Harnessing the Power of Enteric Glial Cells’ Plasticity and Multipotency for Advancing Regenerative Medicine
Abstract
:1. Introduction
2. The ENS Is Built from Multiple Progenitors
3. Formation and Diversification of EGCs
4. Plasticity and Multipotency of EGCs
4.1. EGCs’ Plasticity
4.2. EGCs’ Multipotency
5. Taking Advantage of EGCs’ Plasticity and Multipotency for Therapeutic Purposes
5.1. Control of Inflammation and Infection in the Gastrointestinal Tract
5.2. Repair and Regeneration of the ENS
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schneider, S.; Wright, C.M.; Heuckeroth, R.O. Unexpected Roles for the Second Brain: Enteric Nervous System as Master Regulator of Bowel Function. Annu. Rev. Physiol. 2019, 81, 235–259. [Google Scholar] [CrossRef]
- Furness, J.B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Sharkey, K.A.; Mawe, G.M. The enteric nervous system. Physiol. Rev. 2023, 103, 1487–1564. [Google Scholar] [CrossRef] [PubMed]
- Foong, J.P.P.; Hung, L.Y.; Poon, S.; Savidge, T.C.; Bornstein, J.C. Early life interaction between the microbiota and the enteric nervous system. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 319, G541–G548. [Google Scholar] [CrossRef]
- Obata, Y.; Castano, A.; Boeing, S.; Bon-Frauches, A.C.; Fung, C.; Fallesen, T.; de Aguero, M.G.; Yilmaz, B.; Lopes, R.; Huseynova, A.; et al. Neuronal programming by microbiota regulates intestinal physiology. Nature 2020, 578, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Obata, Y.; Pachnis, V. The Effect of Microbiota and the Immune System on the Development and Organization of the Enteric Nervous System. Gastroenterology 2016, 151, 836–844. [Google Scholar] [CrossRef] [Green Version]
- Toure, A.M.; Landry, M.; Souchkova, O.; Kembel, S.W.; Pilon, N. Gut microbiota-mediated Gene-Environment interaction in the TashT mouse model of Hirschsprung disease. Sci. Rep. 2019, 9, 492. [Google Scholar] [CrossRef] [Green Version]
- Yoo, B.B.; Mazmanian, S.K. The Enteric Network: Interactions between the Immune and Nervous Systems of the Gut. Immunity 2017, 46, 910–926. [Google Scholar] [CrossRef] [Green Version]
- Progatzky, F.; Pachnis, V. The role of enteric glia in intestinal immunity. Curr. Opin. Immunol. 2022, 77, 102183. [Google Scholar] [CrossRef]
- Rao, M.; Gershon, M.D. The bowel and beyond: The enteric nervous system in neurological disorders. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 517–528. [Google Scholar] [CrossRef] [Green Version]
- Uesaka, T.; Young, H.M.; Pachnis, V.; Enomoto, H. Development of the intrinsic and extrinsic innervation of the gut. Dev. Biol. 2016, 417, 158–167. [Google Scholar] [CrossRef] [PubMed]
- May-Zhang, A.A.; Tycksen, E.; Southard-Smith, A.N.; Deal, K.K.; Benthal, J.T.; Buehler, D.P.; Adam, M.; Simmons, A.J.; Monaghan, J.R.; Matlock, B.K.; et al. Combinatorial Transcriptional Profiling of Mouse and Human Enteric Neurons Identifies Shared and Disparate Subtypes In Situ. Gastroenterology 2020, 160, 755–770. [Google Scholar] [CrossRef] [PubMed]
- Drokhlyansky, E.; Smillie, C.S.; Van Wittenberghe, N.; Ericsson, M.; Griffin, G.K.; Eraslan, G.; Dionne, D.; Cuoco, M.S.; Goder-Reiser, M.N.; Sharova, T.; et al. The Human and Mouse Enteric Nervous System at Single-Cell Resolution. Cell 2020, 182, 1606–1622.e23. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.N.; Humenick, A.; Yew, W.P.; Peterson, R.A.; Wiklendt, L.; Dinning, P.G.; Spencer, N.J.; Wattchow, D.A.; Costa, M.; Brookes, S.J.H. Types of Neurons in the Human Colonic Myenteric Plexus Identified by Multilayer Immunohistochemical Coding. Cell. Mol. Gastroenterol. Hepatol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Grubisic, V.; Gulbransen, B.D. Enteric glia: The most alimentary of all glia. J. Physiol. 2016, 595, 557–570. [Google Scholar] [CrossRef] [Green Version]
- Neunlist, M.; Rolli-Derkinderen, M.; Latorre, R.; Van Landeghem, L.; Coron, E.; Derkinderen, P.; De Giorgio, R. Enteric glial cells: Recent developments and future directions. Gastroenterology 2014, 147, 1230–1237. [Google Scholar] [CrossRef] [PubMed]
- Sharkey, K.A. Emerging roles for enteric glia in gastrointestinal disorders. J. Clin. Investig. 2015, 125, 918–925. [Google Scholar] [CrossRef]
- Progatzky, F.; Shapiro, M.; Chng, S.H.; Garcia-Cassani, B.; Classon, C.H.; Sevgi, S.; Laddach, A.; Bon-Frauches, A.C.; Lasrado, R.; Rahim, M.; et al. Regulation of intestinal immunity and tissue repair by enteric glia. Nature 2021, 599, 125–130. [Google Scholar] [CrossRef]
- Baghdadi, M.B.; Ayyaz, A.; Coquenlorge, S.; Chu, B.; Kumar, S.; Streutker, C.; Wrana, J.L.; Kim, T.H. Enteric glial cell heterogeneity regulates intestinal stem cell niches. Cell Stem Cell 2022, 29, 86–100.e6. [Google Scholar] [CrossRef]
- Baghdadi, M.B.; Kim, T.H. The multiple roles of enteric glial cells in intestinal homeostasis and regeneration. Semin. Cell Dev. Biol. 2023, 150–151, 43–49. [Google Scholar] [CrossRef]
- Liu, C.; Yang, J. Enteric Glial Cells in Immunological Disorders of the Gut. Front. Cell. Neurosci. 2022, 16, 895871. [Google Scholar] [CrossRef] [PubMed]
- Seguella, L.; Gulbransen, B.D. Enteric glial biology, intercellular signalling and roles in gastrointestinal disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 571–587. [Google Scholar] [CrossRef] [PubMed]
- Boesmans, W.; Lasrado, R.; Vanden Berghe, P.; Pachnis, V. Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system. Glia 2015, 63, 229–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulbransen, B.D.; Sharkey, K.A. Novel functional roles for enteric glia in the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Seguella, L.; McClain, J.L.; Esposito, G.; Gulbransen, B.D. Functional Intraregional and Interregional Heterogeneity between Myenteric Glial Cells of the Colon and Duodenum in Mice. J. Neurosci. 2022, 42, 8694–8708. [Google Scholar] [CrossRef] [PubMed]
- Zeisel, A.; Hochgerner, H.; Lonnerberg, P.; Johnsson, A.; Memic, F.; van der Zwan, J.; Haring, M.; Braun, E.; Borm, L.E.; La Manno, G.; et al. Molecular Architecture of the Mouse Nervous System. Cell 2018, 174, 999–1014.e22. [Google Scholar] [CrossRef] [Green Version]
- Wright, C.M.; Schneider, S.; Smith-Edwards, K.M.; Mafra, F.; Leembruggen, A.J.L.; Gonzalez, M.V.; Kothakapa, D.R.; Anderson, J.B.; Maguire, B.A.; Gao, T.; et al. scRNA-Seq Reveals New Enteric Nervous System Roles for GDNF, NRTN, and TBX3. Cell. Mol. Gastroenterol. Hepatol. 2021, 11, 1548–1592.e1. [Google Scholar] [CrossRef]
