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Abstract: The global prevalence of insulin resistance (IR) is increasing continuously, influencing
metabolic parameters and fertility. The metabolic changes due to IR can alter the molecular com-
position of plasma and other body fluids. Follicular fluid (FF) is derived mainly from plasma, and
it is a critical microenvironment for the developing oocytes. It contains various metabolites and
amino acids, and the quality of the oocytes is linked at least partially to amino acid metabolism.
Our goal was to quantitatively determine the amino acid (AA) profile of FF in IVF patients and
to compare IR and non-insulin resistance (NIR) groups to investigate the AA changes in their FF.
Using UHPLC-based methods, we quantified the main 20 amino acids from human FF samples in
the IR and NIR groups. Several amino acids (aspartate, glycine, glutamate, and cysteine) differed
significantly (p < 0.05 or less) between the two groups. The most significant alterations between
the IR and NIR groups were related to the glutathione metabolic pathway involving glycine, serine,
and threonine. Since insulin resistance alters the amino acid composition of the FF, the oocytes may
undergo metabolism-induced changes resulting in poor oocyte quality and less fertility in the insulin
resistance groups.

Keywords: assisted reproduction technology; follicular fluid; metabolomics; insulin resistance; amino
acid profile; predictive value

1. Introduction

The clinical definition of infertility is a disease of the male or female reproductive
system defined by the failure to achieve a pregnancy after 1 year of regular unprotected
sexual intercourse. Infertility affects approximately 10–15% of reproductive-age couples
worldwide [1]. The primary causes of female infertility are typically related to ovulation
disorders, tubal problems, and endometriosis. There are, however, other factors (such
as metabolic-disorder-related factors and insulin resistance) that can be responsible for
“idiopathic infertility” when the cause of infertility is unknown. By understanding the
metabolic risk factors, we can gain more information on idiopathic infertility in women,
reducing the proportion of unexplained infertility [2].

As a result of unfavorable lifestyle and dietary changes in modern civilizations, there
is an increase in the global prevalence of metabolic syndrome [3]. Metabolic syndrome
(MetS) is a term used to describe the simultaneous presence of several cardiovascular risk
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factors such as insulin resistance, obesity, dyslipidemia, and hypertension [4]. The most
widely accepted hypothesis for the pathophysiology of the metabolic syndrome is centered
around insulin resistance, which is believed to be partially triggered by excessive fatty
acid levels resulting from inappropriate lipolysis [5]. Insulin resistance (IR) is a metabolic
disorder with impaired insulin signaling and reduced glucose uptake by the target tissues.
It is characterized by obesity, type 2 diabetes and hyperinsulinemia, which is a compen-
satory response to the target tissue insulin resistance [6]. There is convincing evidence that
obesity-associated hyperinsulinemia and insulin resistance have a negative effect on fertility.
For instance, the decreased weight in obese women experiencing infertility is linked to
an improved frequency of ovulation and increased chances of achieving pregnancy. Even
among ovulatory women, the higher body mass index (BMI) is associated with reduced
rates of spontaneous pregnancy. The underlying mechanism is believed to involve the
adverse impact of elevated insulin levels on ovarian function [7]. The prevalence of obesity
is increasing because of the combination of reduced exercise, dietary changes, and high calo-
rie intake [8]. Obesity influences all regulatory systems in the human body and can cause
reproductive-system-related problems and infertility [9]. The increase in BMI and obesity
can be associated with higher risk of developing reproductive problems such as menstrual
irregularities, anovulation, subfertility, miscarriage, and negative pregnancy outcomes [10].
Several studies showed that obese women undergoing in vitro fertilization (IVF) experience
a decreased ovarian response to controlled ovarian stimulation [11]. Other studies reported
significant impairments in the quality of the oocytes and embryos including lower number
of oocytes retrieved [12], lower number of mature oocytes [13], poorer oocyte quality with
lower fertilization rates [14], and decreased embryo quality [15]. In addition, there is a
causal association between maternal obesity and pregnancy complications, with the risk of
pregnancy complications increasing with obesity [7]. Maternal complications during the
second and third trimester of pregnancy are often attributed to the metabolic syndrome
of obesity.

