and to preclinically
evaluate their potential as radiopharmaceuticals for targeted radiotherapy of various
cancers at the tumor microenvironment level.

2. Results and Discussion
2.1. Synthesis and Chemical Characterization of DOTA-PD-L1-i and HEHA-PD-L1-i

The schematic chemical structures of PD-L1-i, DOTA-PD-L1-i, and HEHA-PD-L1-i are
shown in Appendix A (Figures A1–A3).

The PD-L1-i mass spectrum showed m/z of 1882.3 (calcd. 1881) [M + H], m/z
941.2 (calcd. 1881) [M + 2H]/2, and m/z 628.6 (calcd. 1881) [M + 3H]/3 (Figure 1).
From the PD-L1-i compound as row material, the conjugation with HEHA-benzene-SCN
and DOTA-benzene-SCN was performed to obtain DOTA-PD-L1-i (m/z 1271.8, calcd.
2541.6, [M + 2H]/2) and HEHA-PD-L1-i (m/z 873.3, calcd. 2633.9 minus –OH in HEHA,
[M + 3H]/3; at m/z 867, two –OH were lost and at m/z 574, –CH3–COOH was lost in
HEHA) (Figure 1). The PD-L1 inhibitor ligands (PD-L1-i, DOTA-PD-L1-i, and HEHA-PD-
L1-i) were also characterized using FT-IR, UV-vis spectroscopy, and HPLC, as described
below.
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Figure 1. Mass spectrum of the (a) PD-L1-i peptide: cyclo(Ac-Tyr-NMeAla-Asn-Pro-His-Leu-Hyp-Trp-
Ser-Trp(Me)-NMeNle-NMeNle-Orn-Cys-Gly-NH2 synthesized as previously reported [28], (b) DOTA-
PD-L1-i, and (c) HEHA-PD-L1-i.

The IR analysis of the PD-L1 inhibitor conjugates showed that the band at 1658 cm−1

of PD-L1-i, associated with the –C=O stretching of carbonyl bonds (–CO–NH–), decreased
in energy to 1671 cm−1 in both DOTA-PD-L1-i and HEHA-PD-L1-i as a result of the
conjugation reaction (–HN–CS–NH-benzene-DOTA/-HEHA), which produced a decrease
in the absorption frequency, as dipole moments in the cyclic peptide ring were reduced
(Figure 2). On the other hand, the band at 3310 cm−1 of PD-L1-I, associated with the
primary amine of ornithine (–NH2), increased in energy to 3276 cm−1 and 3280 cm−1 in
the DOTA-PD-L1-i and HEHA-PD-L1-i conjugates, respectively, which is characteristic of
–NH– bond formation (–HN–CS–). Further evidence for the conjugation process was the
substantial increase in the band’s intensity at 1202 cm−1 associated with a rise in the –C–O–
stretching from DOTA and HEHA carboxylic acids (O=CO–H) (Figure 2).
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Figure 2. FT-IR spectra: (a) PD-L1-i peptide; (b) DOTA-PD-L1-i; (c) HEHA-PD-L1-i.

The UV-vis spectra of the PD-L1-i conjugates show several shoulders and peaks from
211 nm to 226 nm, which are assigned to the n→σ* electronic transitions from sulfur as a
heteroatom (-H2C–S–CH2

−), π→π* electronic transitions from double bonds within amino
acid carbonyls, and –C=O from carboxylic acids. The band at 283 nm is associated with
π→π* and n→π* electronic transitions (–C=C– and –C=N– groups) of the peptide side
chain rings (e.g., imidazole ring) (Figure 3B). The single broad and well-defined band at
283 nm of DOTA-PD-L1-i and HEHA-PD-L1-i appears different from that of the precursors
(278 nm from the PD-L1-i ligand and the 272 nm and 281 nm doublet from the DOTA-
/HEHA-Benzene-SCN precursors), indicating new chemical compound formation (PD-L1-i
conjugates) (Figure 3).
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2.2. Radiolabeling of PD-L1-i Ligands with 177Lu and 225Ac