- Roulis, M.; Kaklamanos, A.; Schernthanner, M.; Bielecki, P.; Zhao, J.; Kaffe, E.; Frommelt, L.S.; Qu, R.; Knapp, M.S.; Henriques, A.; et al. Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche. Nature 2020, 580, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Kinchen, J.; Chen, H.H.; Parikh, K.; Antanaviciute, A.; Jagielowicz, M.; Fawkner-Corbett, D.; Ashley, N.; Cubitt, L.; Mellado-Gomez, E.; Attar, M.; et al. Structural Remodeling of the Human Colonic Mesenchyme in Inflammatory Bowel Disease. Cell 2018, 175, 372–386.e17. [Google Scholar] [CrossRef] [Green Version]
- Guyer, R.A.; Stavely, R.; Robertson, K.; Bhave, S.; Mueller, J.L.; Picard, N.M.; Hotta, R.; Kaltschmidt, J.A.; Goldstein, A.M. Single-cell multiome sequencing clarifies enteric glial diversity and identifies an intraganglionic population poised for neurogenesis. Cell Rep. 2023, 42, 112194. [Google Scholar] [CrossRef]
- Schneider, S.K.; Pauli, P.; Lautenbacher, S.; Reicherts, P. Effects of psychosocial stress and performance feedback on pain processing and its correlation with subjective and neuroendocrine parameters. Scand. J. Pain 2023, 23, 389–401. [Google Scholar] [CrossRef] [PubMed]
- Soldatov, R.; Kaucka, M.; Kastriti, M.E.; Petersen, J.; Chontorotzea, T.; Englmaier, L.; Akkuratova, N.; Yang, Y.; Häring, M.; Dyachuk, V.; et al. Spatiotemporal structure of cell fate decisions in murine neural crest. Science 2019, 364, eaas9536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilon, N. Treatment and Prevention of Neurocristopathies. Trends Mol. Med. 2021, 27, 451–468. [Google Scholar] [CrossRef]
- Yntema, C.L.; Hammond, W.S. The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo. J. Comp. Neurol. 1954, 101, 515–541. [Google Scholar] [CrossRef] [PubMed]
- Durbec, P.L.; Larsson-Blomberg, L.B.; Schuchardt, A.; Costantini, F.; Pachnis, V. Common origin and developmental dependence on c-ret of subsets of enteric and sympathetic neuroblasts. Development 1996, 122, 349–358. [Google Scholar] [CrossRef]
- Green, S.A.; Uy, B.R.; Bronner, M.E. Ancient evolutionary origin of vertebrate enteric neurons from trunk-derived neural crest. Nature 2017, 544, 88–91. [Google Scholar] [CrossRef] [Green Version]
- Burns, A.J.; Le Douarin, N.M. The sacral neural crest contributes neurons and glia to the post-umbilical gut: Spatiotemporal analysis of the development of the enteric nervous system. Development 1998, 125, 4335–4347. [Google Scholar] [CrossRef]
- Le Douarin, N.M.; Teillet, M.A. The migration of neural crest cells to the wall of the digestive tract in avian embryo. J. Embryol. Exp. Morphol. 1973, 30, 31–48. [Google Scholar] [CrossRef]
- Kapur, R.P.; Yost, C.; Palmiter, R.D. A transgenic model for studying development of the enteric nervous system in normal and aganglionic mice. Development 1992, 116, 167–175. [Google Scholar] [CrossRef]
- Wang, X.; Chan, A.K.K.; Sham, M.H.; Burns, A.J.; Chan, W.Y. Analysis of the Sacral Neural Crest Cell Contribution to the Hindgut Enteric Nervous System in the Mouse Embryo. Gastroenterology 2011, 141, 992–1002.e6. [Google Scholar] [CrossRef] [Green Version]
- Coventry, S.; Yost, C.; Palmiter, R.D.; Kapur, R.P. Migration of ganglion cell precursors in the ileoceca of normal and lethal spotted embryos, a murine model for Hirschsprung disease. Lab. Investig. 1994, 71, 82–93. [Google Scholar] [PubMed]
- Druckenbrod, N.R.; Epstein, M.L. The pattern of neural crest advance in the cecum and colon. Dev. Biol. 2005, 287, 125–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishiyama, C.; Uesaka, T.; Manabe, T.; Yonekura, Y.; Nagasawa, T.; Newgreen, D.F.; Young, H.M.; Enomoto, H. Trans-mesenteric neural crest cells are the principal source of the colonic enteric nervous system. Nat. Neurosci. 2012, 15, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Du, M.; Zhang, W.; Liu, L.; Gao, Z.; Chen, W.; Gu, Y.; Zhu, K.; Niu, X.; Sun, Q.; et al. Mesenteric Neural Crest Cells Are the Embryological Basis of Skip Segment Hirschsprung’s Disease. Cell. Mol. Gastroenterol. Hepatol. 2021, 12, 1–24. [Google Scholar] [CrossRef]
- Espinosa-Medina, I.; Jevans, B.; Boismoreau, F.; Chettouh, Z.; Enomoto, H.; Muller, T.; Birchmeier, C.; Burns, A.J.; Brunet, J.F. Dual origin of enteric neurons in vagal Schwann cell precursors and the sympathetic neural crest. Proc. Natl. Acad. Sci. USA 2017, 114, 11980–11985. [Google Scholar] [CrossRef] [Green Version]
- Uesaka, T.; Nagashimada, M.; Enomoto, H. Neuronal Differentiation in Schwann Cell Lineage Underlies Postnatal Neurogenesis in the Enteric Nervous System. J. Neurosci. 2015, 35, 9879–9888. [Google Scholar] [CrossRef] [Green Version]
- McKeown, S.J.; Chow, C.W.; Young, H.M. Development of the submucous plexus in the large intestine of the mouse. Cell Tissue Res. 2001, 303, 301–305. [Google Scholar] [CrossRef]
- Uesaka, T.; Nagashimada, M.; Enomoto, H. GDNF signaling levels control migration and neuronal differentiation of enteric ganglion precursors. J. Neurosci. 2013, 33, 16372–16382. [Google Scholar] [CrossRef] [Green Version]
- Sohal, G.S.; Ali, M.M.; Farooqui, F.A. A second source of precursor cells for the developing enteric nervous system and interstitial cells of Cajal. Int. J. Dev. Neurosci. 2002, 20, 619–626. [Google Scholar] [CrossRef]
- Brokhman, I.; Xu, J.; Coles, B.L.K.; Razavi, R.; Engert, S.; Lickert, H.; Babona-Pilipos, R.; Morshead, C.M.; Sibley, E.; Chen, C.; et al. Dual embryonic origin of the mammalian enteric nervous system. Dev. Biol. 2019, 445, 256–270. [Google Scholar] [CrossRef]
- Young, H.M.; Bergner, A.J.; Muller, T. Acquisition of neuronal and glial markers by neural crest-derived cells in the mouse intestine. J. Comp. Neurol. 2003, 456, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Young, H.M.; Ciampoli, D.; Hsuan, J.; Canty, A.J. Expression of Ret-, p75(NTR)-, Phox2a-, Phox2b-, and tyrosine hydroxylase-immunoreactivity by undifferentiated neural crest-derived cells and different classes of enteric neurons in the embryonic mouse gut. Dev. Dyn. 1999, 216, 137–152. [Google Scholar] [CrossRef]
- Charrier, B.; Pilon, N. Toward a better understanding of enteric gliogenesis. Neurogenesis 2017, 4, e1293958. [Google Scholar] [CrossRef] [Green Version]
- Ling, I.T.C.; Sauka-Spengler, T. Early chromatin shaping predetermines multipotent vagal neural crest into neural, neuronal and mesenchymal lineages. Nat. Cell Biol. 2019, 21, 1504–1517. [Google Scholar] [CrossRef]
- Boesmans, W.; Nash, A.; Tasnady, K.R.; Yang, W.; Stamp, L.A.; Hao, M.M. Development, Diversity, and Neurogenic Capacity of Enteric Glia. Front. Cell Dev. Biol. 2021, 9, 775102. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, H.J.; Rao, M. Enteric glia in homeostasis and disease: From fundamental biology to human pathology. iScience 2021, 24, 102863. [Google Scholar] [CrossRef]