As it was mentioned earlier, MetS and obesity may have negative effects on the quality
of oocytes. The mature oocytes (metaphase II–MII–oocyte) have many roles in reproduction
such as supporting the molecular, cellular, and energetic processes of the early embryo
development and providing the genetic content for the new offspring. The ability of an
embryo to result in a healthy birth is primarily determined by the integrity of the oocyte.
During assisted reproductive techniques the mature oocytes are collected from a group
of follicles that have developed due to the administration of external gonadotropins. The
competent oocyte is achieved through a delicate balance involving factors such as time,
proper oxygenation, and hormonal stimulation as well as sufficient supply of energy
and micro-nutrients. Various factors like advanced maternal age, exposure to endocrine
disruptors or the presence of reactive oxygen species can disrupt this balance at different
levels within the ovarian follicle. Consequently, only a limited number of MII oocytes may
be retrieved which may influence the ability to result in a successful reproduction. By
increasing the quantity of collected MII oocytes the number of viable embryos also rises
leading to an improvement in the success rate of in vitro treatments [16].

Recently, the role of oxidative stress in IR was also recognized as a key factor. Oxidative
stress is characterized by an excessive presence of endogenous oxidative species that can
damage cells and disrupt signal pathways [17]. Produced primarily in the mitochondria and
peroxisomes, reactive oxygen species (ROS) such as superoxide, hydrogen peroxide, and
hydroxyl radical ions are the main molecules of oxidative stress. Emerging evidence from
recent studies concluded that ROS-induced damage directly contributes to the development
and progression of various chronic diseases such as IR and type 2 diabetes [18]. It was also
reported that both low and high levels of ROS have negative effects on fertility, embryo
quality, and outcome of the pregnancy. These findings are consistent with the concept of
a “quiet metabolism”, suggesting that there are specific upper and lower thresholds of
metabolic activity within which the embryo remains under optimal conditions [19].
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Metabolomics, a relatively new subfield within the broader field of “omics” focuses
on the analysis of low-molecular-weight metabolites, their presence and concentration
in different biological fluids. In recent years, it has been used to explore the underlying
biological pathways in different diseases and to identify metabolites that can be used as
biomarkers for certain diseases. Metabolomic studies have employed various matrices,
including blood, urine, saliva, and more specific biofluids such as follicular fluid [20].
The follicular fluid (FF) is formed by the passage of blood plasma constituents across the
blood–follicular barrier. This mechanism is influenced by the secretory actions of granulosa
and theca cells [21]. FF serves as a critical microenvironment for the development and
maturation of oocytes. It contains essential metabolites such as growth factors, cytokines,
energy substrates, amino acids, steroids, and various lipids including cholesterol. These
metabolites accumulate within the oocytes and play a vital role in their growth and de-
velopment [22]. The composition of FF has been found to have an important effect on the
oocyte quality and embryo development. The amino acid composition of the FF might be
related to the developmental competence of the oocytes [23]. Metabolic alterations seen
in the follicular fluid can arise from changes in the plasma metabolites or be influenced
by the selective filtering of the granulosa cells. The FF comprises crucial metabolites nec-
essary for oocyte growth and development, serving as an indicator of oocyte quality and
embryo viability [21]. Recent studies have reported that IR is strongly related to amino acid
metabolism, and it seems that plasma amino acid levels may vary during IR. Due to obesity
and IR, there are alterations in the levels of amino acids in the plasma in the early stage of
lifestyle-related diseases, but fortunately these alterations can be reversed by interventions
that improve insulin sensitivity [3].

Since metabolic disorders, especially IR, have great effects on the health of oocytes and
fertility, we planned to investigate how the metabolic alterations change the amino acid
composition of the follicular fluid. We also surveyed the literature to support our results
related to metabolic changes on the quality of oocytes and on fertility.

2. Results
2.1. Demographic and Clinical Data of Patients

In Table 1, the demographic and clinical features of the patients enrolled to our study
are shown.

Table 1. Clinical characteristics of the patients involved in our research. IR: insulin resistance, NIR:
non-insulin resistance.

