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Abstract: In recent years, several types of platelet concentrates have been investigated and applied in
many fields, particularly in the musculoskeletal system. Platelet-rich fibrin (PRF) is an autologous
biomaterial, a second-generation platelet concentrate containing platelets and growth factors in the
form of fibrin membranes prepared from the blood of patients without additives. During tissue
regeneration, platelet concentrates contain a higher percentage of leukocytes and a flexible fibrin
net as a scaffold to improve cell migration in angiogenic, osteogenic, and antibacterial capacities
during tissue regeneration. PRF enables the release of molecules over a longer period, which
promotes tissue healing and regeneration. The potential of PRF to simulate the physiology and
immunology of wound healing is also due to the high concentrations of released growth factors and
anti-inflammatory cytokines that stimulate vessel formation, cell proliferation, and differentiation.
These products have been used safely in clinical applications because of their autologous origin
and minimally invasive nature. We focused on a narrative review of PRF therapy and its effects on
musculoskeletal, oral, and maxillofacial surgeries and dermatology. We explored the components
leading to the biological activity and the published preclinical and clinical research that supports
its application in musculoskeletal therapy. The research generally supports the use of PRF as an
adjuvant for various chronic muscle, cartilage, and tendon injuries. Further clinical trials are needed
to prove the benefits of utilizing the potential of PRF.

Keywords: platelet-rich fibrin; 3D PRF microstructure; cartilage; cytokines; growth factors; platelet-
rich plasma
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1. Introduction

Platelet concentrates, also known as platelet-rich plasma (PRP) or platelet-rich concen-
trates (PRCs), have a history of several decades. Platelet concentrates were first produced
in the early 1970s [1]. Since then, they have been used in various medicinal applications.
They contain platelets, fibrin, growth factors, and mitogenic factors that can release cy-
tokines, chemokines, and other factors. Hence, they can stimulate vessel formation, cell
proliferation, and differentiation; improve angiogenesis; and decrease the occurrence of
inflammation [2–4]. In the early 2000s, an evolution of PRP called platelet-rich fibrin (PRF)
was introduced by Choukroun et al. [5], who prepared PRF by centrifuging blood without
anticoagulants, which resulted in a fibrin matrix enriched with platelets and other blood
components. PRF has gained popularity owing to its simplified preparation process and
absence of biochemical modifications. PRF also contains many types of growth factors such
as platelet-derived growth factor (PDGF- a/b and c), vascular endothelial growth factor
(VEGF), hepatocyte growth factor (HGF), epidermal growth factor (EGF), connective tissue
growth factor (CTGF), fibroblast growth factor (FGF), insulin-like growth factor (IGF), and
transforming growth factor β1 (TGF-β1) [6–8]. Growth factors are transformed into active
stages after platelet activation. They are mainly present in the α-granules of platelets [9] and
have many functions, such as mediating cell proliferation and growth, angiogenesis, wound
healing, and bone metabolism. Many PRF formulations of PRF been investigated, including
leukocyte platelet-rich fibrin (L-PRF) [10,11], advanced platelet-rich fibrin (A-PRF) [10,12],
titanium-prepared platelet-rich fibrin (T-PRF) [13,14], and injectable platelet-rich fibrin
(i-PRF) [15,16]. The therapeutic potential of PRFs in regenerative medicine, especially in
musculoskeletal regeneration [17], means they have promising clinical applications. In
addition, many studies have reported that PRF has a positive effect not only on muscu-
loskeletal injury but also in other fields, such as diabetic ulcers [18], cosmetic surgery [19],
maxillofacial surgery [20,21], and cardiac surgery [22].

Despite the wide range of PRF applications, there is some variation in the outcomes
when using PRF treatments. The present article aims to summarize the current relevant
application of PRFs in the musculoskeletal system and provide the essential roles of com-
ponents of PRFs in the musculoskeletal system and maxillofacial surgery.

2. Evolution of Platelet-Rich Derivatives
2.1. Fibrin Glue

Fibrin glue, also known as fibrin sealant, fibrin adhesive, or fibrin sutures, is the
oldest and has been the most widely used fibrin clot for the past 40 years [1]. Fibrin
glue has been used to mimic the blood clot mechanism. It was originally constituted by
polymerizing fibrinogen, which is obtained from human plasma, along with thrombin and
calcium. However, the fibrinogen concentration in plasma is very low (0.2% volume of
whole blood) [23], so it is very difficult to obtain with autologous techniques and always
results in unstable quality of the fibrin glue [24]. In addition, the non-industrial preparation
of fibrin glue requires massive amounts of blood, time, and preparation to collect and
obtain fibrinogen [25]. Therefore, autologous protocols are unsuitable for patients who
require immediate surgery.