- Stavely, R.; Hotta, R.; Guyer, R.A.; Picard, N.; Rahman, A.A.; Omer, M.; Soos, A.; Szocs, E.; Mueller, J.; Goldstein, A.M.; et al. A distinct transcriptome characterizes neural crest-derived cells at the migratory wavefront during enteric nervous system development. Development 2023, 150, dev201090. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, K.F.; Nguyen, C.M.; Cardinal, T.; Charrier, B.; Silversides, D.W.; Pilon, N. Upregulation of the Nr2f1-A830082K12Rik gene pair in murine neural crest cells results in a complex phenotype reminiscent of waardenburg syndrome type 4. Dis. Models Mech. 2016, 9, 1283–1293. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.A.; Lai, F.P.; Gui, H.S.; Sham, M.H.; Tam, P.K.; Garcia-Barcelo, M.M.; Hui, C.C.; Ngan, E.S. Identification of GLI Mutations in Patients With Hirschsprung Disease That Disrupt Enteric Nervous System Development in Mice. Gastroenterology 2015, 149, 1837–1848.e5. [Google Scholar] [CrossRef]
- Ngan, E.S.; Garcia-Barcelo, M.M.; Yip, B.H.; Poon, H.C.; Lau, S.T.; Kwok, C.K.; Sat, E.; Sham, M.H.; Wong, K.K.; Wainwright, B.J.; et al. Hedgehog/Notch-induced premature gliogenesis represents a new disease mechanism for Hirschsprung disease in mice and humans. J. Clin. Investig. 2011, 121, 3467–3478. [Google Scholar] [CrossRef] [Green Version]
- Lo, L.C.; Johnson, J.E.; Wuenschell, C.W.; Saito, T.; Anderson, D.J. Mammalian achaete-scute homolog 1 is transiently expressed by spatially restricted subsets of early neuroepithelial and neural crest cells. Genes Dev. 1991, 5, 1524–1537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Memic, F.; Knoflach, V.; Sadler, R.; Tegerstedt, G.; Sundstrom, E.; Guillemot, F.; Pachnis, V.; Marklund, U. Ascl1 Is Required for the Development of Specific Neuronal Subtypes in the Enteric Nervous System. J. Neurosci. 2016, 36, 4339–4350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamura, Y.; Saga, Y. Notch signaling is required for the maintenance of enteric neural crest progenitors. Development 2008, 135, 3555–3565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labosky, P.A.; Kaestner, K.H. The winged helix transcription factor Hfh2 is expressed in neural crest and spinal cord during mouse development. Mech. Dev. 1998, 76, 185–190. [Google Scholar] [CrossRef]
- Dottori, M.; Gross, M.K.; Labosky, P.; Goulding, M. The winged-helix transcription factor Foxd3 suppresses interneuron differentiation and promotes neural crest cell fate. Development 2001, 128, 4127–4138. [Google Scholar] [CrossRef]
- Teng, L.; Mundell, N.A.; Frist, A.Y.; Wang, Q.; Labosky, P.A. Requirement for Foxd3 in the maintenance of neural crest progenitors. Development 2008, 135, 1615–1624. [Google Scholar] [CrossRef] [Green Version]
- Mundell, N.A.; Plank, J.L.; LeGrone, A.W.; Frist, A.Y.; Zhu, L.; Shin, M.K.; Southard-Smith, E.M.; Labosky, P.A. Enteric nervous system specific deletion of Foxd3 disrupts glial cell differentiation and activates compensatory enteric progenitors. Dev. Biol. 2012, 363, 373–387. [Google Scholar] [CrossRef] [Green Version]
- Rada-Iglesias, A.; Bajpai, R.; Prescott, S.; Brugmann, S.A.; Swigut, T.; Wysocka, J. Epigenomic annotation of enhancers predicts transcriptional regulators of human neural crest. Cell Stem Cell 2012, 11, 633–648. [Google Scholar] [CrossRef] [Green Version]
- Bonnamour, G.; Charrier, B.; Sallis, S.; Leduc, E.; Pilon, N. NR2F1 regulates a Schwann cell precursor-vs-melanocyte cell fate switch in a mouse model of Waardenburg syndrome type IV. Pigment. Cell Melanoma Res. 2022, 35, 506–516. [Google Scholar] [CrossRef]
- Southard-Smith, E.M.; Kos, L.; Pavan, W.J. Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat. Genet. 1998, 18, 60–64. [Google Scholar] [CrossRef] [Green Version]
- Kuhlbrodt, K.; Herbarth, B.; Sock, E.; Hermans-Borgmeyer, I.; Wegner, M. Sox10, a novel transcriptional modulator in glial cells. J. Neurosci. 1998, 18, 237–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paratore, C.; Eichenberger, C.; Suter, U.; Sommer, L. Sox10 haploinsufficiency affects maintenance of progenitor cells in a mouse model of Hirschsprung disease. Hum. Mol. Genet. 2002, 11, 3075–3085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Bono, C.; Liu, Y.; Ferrena, A.; Valentine, A.; Zheng, D.; Morrow, B.E. Single-cell transcriptomics uncovers a non-autonomous Tbx1-dependent genetic program controlling cardiac neural crest cell development. Nat. Commun. 2023, 14, 1551. [Google Scholar] [CrossRef]
- Lopez, S.H.; Avetisyan, M.; Wright, C.M.; Mesbah, K.; Kelly, R.G.; Moon, A.M.; Heuckeroth, R.O. Loss of Tbx3 in murine neural crest reduces enteric glia and causes cleft palate, but does not influence heart development or bowel transit. Dev. Biol. 2018, 444 (Suppl. S1), S337–S351. [Google Scholar] [CrossRef]
- Morarach, K.; Mikhailova, A.; Knoflach, V.; Memic, F.; Kumar, R.; Li, W.; Ernfors, P.; Marklund, U. Diversification of molecularly defined myenteric neuron classes revealed by single-cell RNA sequencing. Nat. Neurosci. 2021, 24, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Mao, J.; Tenzen, T.; Kottmann, A.H.; McMahon, A.P. Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordia. Genes Dev. 2004, 18, 937–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, M.; Lui, V.C.; Sham, M.H.; Pachnis, V.; Tam, P.K. Sonic hedgehog regulates the proliferation, differentiation, and migration of enteric neural crest cells in gut. J. Cell Biol. 2004, 166, 673–684. [Google Scholar] [CrossRef]
- Bitgood, M.J.; McMahon, A.P. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev. Biol. 1995, 172, 126–138. [Google Scholar] [CrossRef] [Green Version]
- Echelard, Y.; Epstein, D.J.; St-Jacques, B.; Shen, L.; Mohler, J.; McMahon, J.A.; McMahon, A.P. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 1993, 75, 1417–1430. [Google Scholar] [CrossRef]
- Nishino, J.; Saunders, T.L.; Sagane, K.; Morrison, S.J. Lgi4 promotes the proliferation and differentiation of glial lineage cells throughout the developing peripheral nervous system. J. Neurosci. 2010, 30, 15228–15240. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.; Lendahl, U.; Lardelli, M. Complementary and combinatorial patterns of Notch gene family expression during early mouse development. Mech. Dev. 1995, 53, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Mead, T.J.; Yutzey, K.E. Notch pathway regulation of neural crest cell development in vivo. Dev. Dyn. 2012, 241, 376–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodhoo, A.; Alonso, M.B.; Droggiti, A.; Turmaine, M.; D’Antonio, M.; Parkinson, D.B.; Wilton, D.K.; Al-Shawi, R.; Simons, P.; Shen, J.; et al. Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nat. Neurosci. 2009, 12, 839–847. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.K.; Yeager, K.; Morrison, S.J. Physiological Notch signaling promotes gliogenesis in the developing peripheral and central nervous systems. Development 2007, 134, 2435–2447. [Google Scholar] [CrossRef] [Green Version]