IR [Mean ± SD]
(n = 11)

NIR [Mean ±SD]
(n = 36)

Age 34.45 ±6.78 35.58 ± 4.69
BMI 32.95 ± 5.55 23.58 ± 4.54

Number of oocytes retrieved 12.27 ± 9.83 10.19 ± 6.81
Number of fertilized oocytes 3.45 ± 3.88 4.42 ± 3.72

Number of IVF cycles 1.9 ± 0.94 2.08 ± 0.77
Cause of infertility

Male factor 4 (36.36%) 12 (33.3%)
Female factor 3 (27.27%) 15 (42.6%)

Combined male–female 3 (27.27%) 6 (16.6%)
Unexplained 1 (9%) 3 (8.3%)

2.2. Amino Acid (AA) Analysis of the Follicular Fluid Samples

A total of 20 amino acids, the building blocks of the proteins, were measured in all
FF samples. The concentration values are shown in Supplementary Table S1. Glutamine,
alanine, and glycine appeared to be the most abundant AAs in the FF which finding is
supported by earlier studies [24] showing the physiological roles of these AAs in oocyte
development [25].
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2.2.1. Comparison of Amino Acid Content According to Insulin Resistance and
Non-Insulin Resistance Groups

The quantitative AA results after statistical comparison were expressed as p values
and are shown in Table 2. The patients were separated into two groups based on their
insulin resistance. One group (IR, n = 11) was defined as patients with insulin resistance
and the members of the other group (NIR, n = 36) were, in this regard, apparently healthy.
Concentrations of three amino acids were found to be significantly altered in the IR group.
These were glycine (p < 0.001), cysteine (p = 0.037), and aspartate. Aspartate level was
significantly (p = 0.02) higher in the IR group.

Table 2. Results of the comparison based on different parameters. Each number corresponds to the
p value, and the significant values are marked in bold. The cut-off was set as p < 0.05.

Significance (p) Values
IR/NIR BMI Age

Aspartate 0.02 0.029 0.297
Glutamate 0.106 0.008 0.322
Asparagine 0.42 0.234 0.813

Serine 0.061 0.12 0.182
Glutamine 0.13 0.234 0.813
Histidine 0.72 0.307 0.747
Glycine <0.001 0.009 0.228

Threonine 0.951 0.593 0.966
Arginine 0.072 0.264 0.132
Alanine 0.19 0.068 0.312
Tyrosine 0.647 0.274 0.074
Cysteine 0.037 0.459 0.54

Valine 0.111 0.068 0.245
Methionine 0.594 0.481 0.813
Tryptophan 0.719 1 0.636

Phenylalanine 0.683 0.576 0.78
Isoleucine 0.351 0.166 0.401
Leucine 0.29 0.174 0.389
Lysine 0.931 0.395 0.254
Proline 0.227 0.369 0.88

2.2.2. Comparison of Amino Acid Contents Based on Body Mass Index (BMI)

The patients were divided into two groups according to their BMI. BMI is calculated
as BMI = kg/m2, where kg is the person’s weight (in kg) and m2 is the height of the person
in meters squared. Between 8.5 and 24.9 BMI, the patients were considered to belong
to the normal group (n = 21), while in the overweight group, the BMI score was above
25 (n = 22). All the 11 IR patients were in the overweight group and comparison of the
IR/NIR groups showed that the patients in the IR group had significantly higher BMI
(p < 0.001). The concentration of three amino acids were identified as statistically significant,
namely aspartate (p = 0.02), glutamate (p = 0.008), and glycine (p = 0.009). Glycine was
present in lower concentrations in the overweight group, and the concentration of aspartate
and glutamate was higher.

2.2.3. Comparison of Amino Acid Contents Based on the Age of the Patients

In this comparison, patients were separated into two groups by their age. One group
(younger, n = 20) contained patients aged 34 and below, and the other group was the older
group (n = 27), in which the age of the patients was 35 or above. There was no significant
difference in this comparison.