The radiopharmaceuticals 177Lu-DOTA-PD-L1-i and 225Ac-HEHA-PD-L1-i were ini-
tially obtained with radiochemical purities of 98.5 ± 0.5% (without further purification)
and 83 ± 2% (95 ± 3% after purification using Sep-Pak C18 cartridges), respectively, as
determined by radio-HPLC (C-18 reversed phase) (Figures 4 and 5). However, to assess
the radiochemical purity of 225Ac-HEHA-PD-L1-i, fractions of 1 mL eluted from the col-
umn had to be collected and counted in a NaI(Tl) detector (Figure 5). Retention times for
177LuCl3 and 225AcCl3 were between 2.5 and 4.5 min and 16 to 18 min for 177Lu-DOTA-
PD-L1-i and 225Ac-HEHA-PD-L1-i. It is important to note that chromatograms are usually
achieved with radiometric and UV-vis detectors. After injecting the radiotracer into the
HPLC system, it was first identified using the UV-vis instrument, and after 0.8–1.0 min
(0.8–1.0 mL, 1 mL/min), it was detected with the radiometric detector. An agreement of
retention times between the peak observed in the UV-vis chromatogram (PD-L1-i conjugate)
and the radio-chromatogram is usually considered evidence of the chemical identity of the
radiopharmaceutical (Figure 4) [29].
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Figure 4. Reversed-phase UV-vis/HPLC, 0.1 mg/mL of Lu-DOTA-PD-L1-i in aqueous solution,
injection of 20 µL, and reversed-phase radio-HPLC chromatogram of 177Lu-DOTA-PD-L1-i in water
(ascorbic acid/sodium acetate), 37 MBq/mL, injection of 20 µL (inset: 177Lu-DOTA-PD-L1-i stability
in water).
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Figure 5. Reversed-phase UV-vis (280 nm)/HPLC, 0.2 mg/mL of HEHA-PD-L1-i in aqueous solution,
injection of 20 µL, and reversed-phase HPLC separation of 225Ac-HEHA-PD-L1-i in water (ascorbic
acid/sodium acetate), 1.85 MBq/mL, injection of 20 µL (graph of collected fractions) (inset: 225Ac-
HEHA-PD-L1-i stability in water).

2.3. In Vitro Evaluation
2.3.1. Stability

PD-L1 inhibitor radioconjugates showed no differences regarding stability as a func-
tion of the dilution medium. 177Lu-DOTA-PD-L1-i remained stable in water (injectable-
grade water/ascorbic acid/sodium acetate) and human serum with radiochemical purities
greater than 97.5 ± 0.5% after 72 h of labeling (inset: Figure 4). In contrast, the radio-
chemical purity of 225Ac-HEHA-PD-L1-i decreased to 64 ± 4% in both water and human
serum 72 h after purification, at a rate of approximately 0.388%/h (slope = −0.388) (inset:
Figure 5). It is important to mention that, although it was not the aim of this study, we also
examined the preparation of 225Ac-DOTA-PD-L1-i, which showed a radiochemical purity
of 9 ± 3% in water after 72 h of labeling (1.149%/h rate of decrease). It is well documented
that the main disadvantage of 225Ac complexes is the recoil energy of the nucleus during
decay, which induces the breaking of the bond with the chelator [30]. In agreement with
previous research, the use of HEHA instead of DOTA improves the stability of the coor-
dination complex [31,32]. Nevertheless, the recoil energy of 225Ac and its progeny (four
alpha particles) will inevitably produce, to a greater or lesser extent, time-unstable 225Ac
complexes [30,33].

2.3.2. Cellular Uptake Assay

HCC827 cells (PD-L1 positive control) were found to uptake approximately fourteen
times more 177Lu-DOTA-PD-L1-i and 225Ac-HEHA-PD-L1-i than C6 cells (PD-L1 negative
control) (Figure 6a). The expression of PD-L1 in HCC827 cells (Figure 6b) and the lack of
PD-L1 expression in C6 cells (Figure 6c) were confirmed by immunofluorescent microscopy,
thus ensuring that the radiotracer uptake is specific and associated with the presence of
PD-L1 in HCC827 cells. It was also proven by immunofluorescent microscopy that the
PD-L1-i ligand, used in this research for 177Lu and 225Ac labeling, is recognized by the
PD-L1 protein expressed in HCC827 cells (Figure 7).
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cancer cells (PD-L1 negative control) and HCC827 human lung cancer cells (PD-L1 positive control)
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with anti-PD-L1 and nuclei stained blue with DAPI) and (c) C6 cells negative for PD-L1 expression
(merged images: anti-PD-L1 green and DAPI blue for nuclei staining).
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Figure 7. Microscopic field (40×) of immunofluorescent staining for PD-L1 with the (a) Cy7-labeled
PD-L1-i in HCC827 (PD-L1+) cells; (b) DAPI staining; (c) merged image: PD-L1 stained red with
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2.3.3. Cell Viability Assays