- Britsch, S.; Li, L.; Kirchhoff, S.; Theuring, F.; Brinkmann, V.; Birchmeier, C.; Riethmacher, D. The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes Dev. 1998, 12, 1825–1836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, D.; Birchmeier, C. Multiple essential functions of neuregulin in development. Nature 1995, 378, 386–390. [Google Scholar] [CrossRef]
- Chalazonitis, A.; D’Autreaux, F.; Pham, T.D.; Kessler, J.A.; Gershon, M.D. Bone morphogenetic proteins regulate enteric gliogenesis by modulating ErbB3 signaling. Dev. Biol. 2011, 350, 64–79. [Google Scholar] [CrossRef] [Green Version]
- Jarde, T.; Chan, W.H.; Rossello, F.J.; Kaur Kahlon, T.; Theocharous, M.; Kurian Arackal, T.; Flores, T.; Giraud, M.; Richards, E.; Chan, E.; et al. Mesenchymal Niche-Derived Neuregulin-1 Drives Intestinal Stem Cell Proliferation and Regeneration of Damaged Epithelium. Cell Stem Cell 2020, 27, 646–662.e7. [Google Scholar] [CrossRef]
- Riethmacher, D.; Sonnenberg-Riethmacher, E.; Brinkmann, V.; Yamaai, T.; Lewin, G.R.; Birchmeier, C. Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature 1997, 389, 725–730. [Google Scholar] [CrossRef]
- Elmentaite, R.; Kumasaka, N.; Roberts, K.; Fleming, A.; Dann, E.; King, H.W.; Kleshchevnikov, V.; Dabrowska, M.; Pritchard, S.; Bolt, L.; et al. Cells of the human intestinal tract mapped across space and time. Nature 2021, 597, 250–255. [Google Scholar] [CrossRef]
- Fawkner-Corbett, D.; Antanaviciute, A.; Parikh, K.; Jagielowicz, M.; Geros, A.S.; Gupta, T.; Ashley, N.; Khamis, D.; Fowler, D.; Morrissey, E.; et al. Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell 2021, 184, 810–826.e23. [Google Scholar] [CrossRef]
- Lasrado, R.; Boesmans, W.; Kleinjung, J.; Pin, C.; Bell, D.; Bhaw, L.; McCallum, S.; Zong, H.; Luo, L.; Clevers, H.; et al. Lineage-dependent spatial and functional organization of the mammalian enteric nervous system. Science 2017, 356, 722–726. [Google Scholar] [CrossRef]
- Majd, H.; Samuel, R.M.; Ramirez, J.T.; Kalantari, A.; Barber, K.; Ghazizadeh, Z.; Chemel, A.K.; Cesiulis, A.; Richter, M.N.; Das, S.; et al. hPSC-Derived Enteric Ganglioids Model Human ENS Development and Function. BioRxiv 2022. [Google Scholar] [CrossRef]
- Laddach, A.; Chng, S.H.; Lasrado, R.; Progatzky, F.; Shapiro, M.; Artemov, A.V.; Sampedro Cataneda, M.; Erickson, A.; Bon-Frauches, A.C.; Kleinjung, J.; et al. A branching model of cell fate decisions in the enteric nervous system. BioRxiv 2022. [Google Scholar] [CrossRef]
- Scantlen, M.D.; Majd, H.; Fattahi, F. Modeling enteric glia development, physiology and disease using human pluripotent stem cells. Neurosci. Lett. 2023, 811, 137334. [Google Scholar] [CrossRef] [PubMed]
- Kabouridis, P.S.; Lasrado, R.; McCallum, S.; Chng, S.H.; Snippert, H.J.; Clevers, H.; Pettersson, S.; Pachnis, V. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron 2015, 85, 289–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inlender, T.; Nissim-Eliraz, E.; Stavely, R.; Hotta, R.; Goldstein, A.M.; Yagel, S.; Gutnick, M.J.; Shpigel, N.Y. Homeostasis of mucosal glial cells in human gut is independent of microbiota. Sci. Rep. 2021, 11, 12796. [Google Scholar] [CrossRef]
- Le Berre, C.; Naveilhan, P.; Rolli-Derkinderen, M. Enteric glia at center stage of inflammatory bowel disease. Neurosci. Lett. 2023, 809, 137315. [Google Scholar] [CrossRef]
- Delvalle, N.M.; Dharshika, C.; Morales-Soto, W.; Fried, D.E.; Gaudette, L.; Gulbransen, B.D. Communication Between Enteric Neurons, Glia, and Nociceptors Underlies the Effects of Tachykinins on Neuroinflammation. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 321–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cirillo, C.; Sarnelli, G.; Turco, F.; Mango, A.; Grosso, M.; Aprea, G.; Masone, S.; Cuomo, R. Proinflammatory stimuli activates human-derived enteroglial cells and induces autocrine nitric oxide production. Neurogastroenterol. Motil. 2011, 23, e372–e382. [Google Scholar] [CrossRef]
- Murakami, M.; Ohta, T.; Ito, S. Lipopolysaccharides enhance the action of bradykinin in enteric neurons via secretion of interleukin-1beta from enteric glial cells. J. Neurosci. Res. 2009, 87, 2095–2104. [Google Scholar] [CrossRef] [PubMed]
- Ruhl, A.; Franzke, S.; Collins, S.M.; Stremmel, W. Interleukin-6 expression and regulation in rat enteric glial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 280, G1163–G1171. [Google Scholar] [CrossRef] [Green Version]
- Chow, A.K.; Grubisic, V.; Gulbransen, B.D. Enteric Glia Regulate Lymphocyte Activation via Autophagy-Mediated MHC-II Expression. Cell. Mol. Gastroenterol. Hepatol. 2021, 12, 1215–1237. [Google Scholar] [CrossRef] [PubMed]
- Rühl, A.; Franzke, S.; Stremmel, W. IL-1beta and IL-10 have dual effects on enteric glial cell proliferation. Neurogastroenterol. Motil. 2001, 13, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Brown, I.A.M.; McClain, J.L.; Watson, R.E.; Patel, B.A.; Gulbransen, B.D. Enteric Glia Mediate Neuron Death in Colitis Through Purinergic Pathways That Require Connexin-43 and Nitric Oxide. Cell. Mol. Gastroenterol. Hepatol. 2016, 2, 77–91. [Google Scholar] [CrossRef] [Green Version]
- Bondurand, N.; Natarajan, D.; Thapar, N.; Atkins, C.; Pachnis, V. Neuron and glia generating progenitors of the mammalian enteric nervous system isolated from foetal and postnatal gut cultures. Development 2003, 130, 6387–6400. [Google Scholar] [CrossRef] [Green Version]
- Kruger, G.M.; Mosher, J.T.; Bixby, S.; Joseph, N.; Iwashita, T.; Morrison, S.J. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron 2002, 35, 657–669. [Google Scholar] [CrossRef] [Green Version]
- Suarez-Rodriguez, R.; Belkind-Gerson, J. Cultured nestin-positive cells from postnatal mouse small bowel differentiate ex vivo into neurons, glia, and smooth muscle. Stem Cells 2004, 22, 1373–1385. [Google Scholar] [CrossRef]
- Metzger, M.; Bareiss, P.M.; Danker, T.; Wagner, S.; Hennenlotter, J.; Guenther, E.; Obermayr, F.; Stenzl, A.; Koenigsrainer, A.; Skutella, T.; et al. Expansion and differentiation of neural progenitors derived from the human adult enteric nervous system. Gastroenterology 2009, 137, 2063–2073.e4. [Google Scholar] [CrossRef]