2.3. Multivariate PCA and PLS-DA Analysis

The heatmap (Figure 1) in PCA analysis is a visual representation of the relationship
between variables and PCs in a multivariate dataset. In this heatmap, each row represents
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a variable, and each column stands for a PC. The cells of the heatmap display the strength
of the relationship between the variable and a PC. The indication of the relationship is
based on color gradient or intensity. Strong positive association between the variable and
PC is represented by darker or more intense red or blue colors, and weak or negative
associations are represented by lighter or less intense colors. Heatmaps can reveal groups
of variables that show similar relationships with PCs. Variables that are close to each other
in the heatmap and share similar color patterns are likely to have similar effects on the PCs.
Principal component analysis scores were evaluated using PLS-DA analysis for IR and NIR
patients. The score plots are illustrated in Figure 2.
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Figure 1. Heatmap of amino acid concentration of IR and NIR samples. Annotations at the bottom of
the heatmap show the identification code of the samples.

The score plot provides valuable insights into the grouping, the patterns, and rela-
tionships among samples in a multivariate data analysis. Each follicular fluid sample is
represented as a data point and the position of the data point in the plot corresponds to
its scores on the principal components. An overlap can be observed between the IR and
NIR groups in the score plot. It suggests that there is a similarity between the samples from
these groups in terms of the measured variables. The overlap indicates that samples in the
IR group may share characteristics that are also present in the NIR group.

2.4. Potentially Important Metabolites—Biomarker Analysis

Biomarker analysis aims to identify a metabolite or a set of metabolites capable of
classifying conditions or disease with high sensitivity (true positive) and specificity (true
negative). The amino acids with significant between-group differences were further evalu-
ated using ROC curve analyses. Of the 20 important amino acids, three (glycine, aspartate,
and cysteine) were found to have an AUC above 0.7 (Table 3). Glycine and aspartate had
p values below 0.05 indicating significant differences between the IR and NIR groups.
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Figure 2. Principal component analysis score plot for IR and NIR patients. The ellipses and shapes
show clustering of the samples. The shaded areas indicate the 95% confidence ellipse regions based
on the data points for the individual groups.

Table 3. Area under curve (AUC) data obtained from the results of the ROC curves of amino acid
analysis of follicular fluid samples.

Amino Acid AUC p Value

Glycine 0.848 <0.001
Aspartate 0.732 0.004
Cysteine 0.708 0.365

Serine 0.689 0.090
Histidine 0.681 0.029
Arginine 0.681 0.071

Glutamate 0.664 0.058
Valine 0.661 0.060

Glutamine 0.65 0.087
Alanine 0.633 0.316
Proline 0.623 0.046
Leucine 0.608 0.190

Isoleucine 0.595 0.246
Asparagine 0.582 0.425
Methionine 0.555 0.082

Tyrosine 0.547 0.083
Phenylalanine 0.542 0.383

Tryptophan 0.537 0.685
Lysine 0.510 0.945

Threonine 0.507 0.613



Int. J. Mol. Sci. 2023, 24, 12458 7 of 15

When analyzing glycine concentrations in the IR and NIR groups, we performed a
receiver operating curve (ROC) analysis to calculate the predictive value of glycine and to
determine a diagnostic cutoff value. The results are shown in Figure 3a,b.
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Figure 3. The ROC curve of glycine (a). The sensitivity is demonstrated on the y-axis and the
specificity on the x-axis. The area under the curve (AUC) is marked in blue. The boxplot of glycine
(b) illustrates concentrations of glycine (on the y-axis in µmol/L) between IR and NIR groups within
the dataset. A horizontal line in red indicates the diagnostic cutoff value. Red box indicates the
insulin resistance, while green box the non-insulin resistance groups.

2.5. Metabolic Pathway Analysis

We analyzed certain metabolic pathways between the IR and NIR groups. Using
topological analysis, the cutoff value of the metabolic pathway involvement was set to
0.1 and the pathways with the value above 0.01 were selected as potential key metabolic
pathways (Figure 4). A total of 13 metabolic pathways were above this value (Table 4).
Based on the significance level (p < 0.05), glutathione metabolism (p < 0.001) had the lowest
value, but four other pathways were identified as target pathways, namely glycine, serine,
and threonine metabolism, arginine and proline metabolism, histidine metabolism, and
glyoxylate and dicarboxylate metabolism.