A decrease in the viability of HCC827 cells was observed depending on the target-
specific radiotherapy mediated by the PD-L1 recognition (Figure 8). Cells treated with
an acute radiation dose of 15 Gy using 177Lu-DOTA-PD-L1-i (cells incubated for 5 h with
177Lu-DOTA-PD-L1-i; 1.4 MBq/20,000) showed a net decrease viability of 31.42 ± 2.01%,
with a statistically significant difference (p < 0.05, Student’s t-test) compared to the group
treated with PD-L1-i (decrease viability of 4 ± 1%; 0.1 µg/20,000 cells) (Figure 8b,c). The
viability of cells treated with 5 Gy of 225Ac-HEHA-PD-L1-i (cells incubated for 5 h with
225Ac-HEHA-PD-L1-i; 0.37 kBq/20,000 cells) had a net decrease viability of 42.54 ± 3.87%
vs. 4 ± 1% of those treated with PD-L1-i (Figure 8b,d). The reason why we used a three
times lower radiation dose for 225Ac-HEHA-PD-L1-i (5 Gy) than for 177Lu-DOTA-PD-L1-i
(15 Gy) was the consideration of the high number of short path ionizations generated by
alpha particle emitters (high LET) damaging DNA structures. This effect, known as RBE
(relative biological efficiency), explains why actinium-225 affected cell viability more than
lutetium-177, even at a lower radiation dose [34].
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Figure 8. Representative histograms of the HCC827 cell viability assay obtained using flow cytometry:
(a) control (no treatment): basal viability of the cell population (78.9% of live cells); (b) viability after
treatment with PD-L1-i (0.1 µg) for 5-h (74.4% of live cells); (c) viability after treatment (acute
dose of 15 Gy/5 h) with 177Lu-DOTA-PD-L1-i (49.0% of live cells; the net decrease in alive cells
regarding the control group was 30%); (d) viability after treatment (acute dose of 5 Gy/5 h) with
225Ac-HEHA-PD-L1-i (36.0% of live cells; the net decrease in alive cells regarding the control group
was 43%).

2.4. In Vivo Evaluation
2.4.1. Biodistribution and Biokinetic Models

In healthy mice, the 177Lu-DOTA-PD-L1-i and 225Ac-DOTA-PD-L1-i biodistribution
profiles showed rapid blood clearance with renal and hepatobiliary elimination and no
accumulation in normal tissues. (Figures 9a and 10a).
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nously injected with HCC827 lung cancer cells (PD-L1+) (Figure 9b), seventy-four percent 
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Figure 10. (a) Biodistribution profile in healthy mice of 225Ac-HEHA-PD-L1-i; (b) biokinetic models
of 225Ac-HEHA-PD-L1-I in the three target tissues: lung (invaded by HCC827 lung cancer cells), liver,
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According to the biokinetic model of 177Lu-DOTA-PD-L1-i obtained in mice intra-
venously injected with HCC827 lung cancer cells (PD-L1+) (Figure 9b), seventy-four percent
of the activity taken up in the liver was cleared rapidly (λ = 1.23), with a half-life of 0.56 h
(t1/2 = ln2/λ = 0.56 h) associated with the hepatobiliary elimination, while twenty-six
percent was cleared slowly (λ = 0.01; t1/2 = 69 h), possibly related to the fraction retained in
the reticuloendothelial system. The short half-life time observed in the biokinetic model of
kidneys (t1/2 = ln2/3.65 = 0.19 h) can be correlated with renal elimination and reabsorption
in the proximal tubule, whereas the slow elimination slope (t1/2 = ln2/0.009 = 77 h) would
be related to the breakdown of the peptide fragment, where 177Lu is retained for a longer
time [35]. The most extended 177Lu-DOTA-PD-L1-i retention time was observed in lungs
invaded with HCC827 cancer cells. Ninety percent of the lung uptake activity had a half-
life of 346.5 h, and only ten percent had a half-life of 17.3 h (Figure 9b); consequently, the
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absorbed radiation dose delivered to the lungs was ten times that given to the kidneys and
fifty times than that to the liver (Table 1).