Despite the advantages of autologous products, commercial fibrin glue has become the
most popular fibrin glue since it became available on the market in 1998. Pharmaceutical
companies such as Tisseel from Baxter Healthcare produce commercial fibrin glue as a
surgical additive [26]. It is produced and supplied in separate vials with a dual syringe
delivery system, in which human-plasma-derived thrombin containing ionic calcium
and a fibrinogen-containing anticoagulant are first separated into two vials. Before use,
these two components are immediately mixed using a syringe, and it is then ready for
treatment. Although it has been claimed to be virus-inactivated, it still poses an infinitely
low risk of viral contamination. Furthermore, because commercial fibrin glue is not an
autologous blood-derived product, the risks of immune rejection, disease transmission,
and manufacturing costs are also the main concerns for the market [27,28].
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In a recent meta-analyses, fibrin glue was found to be effectively combined with polyg-
lycolic acid sheets to reduce the risk of bleeding after endoscopic submucosal dissection
for gastric cancer [29] and glue-based mesh fixation to reduce the incidence of chronic
postoperative inguinal pain and hematoma after laparoscopic inguinal hernia repair [30].
However, the fibrin patch applied to the pancreatic stump did not reduce the incidence of
postoperative pancreatic fistulas after distal pancreatectomy [31].

Fibrin glue embedded with drugs, antibiotics, cytostatic agents, or stem cells may
increase the effectiveness of therapy and facilitate the targeted delivery of active substances
for localized drug release. The use of fibrin glue alone resulted in suture repair for nerve
regeneration [32]. There is clear evidence that fibrin glue combined with mesenchymal
stem cells (MSCs) can regenerate nervous system lesions [33]. Articular cartilage repair
using fibrin glue alone has not been reported.

2.2. Platelet-Rich Plasma (PRP)

With the development of technology, scientists have been able to produce autolo-
gous fibrin glue (PPP) using a more simplified method [24,34], since some scientists have
identified the important role of growth factors in cellular process regulation [35], while
the focus of autologous fibrin glue research has been on new biomaterials named platelet
concentrates [36]. Scientists have developed a first-generation platelet concentrate, PRP,
as an autologous modification of fibrin glue [2,34]. PRP, a true concentrate of platelets, is
a fibrin clot rich in platelets (containing 95% platelets, 4% red blood cells, and 1% white
blood cells) that is obtained from plasma [36]. PRP is a safe and autologous product that
is readily available at the point of care and minimizes the risks of immune rejection and
disease transmission [37]. The PRP protocols have varied among researchers, although the
main concept of the protocols remains consistent. They all include the concept of blood cell
separation, regardless of the use of a typical centrifugation method or a commercial PRP kit
called a cell separator [38]. They require whole blood to be separated by centrifugation into
different layers of blood cells, red blood cells (RBC), buffy coat (leukocytes), and plasma.
The basic rules of PRP protocols include three steps. First, an anticoagulant is added to
whole blood before blood processing to stop blood coagulation. Second, the whole blood is
processed using a two-step discontinuous centrifugation process or one-step centrifugation
with a cell separator kit to obtain the preliminary PRP product. Third, after liquid PRP is
obtained using various blood separation methods, with the addition of thrombin to activate
fibrinogen and calcium chloride to neutralize the effect of anticoagulants, the fibrinogen in
liquid PRP can finally be cross-linked and polymerized to form a gel-like fibrin clot.

Based on the biochemical compositions of PRP types resulting from different protocols,
PRPs can be categorized into two groups: leukocyte-rich (L-PRP) and leukocyte-poor
(P-PRP) [28]. Despite the differences between the compositions and protocols of all PRP
types, they share common weaknesses. These include long processing times, high costs,
poor mechanical properties [39], unstable product volumes, low fibrin densities, and
weak fibrin polymerization [28], as well as the potential risk of allergic reactions and
cross-contamination with bovine thrombin. PRP has limited potential to stimulate bone
regeneration, as it releases growth factors quickly just before cell outgrowth from the
surrounding tissue [40]. Therefore, in 2000, French scientists developed a new generation
of platelet concentrate, PRF, to overcome the existing risks of PRP [5].