Table 4. List of the most important pathways with an impact value over 0.1. The impact score refers
to a quantitative measure that assesses the significance or importance of a specific amino acid within
the metabolic pathway. Based on their p value, the significant pathways are marked in bold.

Pathway Name Impact p Value

Phenylalanine, tyrosine, and tryptophan biosynthesis 1 0.116
Alanine, aspartate, and glutamate metabolism 0.534 0.098

D-Glutamine and D-glutamate metabolism 0.500 0.081
Phenylalanine metabolism 0.357 0.116
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Table 4. Cont.

Pathway Name Impact p Value

Glycine, serine, and threonine metabolism 0.246 0.002
Arginine and proline metabolism 0.222 0.039

Histidine metabolism 0.221 0.035
Cysteine and methionine metabolism 0.200 0.192

Arginine biosynthesis 0.193 0.079
Tryptophan metabolism 0.143 0.685

Tyrosine metabolism 0.140 0.083
Glutathione metabolism 0.112 0.0006

Glyoxylate and dicarboxylate metabolism 0.106 0.019
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Figure 4. Pathway analysis based on different metabolism of IR and NIR groups. The pathway
enrichment analysis is a quantitative analysis using the concentration values of the compounds
compared to the list of the compounds used with over-representation analysis. Based on enrichment
(y-axis) and topology analysis (x-axis), this figure illustrates pathways that are significantly changed.
The higher impact values represent the relative importance of the pathway, and the size of the circles
illustrates the impact of the pathway (the larger circle represents greater pathway enrichment). The
color of the circles indicates the significance (the more intense the red color, the lower the p value is).
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3. Discussion

In this study, we quantified the 20 main amino acids in the follicular fluid of IVF
patients and compared the amino acid profile of patients between IR and NIR groups.
Based on the comparison of FF amino acid concentration of patients in the IR and NIR
groups, several amino acids were found to be significantly altered. Two amino acids
(aspartate and glycine) showed differences both in the IR/NIR and normal/overweight
groups. In the follicular fluid samples, the concentration of aspartate was higher in the IR
group, correlating well with previously reports that the level of aspartate is significantly
higher in the plasma of MetS patients [3]. Recently, it was also found that, in obese children,
the plasma concentration of aspartate was higher due to the impaired glucose tolerance
and the aggravated metabolite metabolism [26]. Another study concluded that the elevated
levels of aspartate in the plasma can be a strong predictor for prediabetes [27]. Evidence
in the literature suggests that aspartate plays a vital role in the energy metabolism of the
oocytes by being converted into oxaloacetate, a key intermediate in the tricarboxylic acid
cycle. This metabolic pathway is involved in generating energy for cellular processes [28].
It was observed that there was a significant increase in aspartate levels within the cumulus
cells throughout the maturation progress, and it is utilized directly for energy production
within the cumulus cells or is transferred to the oocytes for energy production [29].

The other amino acid that was significantly altered between the IR/NIR and nor-
mal/overweight groups was glycine. The follicular fluid samples of IR patients had lower
levels of glycine, and similar results were found in the overweight group. Additionally,
this amino acid was found to be the best metabolite candidate for classification of IR from
follicular fluid samples. Glycine is a non-essential amino acid that plays a crucial role in
various biological processes such as neurotransmitter, controlling epigenetics, reproduc-
tion, fertility, and metabolic regulation. Glycine is also a precursor for several important
metabolites such as glutathione, porphyrins, purines, hem, and creatine [30]. Glycine is
also an important amino acid for fully grown oocytes, and it is transported into the cell
by glycine transporter (GLYT1). Glycine and cysteine transport increases at the time of
oocyte maturation, which may result in the need for glutathione [31]. Previous studies
have concluded that the plasma glycine level is significantly lower in patients with obesity
and IR compared to healthy individuals [32]. Our results, based on the measurement
of amino acid concentrations in the follicular fluid, showed similar characteristics. In
other studies, observations suggested that, in the long term, mild glycine deficiency may
facilitate the development of metabolic disorders [33]. Studies based on glycine supple-
mentation reported that adding glycine to the diet increased the insulin response and
glucose tolerance, and with a proper dose it was remarkably successful in decreasing other
metabolic disorders, many inflammatory diseases, a few types of cancers and obesity [30].
Experiments on animals found that glycine supplementation can also improve embryo
quality and implantation rates suggesting its potential role in enhancing fertility [34]. The
levels of glycine in the FF have been shown to be a good indicator of post-fertilization
development [35]. Glycine also has a significant role in pregnancy, and it should be taken
into consideration that the de novo synthesis is inadequate to supply the metabolic demand
in late pregnancy [36].