Table 1. Total nuclear transformations (N) and radiation absorbed dose in target organs of athymic
mice produced by 177Lu-DOTA-PD-L1-i and 225Ac-HEHA-PD-L1-i.

Organ

177Lu-DOTA-PD-L1-i 225Ac-HEHA-PD-L1-i

N=
∫ t=∞

t=0 A(t)dt
MBq·h

Radiation
Absorbed Dose

mGy/MBq

N=
∫ t=∞

t=0 A(t)dt
MBq·h

Radiation
Absorbed Dose

mGy/Bq

Lung (HCC827
cancer cells) 59.3 43.0 18.9 5.15

Kidney 10.9 4.20 11.1 4.83

Liver 9.67 0.85 11.5 1.44

In the case of the 225Ac-HEHA-PD-L1-i radiocomplex, the biodistribution profile
during the first hours after injection showed higher uptake of radioactivity in most of the
organs examined and a significantly higher hepatic uptake and retention (17.4% of the
injected dose was eliminated with a half-life of 69.3 h) than in the case of the 177Lu-DOTA-
PD-L1-i complex, which may be related to the presence of Ac3+ and its progeny released
from the radiocomplex, initially distributed in healthy organs and subsequently retained in
the liver and, to a lesser extent, in the kidney (12.6% of the injected dose was eliminated
with a half-life of 0.19 h and 8.14% with a half-life of 0.27 h) (Figure 10). Therefore, the
absorbed radiation dose delivered to the lungs was almost equal to that of the kidneys and
only 3.5 times that given to the liver (Table 1). Although biodistribution was performed
for dosimetric purposes (only %ID in whole organs was calculated), the Ac-225 activity
present in bone was also measured and was not significant (0.3 ± 0.2% ID/g).

2.4.2. Radioisotopic Imaging

In vivo and ex vivo radioisotopic images of athymic mice with lung micrometastases
after 177Lu-DOTA-PD-L1-i administration showed that the only tissue that accumulated
the radiotracer was the lung invaded by HCC827 cancer cells, while the liver and kidneys
captured and eliminated the radiotracer according to their physiological excretory function
(Figure 11).
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Figure 11. In vivo and ex vivo radioisotopic/X-ray images of athymic mice with lung micrometastases
at different times after 177Lu-DOTA-PD-L1-i administration: (a) whole-body imaging; (b,d,f) X-ray
images; (c,e,g) merged radioisotopic and X-ray images of kidneys (on the upper left side), lung (in
the middle), and liver (on the lower right side). Note that the highest radioactivity accumulated in
the lungs at all times examined (30 min, 24 and 72 h).
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In addition, paraffin sections of the lungs of mice injected with HCC827 cells were
analyzed for growth within the lung parenchyma using hematoxylin and eosin histological
staining (Figure 12e). Metastases were found in the lungs of all mice injected with cancer
cells, as tumors grew within the lung parenchyma in the form of atypical nuclei and
mitotic structures (Figure 12e). No metastases were found in the lungs of untreated control
animals (control: without induced lung micrometastases) (Figure 12f). The metastatic
adenocarcinoma tissue growing within the lung parenchyma distinctly differed from
normal alveolar lung tissue and demonstrated biphasic growth of this cancerous tissue.
Histological staining (H&E) analysis also revealed no pathologic changes in the liver and
kidney of mice injected with the radiopharmaceuticals (Figure A4). There was no presence
of any form of steatosis, cytoplasmic changes, or necrotic evidence. Hemorrhage and
inflammatory infiltrations were absent (Figure A4). No evidence of cytotoxic degeneration
was observed in nonparenchymal cells or hepatocytes (Figure A4). No significant cytotoxic
effect was observed in the function of liver and kidney involved in metabolism, elimination,
and or excretion of 177Lu-PD-L1-i and 225Ac-HEHA-PD-L1-i (Table A1).
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Figure 12. Ex vivo lungs from a mouse with lung micrometastases and injected with 177Lu-DOTA-
PD-L1-i: (a) X-ray image; (c) merged radioisotopic/X-ray images; (e) lung parenchyma histological
staining (H&E). Ex vivo lungs from an untreated mouse (control: without induced lung micrometas-
tases) and injected with 177Lu-DOTA-PD-L1-i: (b) X-ray image; (d) merged radioisotopic/X-ray
images; (f) lung parenchyma histological staining (H&E).
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The 177Lu-DOTA-PD-L1-i uptake pattern (average number of emitted photons per
normalized area showed in the color bar of Figure 12) in the lungs of mice with metastatic
HCC827 cells (298 ± 82 photons/cm2) was statistically significantly different (p < 0.05;
Student’s t-test) compared with the group of mice in which metastases were not induced
(78 ± 32 photons/cm2).