2.3. Platelet-Rich Fibrin (PRF)

For the purposes of this review, the PRF mentioned in this article is defined as a
second-generation platelet concentrate, which was first developed by Choukroun et al. [5]
and is also referred to as Choukroun’s platelet-rich fibrin [41] or leukocyte- and platelet-rich
fibrin (L-PRF) [28] to avoid confusion with other PRF products that contain biochemical
additions [42,43]. PRF was first developed in France for specific use in oral and maxillofacial
surgery to avoid legal restrictions on the reimplantation of blood-derived products [24].
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Unlike other platelet concentrates, fibrin glue, and PRP, PRF is not a blood-derived product;
it is simply centrifuged without any biochemical blood handling.

2.3.1. PRF Preparation

PRF is an autologous platelet concentrate that is produced via one simple, short, and
soft centrifugation cycle of 100% natural and non-additive whole blood. The first protocol
for PRF production involved collecting 10 mL of a blood sample without anticoagulant,
which is immediately centrifuged at 2700 rpm (approximately 400× g) for 12 min (Figure 1).
In the absence of an anticoagulant, most platelets in a blood sample become activated
within a few minutes of contact with the walls of the collection tube. This activation
triggers the release of coagulation cascades, leading to blood clot formation. Initially,
the fibrinogen is concentrated in the upper section of the tube. Subsequently, circulating
thrombin interacts with fibrinogen, resulting in its conversion to fibrin. As a result, a
fibrin clot is generated in the middle of the tube, positioned between the settled red blood
cells at the bottom and acellular plasma at the top. The slow polymerization of fibrin
during PRF preparation generates a fibrin clot with a fibrin structure that is very similar
to that of natural fibrin. Comparing the fibrin structures of PRP and PRF, PRF seems to
be a more friendly environment for cell migration and proliferation, and consequently
cicatrization. The speed and method of the polymerization affect the 3D structure of the
fibrin network. Fibrin glue and PRP favor the formation of bilateral fibrin glue owing to
the high thrombin concentration and rapid polymerization. In contrast, PRF has a low
thrombin concentration and slow polymerization rate, implying a more equilateral junction.
Compared to the bilateral junction, the equilateral junction is a finer and more flexible fibrin
structure with greater elasticity that provides better support for cytokine enmeshment and
cellular migration [7,24].
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Unlike fibrin glue and PRP, PRF is an autologous fibrin clot that requires only a small
amount of money and time for production. PRF preparation is a simpler and more cost-
effective process than PRP preparation [8,27,40,44] (Table 1). As PRF is an autologous
platelet concentrate without any biochemical addition, it can avoid the risks of cross-
infection, contamination, and product safety, which are the biggest concerns for commercial
fibrin glues. PRF has several advantages over autologous fibrin glue. This method does not
require a massive amount of blood for production and requires only 4 mL of fresh blood to
produce 1 mL of PRF [45].
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Table 1. The advantages and disadvantages of platelet-rich fibrin.

Advantages of Platelet-Rich Fibrin References

Preparation and application are easy and efficient [46–48]
Natural biomaterial, obtained by autologous blood sample. No risk of infection,
immune rejection, or a reaction [5,47]

Does not require bovine thrombin and anticoagulants [24,49]
Fibrin’s three-dimensional architecture with growth factors is better suited for
tissue regeneration [50]

It can increase the healing rate [51,52]
Decreased patient bleeding, discomfort, and pain after surgery [47]

Disadvantages of Platelet-Rich Fibrin

Autologous blood means the final amount is limited [53]
Short handling time and fast degradation [40]

In contrast to PRP, PRF is an economical biomaterial and safe bio-scaffold. It is
produced without the addition of anticoagulants or bovine thrombin, making it free from
the risks of cross-contamination and immune rejection caused by biochemical adjuvants.
The characteristics of fibrin glue, PRP, and PRF are summarized in Table 2.

Table 2. Characteristics of fibrin glue, PRP, and PRF.