Cysteine was also found to have a significantly lower concentration in the IR group
compared to the NIR group. Cysteine can be obtained from the diet but is also synthetized
in the body. It is an important source of sulfur in human metabolism and although it is a
non-essential AA, the elderly, children, and individuals with certain types of metabolic
diseases need to obtain it from the diet. Cysteine itself is a major extracellular antioxidant,
and together with glycine and glutamate, they form the glutathione molecule, which is
a vital antioxidant [37]. The availability of cysteine is recognized as a rate-limiting factor
in the synthesis of glutathione, and this relationship has been extensively documented in
clinical and animal studies. Cysteine, alone or together with glutamate and glycine, raises
glutathione levels in the oocytes and cumulus cells, promoting maturation [38]. Cysteine
supplementation has been shown to enhance the synthesis and levels of glutathione, thus
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lowering oxidative stress and insulin resistance [39]. The analysis of IR patients’ plasma
revealed that cysteine was found to be lower in concentration [39], and we observed the
same in the follicular fluid.

Glutamate was the only amino acid that was significantly altered in the overweight
group but not in the IR group. The concentration of this amino acid was higher in the
overweight group than in the normal group. Glutamate is the most abundant amino
acid, and it has a fundamental role in the metabolism of amino acids, and it is also a key
molecule in the synthesis of glutathione [40]. It was already reported that the plasma levels
of glutamate were higher in obese patients, and the elevated levels of this amino acid were
associated with an increased risk of cardiovascular diseases, dyslipidemia, and IR. In the
follicular fluid samples, we observed that the levels of glutamate were higher in the IR
group, but there was no significant difference between the IR/NIR groups. Another study
concluded that the elevated glutamate level in the plasma was associated with higher
liver fat content and lower insulin sensitivity, and a higher level of glutamate is related to
metabolic dysfunctions [41]. Our findings in the follicular fluid were in good agreement
with those in the literature. Overweight patients had a significantly higher concentration
of glutamate in their follicular fluid samples. High glutamate levels may be the result of
altered metabolic function due to obesity.

The pathway analysis revealed that the most significant alterations between the IR and
NIR groups are the glutathione metabolic pathway and the glycine, serine, and threonine
metabolism pathway. Glutathione (GSH) is a vital antioxidant that is produced from three
amino acids: cysteine (Cys), glycine (Gly), and glutamate (Glu). It has already been claimed
that the stability of reproductive cells and tissues relies on maintaining a balance between
the production of free radicals and the presence of scavenging antioxidants [42]. GSH
plays a crucial role in the maturation of oocytes, fertilization, and the early development
of embryos [43]. It has previously been reported that GSH protects eggs from damage
caused by oxidative stress, and therefore, oocytes with higher levels of GSH produce
healthier embryos [44]. GSH deficiency has been reported to be related to premature
ovarian aging [45]. In another study, it was revealed that GSH has antiaging antioxidant
properties, and therefore has an impact on egg health [44]. In our experiments in the IR
group, significantly lower levels of glycine and cysteine were reported, and this can give
rise to lower glutathione levels. It was concluded earlier that, in metabolic conditions
associated with enhanced oxidative stress (such as IR), the availability of glycine can be
too low to sustain the optimal rate of GSH synthesis [33]. The glycine-related metabolic
pathways can also be affected, as we illustrate in Figure 4. In this study, we found several
amino acids that are altered in patients with IR and obesity. These alterations may be the
results of the metabolic changes due to the aforementioned disorders.