Immune checkpoint inhibitor (ICI) therapy using nanobodies, minibodies, antibodies,
and, more recently, PD-L1 or PD-1 inhibitory peptides for nuclear molecular imaging
have demonstrated their utility as highly specific biomolecules for targeting the tumor
microenvironment (TME) [27]. Therefore, the radiotherapeutic PD-L1-i ligands of 225Ac
and 177Lu developed in this research, with biokinetic and dosimetric properties suitable
for delivering ablative radiation doses at the TME level, can potentially be combined with
ICI immunotherapy and enhance the therapeutic effect in different types of cancer. It has
been previously reported, at the preclinical and clinical levels, that radioimmunotherapy
improves therapeutic outcomes, mitigates immune side effects, and reduces the induced
radio-toxicity [36] in addition to promoting tumor regression of nonirradiated metastases in
patients (abscopal effect), due to the power of radiation on increased cancer cell apoptosis
and release of tumor-associated antigens with subsequent delivery of CD8+ T cells as
an anti-tumor response [37]. However, poorly immunogenic tumors do not respond to
ICI therapy. In these cases, the use of 225Ac-HEHA-PD-L1-i and 177Lu-DOTA-PD-L1-i
in combination with the nonradiolabeled PD-L1-i ligand would be a viable option. This
proposal is based on recent successful therapeutic results obtained by combining the
radioligand 177Lu-PSMA-617 or 225Ac-PSMA-617 (targeting prostate cancer cells) with the
pharmaceutical anti-PD-1 (pembrolizumab), which showed a marked synergistic effect and
overcame immune limitations in patients with poorly immunogenic tumors [38].

The biodistribution of the radiopharmaceuticals analyzed in this study suggests that
177Lu-PD-L1-i may have a better biokinetic and dosimetric profile than 225Ac-PD-L1-i for
use in targeted radiotherapy. Therefore, the results obtained justify that, as future work,
preclinical studies of therapeutic efficacy should be carried out not only in a lung cancer
model because, given the nature of PD-L1 gene expression in a wide range of cancer types,
therapeutic efficacy should be evaluated in different models and cancer types induced and
correlated with other markers of immune response.

3. Materials and Methods

Human plasma was provided by Alfa Aesar (USA). The macrocycles S-2-(4-
isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecanic acid (DOTA-benzene-p-SCN) and 2-
(4-isothiocyanatobenzyl)-1,2,7,10,13-hexaazacyclooctadecane-1,4,7,10,13,16-hexaacetic acid
(HEHA-benzene-p-SCN) were obtained from Macrocyclics (Dallas, TX, USA). Lutetium-177
(177Lu), as 177LuCl3, was provided by ITM, Germany. Actinium-225 (225Ac), as 225AcCl3,
was provided by IPPE Joint-Stock Company (Obninsk, Russia). HCC827 human lung
cancer (PD-L1 positive) and C6 mouse glioma (PD-L1 negative) cell lines were purchased
from ATCC® (Manassas, VA, USA). All other reagents were purchased from Merk Millipore
(Burlington, MA, USA). The PD-L1-I was synthesized, as previously reported [28], by a
customized service, for research purposes, by Shanghai Yaxian Chemical Co., Ltd. (Jiading,
Shanghai, China).