- Metzger, M.; Caldwell, C.; Barlow, A.J.; Burns, A.J.; Thapar, N. Enteric nervous system stem cells derived from human gut mucosa for the treatment of aganglionic gut disorders. Gastroenterology 2009, 136, 2214–2225.e3. [Google Scholar] [CrossRef]
- Rauch, U.; Hansgen, A.; Hagl, C.; Holland-Cunz, S.; Schafer, K.H. Isolation and cultivation of neuronal precursor cells from the developing human enteric nervous system as a tool for cell therapy in dysganglionosis. Int. J. Colorectal. Dis. 2006, 21, 554–559. [Google Scholar] [CrossRef]
- McCallum, S.; Obata, Y.; Fourli, E.; Boeing, S.; Peddie, C.J.; Xu, Q.; Horswell, S.; Kelsh, R.N.; Collinson, L.; Wilkinson, D.; et al. Enteric glia as a source of neural progenitors in adult zebrafish. Elife 2020, 9, e56086. [Google Scholar] [CrossRef] [PubMed]
- Joseph, N.M.; He, S.; Quintana, E.; Kim, Y.G.; Nunez, G.; Morrison, S.J. Enteric glia are multipotent in culture but primarily form glia in the adult rodent gut. J. Clin. Investig. 2011, 121, 3398–3411. [Google Scholar] [CrossRef] [PubMed]
- Belkind-Gerson, J.; Graham, H.K.; Reynolds, J.; Hotta, R.; Nagy, N.; Cheng, L.; Kamionek, M.; Shi, H.N.; Aherne, C.M.; Goldstein, A.M. Colitis promotes neuronal differentiation of Sox2+ and PLP1+ enteric cells. Sci. Rep. 2017, 7, 2525. [Google Scholar] [CrossRef] [Green Version]
- Belkind-Gerson, J.; Hotta, R.; Nagy, N.; Thomas, A.R.; Graham, H.; Cheng, L.; Solorzano, J.; Nguyen, D.; Kamionek, M.; Dietrich, J.; et al. Colitis induces enteric neurogenesis through a 5-HT4-dependent mechanism. Inflamm. Bowel Dis. 2015, 21, 870–878. [Google Scholar] [CrossRef] [PubMed]
- Laranjeira, C.; Sandgren, K.; Kessaris, N.; Richardson, W.; Potocnik, A.; Vanden Berghe, P.; Pachnis, V. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J. Clin. Investig. 2011, 121, 3412–3424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belkind-Gerson, J.; Carreon-Rodriguez, A.; Benedict, L.A.; Steiger, C.; Pieretti, A.; Nagy, N.; Dietrich, J.; Goldstein, A.M. Nestin-expressing cells in the gut give rise to enteric neurons and glial cells. Neurogastroenterol. Motil. 2013, 25, 61–69.e7. [Google Scholar] [CrossRef] [Green Version]
- Lilli, N.L.; Queneherve, L.; Haddara, S.; Brochard, C.; Aubert, P.; Rolli-Derkinderen, M.; Durand, T.; Naveilhan, P.; Hardouin, J.B.; De Giorgio, R.; et al. Glioplasticity in irritable bowel syndrome. Neurogastroenterol. Motil. 2018, 30, e13232. [Google Scholar] [CrossRef]
- Meira de-Faria, F.; Casado-Bedmar, M.; Marten Lindqvist, C.; Jones, M.P.; Walter, S.A.; Keita, A.V. Altered interaction between enteric glial cells and mast cells in the colon of women with irritable bowel syndrome. Neurogastroenterol. Motil. 2021, 33, e14130. [Google Scholar] [CrossRef]
- Stoffels, B.; Hupa, K.J.; Snoek, S.A.; van Bree, S.; Stein, K.; Schwandt, T.; Vilz, T.O.; Lysson, M.; Veer, C.V.; Kummer, M.P.; et al. Postoperative ileus involves interleukin-1 receptor signaling in enteric glia. Gastroenterology 2014, 146, 176–187.e1. [Google Scholar] [CrossRef]
- Lopez-Gomez, L.; Szymaszkiewicz, A.; Zielinska, M.; Abalo, R. Nutraceuticals and Enteric Glial Cells. Molecules 2021, 26, 3762. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.V.S.; Bon-Frauches, A.C.; Silva, A.; Lima-Junior, R.C.P.; Martins, C.S.; Leitao, R.F.C.; Freitas, G.B.; Castelucci, P.; Bolick, D.T.; Guerrant, R.L.; et al. 5-Fluorouracil Induces Enteric Neuron Death and Glial Activation During Intestinal Mucositis via a S100B-RAGE-NFkappaB-Dependent Pathway. Sci. Rep. 2019, 9, 665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, G.; Capoccia, E.; Turco, F.; Palumbo, I.; Lu, J.; Steardo, A.; Cuomo, R.; Sarnelli, G.; Steardo, L. Palmitoylethanolamide improves colon inflammation through an enteric glia/toll like receptor 4-dependent PPAR-α activation. Gut 2014, 63, 1300–1312. [Google Scholar] [CrossRef]
- Sarnelli, G.; Seguella, L.; Pesce, M.; Lu, J.; Gigli, S.; Bruzzese, E.; Lattanzi, R.; D’Alessandro, A.; Cuomo, R.; Steardo, L.; et al. HIV-1 Tat-induced diarrhea is improved by the PPARalpha agonist, palmitoylethanolamide, by suppressing the activation of enteric glia. J. Neuroinflamm. 2018, 15, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Boyen, G.B.T.; Steinkamp, M.; Geerling, I.; Reinshagen, M.; Schäfer, K.H.; Adler, G.; Kirsch, J. Proinflammatory Cytokines Induce Neurotrophic Factor Expression in Enteric Glia. Inflamm. Bowel Dis. 2006, 12, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Meir, M.; Burkard, N.; Ungewiss, H.; Diefenbacher, M.; Flemming, S.; Kannapin, F.; Germer, C.T.; Schweinlin, M.; Metzger, M.; Waschke, J.; et al. Neurotrophic factor GDNF regulates intestinal barrier function in inflammatory bowel disease. J. Clin. Investig. 2019, 129, 2824–2840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.K.; He, F.Q.; Li, T.K.; Pang, X.H.; Cui, D.J.; Xie, Q.; Huang, X.L.; Gan, H.T. Glial-derived neurotrophic factor regulates intestinal epithelial barrier function and inflammation and is therapeutic for murine colitis. J. Pathol. 2010, 222, 213–222. [Google Scholar] [CrossRef]
- Stavely, R.; Hotta, R.; Picard, N.; Rahman, A.A.; Pan, W.; Bhave, S.; Omer, M.; Ho, W.L.N.; Guyer, R.A.; Goldstein, A.M. Schwann cells in the subcutaneous adipose tissue have neurogenic potential and can be used for regenerative therapies. Sci. Transl. Med. 2022, 14, eabl8753. [Google Scholar] [CrossRef]
- Cheng, L.S.; Hotta, R.; Graham, H.K.; Belkind-Gerson, J.; Nagy, N.; Goldstein, A.M. Postnatal human enteric neuronal progenitors can migrate, differentiate, and proliferate in embryonic and postnatal aganglionic gut environments. Pediatr. Res. 2017, 81, 838–846. [Google Scholar] [CrossRef]
- Cooper, J.E.; McCann, C.J.; Natarajan, D.; Choudhury, S.; Boesmans, W.; Delalande, J.M.; Vanden Berghe, P.; Burns, A.J.; Thapar, N. In Vivo Transplantation of Enteric Neural Crest Cells into Mouse Gut; Engraftment, Functional Integration and Long-Term Safety. PLoS ONE 2016, 11, e0147989. [Google Scholar] [CrossRef] [Green Version]
- Fattahi, F.; Steinbeck, J.A.; Kriks, S.; Tchieu, J.; Zimmer, B.; Kishinevsky, S.; Zeltner, N.; Mica, Y.; El-Nachef, W.; Zhao, H.; et al. Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature 2016, 531, 105–109. [Google Scholar] [CrossRef] [Green Version]
- Hotta, R.; Cheng, L.S.; Graham, H.K.; Pan, W.; Nagy, N.; Belkind-Gerson, J.; Goldstein, A.M. Isogenic enteric neural progenitor cells can replace missing neurons and glia in mice with Hirschsprung disease. Neurogastroenterol. Motil. 2016, 28, 498–512. [Google Scholar] [CrossRef] [Green Version]