Type Process Concentration Fibrin Safety and Risk

Name Blood
Source Time Cost Platelet Leukocyte Density Cross-

Infection
Immune
Rejection

Fibrin
Glue

Tisseel Commercial Very Long High None None High High High
PPP Autologous Very Long Very High None None Low Low Low

PRP
L-PRP Autologous Long High Low High Low Low Low
P-PRP Autologous Long High High None Low Low Low

PRF L-PRF Autologous Short Very Low High Very High High None None

2.3.2. Components of PRF

PRF is distinguished by its fibrin matrix, which contains a concentrated number of
platelets, growth factors, cytokines, and other bioactive molecules (Figure 2). Platelets,
the major components of PRF, are the primary cells responsible for the biological activity
of PRF. Platelets are multifunctional cells that not only contribute to clotting but also
have a significant impact on immune responses, wound healing, and tissue regeneration.
These are stored by three types of particles (alpha, delta, and lambda) located inside
platelets. Alpha granules are the most abundant and contain fibrinogen, immunoglobulins,
and growth factors [54]. These granules contain various growth factors that are released
through exocytosis when platelets are activated and are responsible for regenerating both
soft and hard tissues after injury [55]. Delta granules contain adenosine diphosphate,
tissue plasminogen activator, serotonin, and fewer lambda granules containing lysosomal
enzymes [56,57]. PRF contains some of the most important growth factors, including
platelets, cytokines, and granulocytes, as shown in Figure 2.

PDGF is the initial growth factor present at the site of the injury. Platelet-released
PDGF promotes the movement, multiplication, and survival of mesenchymal cells [7].
PDGF possesses chemotactic properties that attract macrophages to the site of injury. The
combination of PDGF, TGF-β, and IGF produces a synergistic effect that stimulates blood
vessel growth, facilitates cell division, promotes skin and bone matrix formation, and
enhances collagen synthesis. With approximately 1200 PDGF molecules per platelet, the
high concentration of PDGF in PRF may have a significant impact on wound healing and
bone regeneration [8]. TGF-β is recognized as a factor that attracts macrophages, stimulates
endogenous cells to secrete cytokines, and enhances the synthesis of the extracellular
matrix, especially collagen I. Activated platelets secrete the active form of TGF-β1, which
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plays a significant role in stimulating fibroblast chemotaxis and promoting fibronectin and
collagen production. It also acts as a protective factor by preventing collagen breakdown.
Furthermore, TGF-β1 induces the formation of new blood vessels and attracts immune cells
through chemotaxis [58]. Additionally, TGF-β1 enhances the proliferation and deposition of
osteoblasts and inhibits the formation of osteoclasts and bone degeneration [8]. IGF exerts
multiple effects on mesenchymal cells. It promotes differentiation and mitogenesis and
stimulates growth and development [59]. Moreover, IGF-1 provides survival signals that
protect cells from various triggers that induce apoptosis [7]. Additionally, IGF-1 stimulates
chemotaxis, attracting and activating osteoblasts, which ultimately leads to increased bone
formation [60]. IGF-1 also cooperates with growth factor TGF-β and bone morphogenetic
proteins (BMPs) to participate in the synthesis of the basic substance of articular cartilage.
EGF is an epidermal growth factor that promotes cell growth, differentiation, angiogenesis,
and collagen formation [60]. Similarly, EGF promotes the secretion of cytokines by epithelial
and mesenchymal cells [61]. EGF enhances the production and release of cytokines, which
are important signaling molecules involved in various cellular activities, including immune
responses, inflammation, and tissue repair.
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In addition, PRF includes immune cytokines (Figure 2), such as interleukin (IL)-1β,
IL-6, IL-4, and tumor necrosis factor (TNF)-α [24]. IL-1 is produced by most nucleated cells,
such as monocytes, macrophages, B cells, NK cells, astrocytes, fibroblasts, endothelial cells,
and neutrophils [62]. IL-1 has two subtypes, IL-1α and IL-1β. This particular cytokine
enhances the production of adhesive molecules on endothelial cells and promotes the
movement of phagocytes and lymphocytes towards the injury site [63]. In addition, they
stimulate the helper T cells. IL-1β, in conjunction with TNF-α, triggers osteoclast activation
and inhibits bone formation [64]. IL-6 is produced by T cells and macrophages to stimulate
the immune response [65]. IL-6 is also produced by the muscle tissue and increases in
response to muscle contraction. In contrast, IL-6 derived from osteoblasts stimulates
osteoclasts, which in turn stimulates bone marrow cell destruction. This promotes the
differentiation of B cells (white blood cells that produce antibodies), promotes growth in
some cells, and inhibits growth in others. Moreover, IL-6 is an essential cytokine required to
induce the transformation of naive T cells into cytotoxic T lymphocytes [64]. It is extensively
produced during processes such as inflammation and tissue remodeling [66]. IL-4 is
produced by macrophages and Th2 cells. It stimulates the proliferation of Th2 cells and
promotes their differentiation into Th2 cells, which induces antibody-producing responses.
It also stimulates the B cell class to convert IgE [67]. IL-4 can stimulate the activation of
macrophages into M2 macrophages. The induced production of M2 macrophages leads
to increased secretion of IL-10 and TGF-β, which reduces the severity of pathological
inflammation. The increased secretion of M2 macrophages is closely associated with
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wound healing and fibrosis development [68]. TNF-α is a cytokine produced by various
immune cells, primarily by macrophages. It plays a crucial role in inflammation, the
immune response, and the regulation of cell death (apoptosis). TNF-α is involved in the
recruitment and activation of immune cells such as neutrophils and monocytes to sites of
infection or injury [69]. It induces the expression of adhesion molecules in endothelial cells,
thereby facilitating leukocyte migration. TNF-α also stimulates the production of other
inflammatory cytokines and chemokines, thereby amplifying the immune response [64].
Bai et al. [70] reported that the microstructure and proportion of PRF in a rabbit model
were positively correlated with cytokine concentrations. PRF gel exhibited a quasi-graded
distribution of PDGF-BB and TGF-β1. The concentrations of these cytokines in the PRF gel
were significantly higher than those in the plasma because of the combination of two factors:
(1) an extrinsic factor attributed to the fibrin gel structure; (2) the molecular characteristics
of the different cytokines, which serve as intrinsic factors. Although cytokines are typically
soluble and are expected to concentrate in the plasma after centrifugation, the highest
concentrations of these cytokines were found at the red blood cell end of the gel. This
suggests that the cytokines were stoichiometrically trapped in the PRF gel. They also
analyzed the histology of PRF sections obtained from young and middle-aged men and
women and showed a gradual increase in average porosity over time [71]. Furthermore,
a decline in compactness was observed along the longitudinal axis of the PRF gel. They
concluded that the section of the PRF gel nearest to the red blood cell layer is considered the
core of the PRF clot and that both sex and age in humans influence their platelet generation
capacity.