3.1. Synthesis and Chemical Characterization of DOTA-PD-L1-i and HEHA-PD-L1-i

DOTA-benzene-p-SCN (2 mg; 2.91 µmol) or HEHA-benzene-p-SCN (3 mg; 3.1 µmol)
was dissolved in 1 mL of 0.2 M NaHCO3 buffer at pH 9.5, and then PD-L1-i ligand (6 mg;
3.2 µmol) was added. The mixture was incubated at 95 ◦C for 30 min. After cooling,
100 µL of ethanol was added. Finally, the conjugates were purified by preparative HPLC
in line with a UV-vis detector (Waters) (Epic C18 Column, 5 µm, L:250 mm, Diam. Int:
20 mm, Perkin Elmer) using a linear gradient (rate flow of 4 mL/min) of CH3CN-0.1%
TFA (B)/H2O-TFA (A), from 100% to 10% of A in 30 min. The fractions containing the
conjugates (absorbance: 283 nm) were lyophilized.
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Mass spectroscopy analysis (+Q1: 0.168 to 0.503 min, turbo spray, centroided) for
the PD-L1-i peptide precursor was performed in an LC/MS system (Agilent 6460 series
instrument) (Agilent Technologies, Santa Clara, CA, USA).

The IR spectra of DOTA-PD-L1-i and HEHA-PD-L1-i were acquired on an Agilent
Technologies FT-IR 660 spectrometer (from 50 scans at 0.4 cm−1, from 400 to 4000 cm−1).

The UV-vis spectra (Thermo Fisher Genesys 10S spectrometer) of the PD-L1-i conju-
gates (1 mg/mL) were obtained from 210 to 300 nm.

3.2. Radiolabeling with 177Lu and 225Ac

DOTA-PD-L1-i or HEHA-PD-L1-i (1 mg) was dissolved in 50 µL of ethanol, adjusting
to a final volume of 1 mL with 1 M acetate buffer, pH 5.0 to 20 µL of the PD-L1-i conjugates,
80 µL of 177LuCl3 (370 MBq in 0.01M HCl) or 225AcCl3 (370 kBq in 0.01M HCl) were added.
Finally, the mixture was incubated at 95 ◦C for 60 min. After labeling, 225Ac-HEHA-PD-
L1-I was purified using solid-phase extraction (Speak C18 cartridge, Waters). Radioactive
solutions were diluted in injectable-grade water (1 mL) for further use. For comparative
purposes, Lu-DOTA-PD-L1-i was also prepared under the same conditions using stable
LuCl3 (anhydrous powder; 99.99% trace metal basis; Sigma-Aldrich: Saint Louis, MO, USA)
followed by HPLC purification.

The radiochemical purity of the radioconjugates was determined by reversed-phase
HPLC (Waters) with radiometric and UV-vis detectors. The analysis was carried out with
a Discovery C18 column (particle size: 5 µm, length: 25 cm, diameter: 4.6 mm). A linear
gradient (rate flow: 1 mL/min) of CH3CN-0.1% TFA (B)/H2O-0.1%TFA (A), from 100%
to 10% of A in 30 min, was used. For 225Ac-HEHA-PD-L1-i, fractions of 1.0 mL were
collected, and the activity was evaluated in a NaI(Tl) detector (Auto In-v-tron 4010; NML
Inc., Houston, TX, USA).

3.3. Serum Stability

The 225Ac-HEHA-PD-L1-i and 177Lu-DOTA-PD-L1-i stability was evaluated in the
medium they were obtained after labeling (water/ascorbic acid/sodium acetate) at 0.33,
3, 24, 48, and 72 h with radio-HPLC, as previously described. The conjugate solutions
were diluted in human serum (5x) for stability assessment. The conjugates (n = 3) were
incubated at 37 ◦C, and samples were taken at 0.33, 3, 24, 48, and 72 h.