- Stavely, R.; Abalo, R.; Nurgali, K. Targeting Enteric Neurons and Plexitis for the Management of Inflammatory Bowel Disease. Curr. Drug Targets 2020, 21, 1428–1439. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Hackland, J.; Baggiolini, A.; Hung, L.Y.; Zhao, H.; Zumbo, P.; Oberst, P.; Minotti, A.P.; Hergenreder, E.; Najjar, S.; et al. hPSC-derived sacral neural crest enables rescue in a severe model of Hirschsprung’s disease. Cell Stem Cell 2023, 30, 264–282.e9. [Google Scholar] [CrossRef]
- Hotta, R.; Natarajan, D.; Burns, A.J.; Thapar, N. Cellular-Based Therapies for Paediatric GI Motility Disorders. In Pediatric Neurogastroenterology: Gastrointestinal Motility Disorders and Disorders of Gut Brain Interaction in Children; Faure, C., Thapar, N., Di Lorenzo, C., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 617–629. [Google Scholar] [CrossRef]
- Heuckeroth, R.O. Hirschsprung disease—Integrating basic science and clinical medicine to improve outcomes. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 152–167. [Google Scholar] [CrossRef]
- Watanabe, Y.; Ito, F.; Ando, H.; Seo, T.; Kaneko, K.; Harada, T.; Iino, S. Morphological investigation of the enteric nervous system in Hirschsprung’s disease and hypoganglionosis using whole-mount colon preparation. J. Pediatr. Surg. 1999, 34, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Rahman, A.A.; Stavely, R.; Bhave, S.; Guyer, R.; Omer, M.; Picard, N.; Goldstein, A.M.; Hotta, R. Schwann Cells in the Aganglionic Colon of Hirschsprung Disease Can Generate Neurons for Regenerative Therapy. Stem Cells Transl. Med. 2022, 11, 1232–1244. [Google Scholar] [CrossRef]
- Wilkinson, D.J.; Bethell, G.S.; Shukla, R.; Kenny, S.E.; Edgar, D.H. Isolation of Enteric Nervous System Progenitor Cells from the Aganglionic Gut of Patients with Hirschsprung’s Disease. PLoS ONE 2015, 10, e0125724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soret, R.; Lassoued, N.; Bonnamour, G.; Bernas, G.; Barbe, A.; Pelletier, M.; Aichi, M.; Pilon, N. Genetic Background Influences Severity of Colonic Aganglionosis and Response to GDNF Enemas in the Holstein Mouse Model of Hirschsprung Disease. Int. J. Mol. Sci. 2021, 22, 13140. [Google Scholar] [CrossRef] [PubMed]
- Soret, R.; Schneider, S.; Bernas, G.; Christophers, B.; Souchkova, O.; Charrier, B.; Righini-Grunder, F.; Aspirot, A.; Landry, M.; Kembel, S.W.; et al. Glial Cell Derived Neurotrophic Factor Induces Enteric Neurogenesis and Improves Colon Structure and Function in Mouse Models of Hirschsprung Disease. Gastroenterology 2020, 159, 1824–1838.e17. [Google Scholar] [CrossRef]
- Hosoda, K.; Hammer, R.E.; Richardson, J.A.; Baynash, A.G.; Cheung, J.C.; Giaid, A.; Yanagisawa, M. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 1994, 79, 1267–1276. [Google Scholar] [CrossRef] [PubMed]
- Soret, R.; Mennetrey, M.; Bergeron, K.F.; Dariel, A.; Neunlist, M.; Grunder, F.; Faure, C.; Silversides, D.W.; Pilon, N. A collagen VI-dependent pathogenic mechanism for Hirschsprung’s disease. J. Clin. Investig. 2015, 125, 4483–4496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergeron, K.F.; Cardinal, T.; Toure, A.M.; Beland, M.; Raiwet, D.L.; Silversides, D.W.; Pilon, N. Male-Biased Aganglionic Megacolon in the TashT Mouse Line Due to Perturbation of Silencer Elements in a Large Gene Desert of Chromosome 10. PLoS Genet. 2015, 11, e1005093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toure, A.M.; Charrier, B.; Pilon, N. Male-specific colon motility dysfunction in the TashT mouse line. Neurogastroenterol. Motil. 2016, 28, 1494–1507. [Google Scholar] [CrossRef]
- Montanari, M.; Imbriani, P.; Bonsi, P.; Martella, G.; Peppe, A. Beyond the Microbiota: Understanding the Role of the Enteric Nervous System in Parkinson’s Disease from Mice to Human. Biomedicines 2023, 11, 1560. [Google Scholar] [CrossRef]
- Videlock, E.J.; Xing, T.; Yehya, A.H.S.; Travagli, R.A. Experimental models of gut-first Parkinson’s disease: A systematic review. Neurogastroenterol. Motil. 2023, 35, e14604. [Google Scholar] [CrossRef]
- Braak, H.; Del Tredici, K.; Rub, U.; de Vos, R.A.; Jansen Steur, E.N.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 2003, 24, 197–211. [Google Scholar] [CrossRef]
- Lopez-Pingarron, L.; Almeida, H.; Soria-Aznar, M.; Reyes-Gonzales, M.C.; Terron, M.P.; Garcia, J.J. Role of Oxidative Stress on the Etiology and Pathophysiology of Amyotrophic Lateral Sclerosis (ALS) and Its Relation with the Enteric Nervous System. Curr. Issues Mol. Biol. 2023, 45, 3315–3332. [Google Scholar] [CrossRef]
- Pattle, S.B.; O’Shaughnessy, J.; Kantelberg, O.; Rifai, O.M.; Pate, J.; Nellany, K.; Hays, N.; Arends, M.J.; Horrocks, M.H.; Waldron, F.M.; et al. pTDP-43 aggregates accumulate in non-central nervous system tissues prior to symptom onset in amyotrophic lateral sclerosis: A case series linking archival surgical biopsies with clinical phenotypic data. J. Pathol. Clin. Res. 2023, 9, 44–55. [Google Scholar] [CrossRef]
- Zhang, Y.; Ogbu, D.; Garrett, S.; Xia, Y.; Sun, J. Aberrant enteric neuromuscular system and dysbiosis in amyotrophic lateral sclerosis. Gut Microbes 2021, 13, 1996848. [Google Scholar] [CrossRef]
- Geng, Z.H.; Zhu, Y.; Li, Q.L.; Zhao, C.; Zhou, P.H. Enteric Nervous System: The Bridge Between the Gut Microbiota and Neurological Disorders. Front. Aging Neurosci. 2022, 14, 810483. [Google Scholar] [CrossRef] [PubMed]
- Clairembault, T.; Kamphuis, W.; Leclair-Visonneau, L.; Rolli-Derkinderen, M.; Coron, E.; Neunlist, M.; Hol, E.M.; Derkinderen, P. Enteric GFAP expression and phosphorylation in Parkinson’s disease. J. Neurochem. 2014, 130, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Clairembault, T.; Leclair-Visonneau, L.; Neunlist, M.; Derkinderen, P. Enteric glial cells: New players in Parkinson’s disease? Mov. Disord. 2015, 30, 494–498. [Google Scholar] [CrossRef] [PubMed]
EGC Subtype | Anatomical Region | Topological and Morphological Features |
---|---|---|
Type I | Myenteric and submucosal plexuses | Within myenteric and submucosal ganglia; composed of multiple irregular and highly branched processes, terminating with end-feet like structures and contacting multiple EGCs and neurons. Also named “protoplasmic”. |
Type II | Myenteric and submucosal plexuses | Located within or at the border of interganglionic fibers; exhibiting long parallel processes extending along interganglionic fibers without ensheathing them. Also named “fibrous”. |
Type III(MP/SMP) | Myenteric and submucosal plexuses | Outside ganglia and interganglionic fibers, but lying in the same plane; displaying four major processes with secondary branching, closely associated with thin neuronal fibers or small blood vessels. |