4. Materials and Methods
4.1. Patient Enrollment

This study was conducted between May 2021 and February 2023 at the Department
of Obstetrics and Gynecology (FF sampling), and at the National Laboratory on Human
Reproduction (analytical studies), University of Pécs, Hungary. Detailed information was
given to all patients or their next-of-kin regarding our study protocol, while written consent
was obtained from all. Exclusion criteria were patients under 18 years of age, unobtainable
or withdrawn consent, and autoimmune diseases or overt diabetes. The study protocol
was approved by the Regional Research Ethics Committee of the University of Pécs (no.
5273-2/2012/EHR), conforming to the 7th revision of the Helsinki Declarations (2013). All
the 47 patients enrolled in this study received assisted reproductive treatment (ART). The
inclusion criteria were either male infertility or female infertility caused by tubal problems.
Unsuccessful intrauterine insemination (n = 4; marked as unexplained cause of infertility)
was also included in this study. The members of the IR group (n = 11) were diagnosed by
endocrinologists based on the homeostatic model assessment of insulin resistance (HOMA
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IR) formula and subjects were grouped by relying on the data of the medical charts of the
hospital informational system.

4.2. Stimulation and Collection of Follicular Fluid

We used the GnRh agonist triptorelin in both long and short protocols, and cetrorelix
in antagonist protocols. Individual doses of rFSH ranging from 150 to 250 IU per day were
used for stimulation, depending on the maturity of the follicles. The starting dose was
determined based on BMI and age. A maximum daily dose of 300 IU was given to those
with a previously determined low response. We supplemented the stimulation with rLH or
hMG individually, according to the patient’s age or response. From the 6th day of the cycle,
we monitored the follicular maturity using ultrasound every other day. Gonadotropin
was administered individually according to the size of the follicles. When at least two
follicles exceeded 17 mm in diameter, an injection of 250 µg (6500 IU) of recombinant
human chorionic gonadotropin was given to induce final oocyte maturation. Aspiration
was performed 36 h later using an ultrasound-guided transvaginal puncture under routine
intravenous sedation. The follicular fluid collection was performed during oocyte retrieval
procedure and the samples were centrifuged immediately at 6700 g for 10 min at room
temperature to remove the erythrocytes and white blood cells. The supernatant was
collected and stored at −80 ◦C until further analyses.

4.3. Sample Processing and Measurement
4.3.1. Reagents

For the amino acid analyses, the following chemicals were used: 3-mercaptopropionic
acid ≥99.0% (HPLC grade), orto-phtalaldehyde ≥99% (HPLC grade), 9-fluorenylmeth
yloxycarbonyl chloride (FMOC chloride) ≥99.0% (HPLC grade both from Merck KGaA,
Darmstadt, Germany), acetonitrile, ≥ 99.9% HPLC gradient grade, methanol, ≥99.8%
HPLC grade and water HPLC gradient grade, both from Fisher Chemical Pittsburgh,
Pennsylvania, United States, 20 mM phosphate buffer of pH 6.2. For the UHPLC elution,
the mobile phase was acetonitrile/methanol/water solution: 400 mL acetonitrile, 450 mL
methanol, 150 mL water. L-Norvaline (Merck, KgaA, Darmstadt, Germany) was used as an
internal standard.

4.3.2. Sample Preparation for the UHPLC Measurement

The quantitative amino acid analyses of the FF samples were performed after pre-
cipitation of the proteins, fluorescence derivatization of the amino acids, and UHPLC
chromatography (Shimadzu Nexera X2 UHPLC System) using a fluorescence detector (RF-
20A XS, both from Shimadzu Europa GmbH Duisburg, Germany) and an internal standard
(250 µmol/L L-Norvaline). Then, 300 µL ice-cold acetonitrile solution was added to each
200 µL of follicular fluid sample. The samples were vortexed and centrifuged for 4 min
at 6100 g (ScanSpeed Mini, Labogene, Allerod, Denmark). After centrifugation, 600 µL of
phosphate buffer was added to 300 µL supernatant and the samples were filtered (Millex®

GV 4mm Durapore PVDF 0.22 µm, Merck KGaA, Darmstadt, Germany) and inserted into
the autosampler module of the device (SIL-30AC Autosampler) in which the temperature
was set to 20 ◦C.