3.4. Cellular Uptake

HCC827 human lung cancer (PD-L1 positive) and C6 mouse glioma (PD-L1 neg-
ative) cell lines were cultured in RPMI-1640 medium with penicillin and streptomycin
(100 µg/mL) and fetal bovine serum (15%) in 5% CO2 at 37 ◦C. Cells diluted in PBS (pH 7)
(1 × 105 cells/tube) received two different treatments: (a) 177Lu-DOTA-PD-L1-i (4 kBq)
(n = 3) and (b) 225Ac-HEHA-PD-L1-i (0.04 kBq) (n = 3). Cells were incubated with each
treatment at 37 ◦C for 1 h. After incubation, tubes were measured in a NaI(Tl) detector
to determine the initial activity (100%). The tubes were centrifuged at 500× g for 10 min.
Then, a mixture of acetic acid/0.5 M NaCl was added, and the centrifugation was repeated.
The liquid was removed, and the button activity was measured, corresponding to the
percentage of activity captured by the cells regarding the initial activity.

3.5. Immunofluorescence

The HCC827 and C6 cell lines were fixed with 4% paraformaldehyde for 20 min, per-
meabilized with 0.5% TritonX-100, and 1% bovine serum albumin was used for cell blocking.
Therefore, cells were incubated overnight with anti-PD-L1/CD274 antibody (FineTest Cat.
FNab06280) at 1:25 or Cy7-conjugated PD-L1-i dilution prepared in agreement with the
supplier instructions (Cy®7 Mono NHS Ester, pack of 1 mg, Merck Sigma-Aldrich). Cells
incubated with anti-PD-L1/CD274 antibody were then incubated 1 h with Alexa Fluor
488-conjugated Goat anti-Rabbit IgG (H + L) (Invitrogen Cat. A32731). DAPI was used
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for intracellular fluorescence intensity observation for nuclei staining and fluorescence
microscopy (Meiji Techno; Mod. MT6200: Saitama, Japan).

3.6. Cell Viability Assay

The effect of 177Lu DOTA-PD-L1-i, 225Ac-HEHA-PD-L1-i, and PD-L1-i on HCC827 cell
viability (5 × 104) was determined by flow cytometry with the Muse® Count & Viability
Kit from Luminex, DiaSorin, USA. Before taking readings with the Muse Cell Analyzer
(Merck Millipore, Burlington, MA, USA) previously calibrated with the Muse® System
Check kit, the baseline detection was established using a fresh sample of untreated cells
that served to delimit the size and granularity of the cell line, as well as the basal viability
of the population. Also, the reading window for dead cells was established using an
aliquot of the same population treated with 0.5% Triton-X100. Once the detection window
for the HCC827 cells was established to discriminate between live and dead cells, 50 µL
(2 × 104 cells/200 µL) were taken from the cell suspension that had been treated with
cold ligand (PD-L1-i, 0.1 µg), with 1.4 MBq of 177Lu DOTA-PD-L1-i or 0.37 kBq of 225Ac-
HEHA-PD-L1-i for 5 h and then mixed with 450 µL of the viability reagent; after 5 min
incubation at room temperature and in the dark, the samples were read in triplicate. For
the calculation of the radiation absorbed dose to cell nuclei, the total number of nuclear
transformations (N) normalized to the unit of administered activity (Bq.s/Bq) was obtained
with the A(t) mathematical integration (from t = 0 to t = 5 h). Multiplying N by the dose
factor (DF)(Gy/Bq.s) from the cytoplasm to the nucleus (MIRDcell software, version 2.1),
the radiation absorbed dose was obtained. The progeny of 225Ac was considered. The
model included cells with a diameter of 20 µm, a nucleus radius of 3 µm, and a density of
1 mg/mL.