Type III(Mucosa) | Lamina propria | |
Type IV | Circular and longitudinal smooth muscle layers | Associated with thin nerve fibers in the muscularis; characterized by two unbranched processes extending parallelly along nerve fibers. Also named “bipolar”. |
References | Characterized Function | Functional Specialization of EGC Subtypes |
---|---|---|
Boesmans et al., 2015 [23] | Calcium responsiveness to ATP stimulation | In the adult mouse colon, the topo-morphological types I, II and III from myenteric plexus display subtype-specific calcium responsiveness, with Type I EGCs being the most responsive and Type III being the least responsive to purinergic receptor stimulation. |
Seguella et al., 2022 [25] | Calcium responsiveness to ADP and CCK stimulation | Type I EGCs exhibit four distinct profiles of calcium responsiveness to ADP and CCK stimulation (ADPHigh/CCKHigh, ADPHigh/CCKLow, ADPLow/CCKHigh, ADPLow/CCKLow) in adult mice, this local diversity being also differentially distributed between duodenum and colon (regional diversity). |
Baghdadi et al., 2022 [19] | Intestinal epithelium homeostasis and repair | GFAP+ Type III(Mucosa) EGCs are a key component of the intestinal stem cell niche in the adult murine ileum, being a source of WNT signals important for epithelium homeostasis and repair. |
References | Experimental Condition | Transcriptional Signatures |
---|---|---|
Zeisel et al., 2018 [26] | scRNA-seq of tdTomato+ cells from small intestine muscles and myenteric plexus of P21 Wnt1-Cre;R26R-tdTomato mice. | 7 glial clusters (ENTG1-7), including 1 proliferating and 3 expressing Slc18a2. |
Drokhlyansky et al., 2020 [13] | snRNA-seq of GFP+ nuclei and ribosome-bound RNA from full-thickness small intestine and colon of Sox10-Cre;INTACT, Wnt1-Cre2;INTACT, and Uchl1-H2BmCherry:GFPgpi mice, as a function of age (11–14 weeks vs. 50–52 weeks), sex and circadian phase. | 3 glial clusters (Glia1-3) enriched in Gfra2, Slc18a2, or Ntsr1 transcripts, respectively. No difference as a function of gut region, age, sex, or circadian phase. |
Wright et al., 2021 [27] | snRNA-seq of mCherry+ nuclei from distal colon muscles and myenteric plexus of P47-52 Wnt1-Cre;R26R-H2B-mCherry mice. | 4 glial clusters (Glia1-4); no clearly distinctive features reported. |
Baghdadi et al., 2022 [19] | Re-analysis of scRNA-seq data generated using colonic mesenchymal cells isolated from the mucosa of adult WT mice [28]. | 3 glial clusters (EGC#0-EGC#2) based on % of Gfap- and Plp1-expressing cells in each cluster: GfapHigh/Plp1Mid, GfapLow/Plp1High, and GfapMid/Plp1Low. |
Re-analysis of scRNA-seq data generated using colonic stromal cells isolated from mucosal biopsies of healthy humans and patients with ulcerative colitis (UC), aged between 18 and 90 years [29]. | 4 glial clusters (hEGC#0-EGC#3) based on health status, with hEGC#1 and 2 enriched in healthy samples and hEGC#0 and 3 enriched in UC samples. hEGC#1 corresponds to murine EGC#1 (GfapLow/Plp1High), while hEGC#0 corresponds to murine EGC#0 (GfapHigh/Plp1Mid). | |
Guyer et al., 2023 [30] | scMulti-seq (scRNAseq combined with ATAC-seq) of GFP+ cells from small intestine muscles and myenteric plexus of P14 Plp1-GFP mice. | 9 transcriptional clusters (clusters #0–8) based on gene expression, chromatin accessibility at neuronal marker peaks, and motif enrichment patterns, including: 2 classified as replicating, 4 with open chromatin, 1 with restricted chromatin and 2 poised for neurogenesis. One of these “neurogenic” clusters is specifically enriched in Slc18a2, Ramp1, and Cpe transcripts. |
Schneider et al., 2023 [31] | scRNA-seq of GFP+ cells from full-thickness colon of adult Sox10-Cre;INTACT mice kept under restraint stress or not. | 4 glial clusters, including 1 exclusively present under psychological stress condition, named enteric glia, associated with psychological stress (eGAPS) and highly expressing Nr4a1/2/3. |
EGC Regulator | Relevant Expression Pattern | Experimental Evidence |
---|---|---|
ASCL1 (MASH1) Transcription factor | NCCs [61], ENS progenitors [62,63], enteric neurons and EGCs [62]. | In addition to defective neurogenesis, Ascl1−/− embryos have less S100B+ Sox10+ EGCs in ileum and colon. Rescue of enteric neurogenesis but not gliogenesis in Ascl1KINgn2 embryos suggests that ASCL1, which is typically pro-neuronal, also plays an active role in promoting gliogenesis [62]. |
FOXD3 Transcription factor | NCCs [64,65], SCPs [65], ENS progenitors [66] and EGCs [67]. | Targeted deletion of Foxd3 in vagal NCC-derived ENS progenitors specifically impairs the formation of S100β+ EGCs in Foxd3flox/−;Ednrb-iCre;R26RYFP+ embryos, leaving neurogenesis virtually unaffected [67]. |
NR2F1 Transcription factor | NCCs [68] and SCPs [69]. | Insertional mutagenesis-induced upregulation of Nr2f1 in NCCs leads to premature formation of S100β+ SOX10+ EGCs at the expense of SOX10+ ENS progenitors in Nr2f1Spt/Spt embryos [58]. |
SOX10 Transcription factor | NCCs [70,71], SCPs [71], ENS progenitors [70,72] and EGCs [51]. | ENS progenitors from Sox10LacZ/+ embryos precociously express the pan-neuronal marker PGP9.5 [72]. Decreased SOX10 levels attenuate the Hedgehog-induced expression of the EGC marker Fabp7 in Wnt1-Cre;Sufuf/f;Sox10N/+ embryos [59]. |
TBX3 Transcription factor | NCCs [73], ENS progenitors and enteric neurons [27,74,75]. | Targeted deletion of Tbx3 in NCCs leads to a marked reduction of S100β+ EGC density in Wnt1-Cre;Tbx3fl/fl embryos. Detection of TBX3 protein in enteric neurons but not in EGCs suggest a non-cell autonomous role [74]. |
Hedgehog Signaling pathway | NCCs [76] and ENS progenitors [77] for PTCH1/SMO binding/signaling receptors and GLI nuclear effectors. Gut epithelium for SHH and IHH ligands [78,79]. | Ptch1 deletion-induced activation of Hedgehog signaling in vagal NCCs upregulates the EGC marker Fabp7 in the developing gut of b3-IIIa-Cre;Ptch1f/f embryos, while transduction of CRE in cultured Ptch1f/f ENS progenitors increases the formation of S100β+ EGCs at the expense of TH+ enteric neurons [60]. Tilting the GLIA-vs-GLIR balance toward GLI activation in Wnt1-Cre;Sufuf/f embryos or GLI repression in Gli3Δ699/Δ699 embryos increases or decreases the production of FABP7+ EGCs, respectively [59]. |
LGI4/ADAM22 Signaling pathway | ENS progenitors and EGCs [80]. | Mice deficient in either Lgi4 or Adam22 exhibit a similar defect in enteric gliogenesis, characterized by a decreased number of FABP7+ EGCs in vivo and lower GFAP expression in enteric neurosphere assays [80]. |