4.3.3. Derivatization

For the derivatization of the amino acids, 3-mercaptoproprionic acid (MPA) and orto-
phtalaldehyde (OPA) were used. In the case of proline, 9-fluorenylmethyloxycarbonyl
chloride (FMOC) was applied. As an internal standard, 250 µmol/L L-Norvaline was
utilized. We mixed 7.5 µL of sample, 45 µL of MPA, 22 µL of OPA, and 3 µL of L-Norvaline,
and incubated it for 1 min. After the incubation, 10 µL of FMOC reagent was added to the
mixture and incubated for 2 min. Finally, 5 µL of derivatized sample was injected into the
loop of the injector.
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4.3.4. Parameters of the UHPLC Method

Aliquots of 5 µL of the samples were injected into the UHPLC system. A reverse-phase
100 × 3.0 mm Kinetex 2.6 µm EVO C18 100 Å (Phenomenex, Torrance, CA, USA) column
was used for the separation. The gradient mobile phase was composed of 20 mmol/L
phosphate buffer (A) and 40:45:15 acetonitrile: methanol: water solution (B). The flow rate
was 1.3 mL/min, and the column temperature was set to 27 ◦C. The total running time
was 15.1 min. The amino acids (except proline) were detected at 450 nm in an RF-20A
xs module. In the case of proline, the detection was achieved at 305 nm. The evaluation
was performed using Shimadzu LabSolutions 5.97 SP1 software. Each amino acid was
identified by the retention time (RT). The concentration of each amino acid was calculated
based on the area under curve of the internal standard. The samples were measured in
duplicate and the final concentration was calculated from their average.

4.4. Data Analysis

The statistical analysis was performed using SPSS for Windows (version 28.0.0.0, IBM
SPSS Statistics, Armonk, New York, USA). The distribution of data was first checked for
the normal distribution, but since most of the amino acids did not follow that pattern,
non-parametric statistical tests were chosen. To determine the differences between the
groups, the Mann–Whitney U-test was performed. Values of p< 0.05 were considered
statistically significant.

To evaluate the amino acid concentration results, the MetaboAnalyst (version 5.0,
RRID:SCR_015539, Alberta, Canada) web-based tool was utilized. With this tool, multivari-
ate PCA analysis, biomarker analysis, and metabolic pathway analysis were performed.
Based on the potential amino acid candidates in the insulin resistance (IR) and non-insulin
resistance (NIR) groups, a heatmap was created for unsupervised clustering. To explore the
underlying structure and patterns in the dataset, Principal Component Analysis (PCA) was
performed. PCA transforms the original variables into a set of uncorrelated components
(principal components—PCs) that capture the maximum variance in the data. Following
PCA, PLS-DA was employed to examine the discrimination between the IR and NIR groups.
PLS-DA combines the concept of PCA and linear regression to model the relationship be-
tween the independent (features) and dependent (class membership) variables. For the
biomarker analysis, classical univariate ROC curve analysis was performed to identify
potential biomarkers and evaluate their performance. ROC curves were generated, and
the AUC was calculated to compute the optimal cutoffs of the different amino acids. An
AUC value of over 0.7 was established as discriminative power. For the metabolic path-
way analysis, the list of the amino acids measured was added to MetaboAnalyst 5.0. The
metabolomic pathway related to the amino acids was found by analyzing the topological
characteristics of the pathway. The metabolic pathways related to the IR were obtained and
mapped, and the diagram of each metabolic pathway was obtained. The impact threshold
was set to 0.10. Any pathway beyond this value was classified as a potential target pathway.

5. Conclusions

Follicular fluid is a complex biological fluid that surrounds the oocytes and is derived
mainly from plasma. It is a particularly important microenvironment for the development
of the oocytes and the quality of these oocytes is linked to amino acid metabolism. Any
alteration in the metabolic processes due to IR will alter the amino acid composition of
the follicular fluid as well and the oocytes may undergo metabolism-induced changes,
and hence it can result in impaired oocyte quality and decreased fertility. IR can cause
several negative effects in patients so it would be useful to improve the state of this
disease. The combined dietary changes increased physical exercises and glycine/cysteine
supplementation may lead to positive metabolic changes in the serum and alterations in
the follicular fluid, as well as have a positive impact on the quality of the oocytes and
on fertility.
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