3.7. Biodistribution and Studies

Under an approved protocol (No. 07-2018-2021), all animal procedures followed the
ethical regulations for handling laboratory animals (NOM-062-ZOO-1999) and the Institu-
tional Animal Care and Use Committee requirements. Male Nu/Nu (UPEAL, CINVESTAV,
I.PN., Mexico City, Mexico) mice aged 6–8 weeks were maintained in a pathogen-free
barrier facility. Mice were injected with 3.7 MBq (50 µL) of 177Lu DOTA-PD-L1-I or 3.7 kBq
(50 µL) of 225Ac-HEHA-PD-L1-i in the tail vein and sacrificed at 0.5, 1, 3, 24, 72, and
96 h (n = 3). The heart, lungs, liver, pancreas, spleen, kidneys, small intestine, brain, and
stomach were dissected to be measured in a NaI(Tl) radioactivity detector. The results are
expressed as the percentage of injected dose (%ID) per organ. Blood samples were also
extracted, and the activity was recorded as %ID/g. A second group of mice was inoculated
intravenously with 1× 106 HCC827 cells. The animals were treated with 3.7 MBq (50 µL) of
177Lu DOTA-PD-L1-i (n = 3) or 3.7 kBq (50 µL) of 225Ac-HEHA-PD-L1-i (n = 3) via tail vein
injection on day five post-tumor cell inoculation. The animals were dissected as described
above. In the case of 177Lu DOTA-PD-L1-i, radioisotopic/X-ray in vivo/ex vivo images
were obtained in a Preclinical Imaging System (Bruker, XTREME). For in vivo imaging,
mice were anesthetized with oxygen and 2% isoflurane.

3.8. Absorbed Radiation Dose Assessment

The %ID values were used to obtain the biokinetic models (qh(t)). The Ah(t) functions
were obtained by decay-correcting the biokinetic models, that is, by adding to the biological
constant (λB ) the radioactive constant (λR ), as follows (Equation (1)):

A(t) = Be−(λR+λB)t + Ce−(λR+λB)t + De−(λR+λB)t (1)

For dosimetry, 225Ac decay chain was considered. The biokinetic models’ integration
(from t = 0 to t = ∞) calculated the N value in each murine organ. The DF values were those
reported in the OLINDA 2.0 code.
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3.9. Histopathological Assessment

Healthy lungs, kidneys, liver, and lungs from mice injected i.v. with HCC827 cells
were fixed with 4% paraformaldehyde for 24 h at room temperature, embedded in paraffin,
and sectioned in 4–5 µm thick sections using a microtome. Paraffin sections of lung samples
were deparaffinized in xylene and rehydrated in a series of graded alcohols. Dewaxed
tissue sections were stained with hematoxylin and eosin (H&E). The sections were assessed
using a light microscope (magnification of 100x) (Zeiss; Mod. Axioscope: Oberkochen,
Germany). Images were acquired with a digital camera (5 MP high-speed color; AmScope;
Mod.Mu500: Irvine, CA, USA).

3.10. Evaluation of Creatinine and Liver Enzyme Levels

Mouse blood samples collected at 96 h after radiopharmaceutical administration were
used for the determination of alanine aminotransferase (ALT), creatinine, and aspartate
aminotransferase (AST). Creatinine was measured titrimetrically. The picrate method was
used. AST and ALT were quantified using a Roche Diagnostics kit for UV assays.

4. Conclusions

The radiotherapeutic PD-L1-i ligands of 225Ac and 177Lu developed in this research,
with biokinetic and dosimetric properties suitable for delivering ablative radiation doses at
the tumor microenvironment level, could potentially be combined with immune checkpoint
inhibitor therapy and enhance the therapeutic effect in various types of cancer. Considering
the ease of preparation and high in vitro and in vivo stability, 177Lu-DOTA-PD-L1-i is
proposed as the best option for in vivo PD-L1 protein-targeted radiotherapy.
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Table A1. Alanine aminotransferase (ALT), creatinine, and aspartate aminotransferase (AST) in mice
after 96 h administration of 3.7 MBq of 177Lu DOTA-PD-L1-i (n = 3) or 3.7 kBq of 225Ac-HEHA-PD-
L1-i (n = 3) on day 5 after intravenous inoculation of HCC827 lung cancer cells (mean ± standard
deviation). No significant differences (p < 0.05) in the ALT, creatinine, and AST values between mice
treated with radiopharmaceuticals and those of the control group were found.

Mice Group
Alanine

Aminotransferase
(ALT) (IU/L)

Creatinine
(mg/dL)

Aspartate
Aminotransferase

(AST) (IU/L)
177Lu DOTA-PD-L1-i 68 ± 4 0.199 ± 0.062 143 ± 14
225Ac-HEHA-PD-L1-i 72 ± 5 0.202 ± 0.053 147 ± 18

Control 71 ± 7 0.198 ± 0.057 150 ± 13
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