Notch Signaling pathway | NCCs [81,82], SCPs [83] and ENS progenitors [63] for multiple DLL/JAG ligands and Notch receptors. | Targeted inhibition of Notch signaling results in a marked decrease of FABP7+ EGCs in Wnt1-Cre;Rbpsuhfl/fl embryos, which is accompanied by a more modest decrease in the number of TuJ1+ enteric neurons [84]. DLL1 treatment of cultured ENS progenitors is sufficient for promoting the formation of GFAP+ EGCs, while DAPT-mediated inhibition of Notch signaling impairs Hedgehog-induced gliogenesis in the same system [60]. |
NRG/ERBB Signaling pathway | NCCs [85], SCPs [86], ENS progenitors and EGCs for ERBB3 receptor [87]. Gut mesenchyme for NRG1 (GGF2) ligand [87,88]. | S100β staining suggest that both SCPs and EGCs are absent in erbB3−/− embryos [89]. NRG1 (GGF2) treatment of cultured ENS progenitors promote their differentiation in GFAP+ EGCs, this effect being increased by pre-treatment with BMP4 [87]. |
References | Experimental Condition | Relevant Results |
---|---|---|
Joseph et al., 2011 [113] | CD49b+ EGCs sorted from the small intestine (muscles and myenteric plexus) of adult WT mice. | Sorted CD49b+ cells express glial markers (GFAP, SOX10, S100β, p75, and Nestin) and can be cultured as self-renewing neurospheres that differentiate in peripherin+ neurons, GFAP+ EGCs and α-SMA+ myofibroblasts. |
BrdU incorporation assays in the small intestine of adult WT mice (and rats) housed in normal conditions or exposed to various potential triggers of neurogenesis (e.g., DSS-induced inflammation, BAC-induced focal aganglionosis). | Basal enteric gliogenesis is detectable under steady-state condition, becoming markedly increased after certain types of injury (up to 90% of S100β+ were also BrdU+ in BAC-ablated regions). No evidence of neurogenesis, with exception of a single rat (out of 85 rodents in total) in which 6.1% of HuC/D+ myenteric neurons did incorporate BrdU in BAC-ablated region. | |
Cell lineage tracing in the small intestine of adult GFAP-Cre;R26R-YFP or GFAP-CreERT2;R26R-YFP mice, exposed to BAC treatment or not. | With the constitutive Cre driver line, 6–7% of HuC/D+ myenteric neurons were also YFP+ in both control and BAC-treated mice. This most likely reflects an early fetal/neonatal contribution from a GFAP+ progenitor, which was no longer detectable when the tamoxifen-inducible Cre driver was activated in adults (<0.1% of HuC/D+ also YFP+ in this case). | |
Laranjeira et al., 2011 [116] | Cultures of enzymatically dissociated small intestine (muscles and myenteric plexus) from tamoxifen-treated adult Sox10-iCreERT2;R26R-YFP or hGFAP-CreERT2;R26R-YFP mice. | YFP+ cells generate bipotential SOX10+ PHOX2B+ ASCL1+ ENS progenitors that can be cultured as self-renewing neurospheres, and can be differentiated in GFAP+ EGCs and multiple neuronal subtypes (nNOS+, VIP+, or NPY+). |
Cell lineage tracing studies in the small intestine of adult Sox10-iCreERT2;R26R-YFP mice, exposed to BAC treatment or not. | YFP+ HuC/D+ myenteric neurons are not detected following tamoxifen treatment under steady-state conditions but are readily detected upon BAC-mediated ENS ablation. | |
Belkind-Gerson et al., 2013 [117] | Neurospheres prepared from enzymatically dissociated colon (mucosa and submucosal plexus vs. muscles and myenteric plexus) of Nestin-GFP mice. | GFP+ cells co-express glial markers (S100β, GFAP) in vivo, and generate neurospheres containing TuJ1+ neurons and S100β+ EGCs that both co-express GFP in culture. |
Belkind-Gerson et al., 2015 [115] | Pseudo cell lineage tracing studies in colon of Sox2-GFP and Nestin-GFP mice, exposed to DSS treatment or not. | In absence of DSS, GFP expression is virtually undetectable in HuC/D+ myenteric neurons but becomes detectable 48 h after DSS treatment (8% of neurons in Sox2-GFP vs. 1.8% in Nestin-GFP mice). |
Culture of CD49+ EGCs sorted from small intestine and colon (muscles and myenteric plexus) of adult mice, in absence or presence of a serotonin receptor antagonist | Sorted CD49b+ EGCs generate TuJ1+ neurons, GFAP+ EGCs and TuJ1+ GFAP+ neuroglial cells in culture. The serotonin receptor antagonist increases the proportion of these neuroglial cells at the expense of neurons. | |
Transplantation of neurospheres derived from CD49b+ EGCs in explants of aneural embryonic chick hindgut | Transplanted neurospheres generate TuJ1+ neurons and GFAP+ EGCs in both myenteric and submucosal plexus. | |
Belkind-Gerson et al., 2017 [114] | Cell lineage tracing studies in colon of adult Sox2-CreERT2:R26R-YFP and Plp1-CreERT2:R26R-tdTomato mice, exposed to DSS treatment or not. | DSS treatment increases the proportion of HuC/D+ myenteric and submucosal neurons co-expressing either of the fluorescent reporters in tamoxifen-induced mice. |
Neurospheres prepared from enzymatically dissociated colon (full thickness) of adult tamoxifen-treated Plp1-CreERT2;R26R-tdTomato mice. | tdTomato is expressed in neurons (either TuJ1+, HuC/D+, or PGP9.5+), EGCs (either SOX2+ or S100β+), and neuroglial cells co-expressing neuronal and glial markers. | |
Guyer et al., 2023 [30] | Neurospheres prepared from enzymatically dissociated small intestine (muscles and myenteric plexus) of adult Plp1-GFP;Actl6b-Cre;R26R-tdTomato dual reporter mice. | GFP+ EGCs sorted from neurospheres generate new tdTomato+ neurons in culture. |
Sorted tdTomato-negative cells from small intestine (muscles and myenteric plexus) of adult Actl6b-Cre;R26R-tdTomato mice. | Neurospheres derived from sorted tdTomato-negative cells generate new tdTomato+ neurons in culture. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lefèvre, M.A.; Soret, R.; Pilon, N. Harnessing the Power of Enteric Glial Cells’ Plasticity and Multipotency for Advancing Regenerative Medicine. Int. J. Mol. Sci. 2023, 24, 12475. https://doi.org/10.3390/ijms241512475
Lefèvre MA, Soret R, Pilon N. Harnessing the Power of Enteric Glial Cells’ Plasticity and Multipotency for Advancing Regenerative Medicine. International Journal of Molecular Sciences. 2023; 24(15):12475. https://doi.org/10.3390/ijms241512475
Chicago/Turabian StyleLefèvre, Marie A., Rodolphe Soret, and Nicolas Pilon. 2023. "Harnessing the Power of Enteric Glial Cells’ Plasticity and Multipotency for Advancing Regenerative Medicine" International Journal of Molecular Sciences 24, no. 15: 12475. https://doi.org/10.3390/ijms241512475
APA StyleLefèvre, M. A., Soret, R., & Pilon, N. (2023). Harnessing the Power of Enteric Glial Cells’ Plasticity and Multipotency for Advancing Regenerative Medicine. International Journal of Molecular Sciences, 24(15), 12475. https://doi.org/10.3390/ijms241512475