Nevertheless, in recent years, there have been various alterations to the PRF protocol,
resulting in the emergence of distinct products with diverse capabilities and potential uses
in biology. Many formulations of PRF been investigated, including leukocyte platelet-rich
fibrin (L-PRF), advanced platelet-rich fibrin (A-PRF), titanium-prepared platelet-rich fibrin
(T-PRF), and injectable platelet-rich fibrin (i-PRF) (Figure 3).
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Figure 3. Various forms of PRF. A-PRF is synthesized from blood spun at 1500 rpm for 14 min leading
leucocytes to shift to the bottom of the tube; i-PRF forms a platelet-rich yellow layer at the top and
is easy to use in an injectable form; T-PRF is generated by using a sample of blood with titanium
tube to centrifuge. T-PRF’s fibrin meshwork shows more firmness, thickness, and intricacy, thereby
enhancing its overall consistency and integrity [14,72]. Created with Biorender.com.
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In our previous studies, we investigated the characteristics of PRF and its clinical
applications. Some novel observations from our series were reported for the first time, as
follows: (1) the RBC portion of a PRF gel is characterized by the highest concentration of
platelets and cytokines, making it an essential component known as platelet-rich fibrin
essence (ePRF) [70]; (2) the reconstruction of the PRF microstructure in three dimensions
from a series of two-dimensional SEM images revealing a dense fibrin matrix with a gauze-
like surface morphology [70]; (3) the utilization of PRF and cartilage granules in the absence
of bovine thrombin offers the possibility for a one-step cartilage repair surgery, which may
yield favorable outcomes [45]. In rabbit models, we investigated the effectiveness of PRF in
promoting meniscal tissue healing [73]. PRF stimulates cellular migration and enhances
proliferation and ECM synthesis in cultured meniscocytes. Additionally, PRF contributed
to increases in the formation and deposition of the cartilaginous matrix produced by
cultured meniscocytes. We also developed a feasible one-step procedure to combine PRF
and autologous cartilage grafts for articular chondral defects [74]. PRF has beneficial effects
on the viability, differentiation, and migration of chondrocytes, and is a promising approach
for cartilage repair [75]. Together, these data demonstrate the effectiveness of a single-stage,
culture-free procedure combining the PRF and cartilage repair via cartilage autografts. In
addition, we explored whether the ability to produce platelets from ePRF was influenced
by human sex and age [71].

3. Clinical Application
3.1. Oral and Maxillofacial Surgery

Ghoneim et al. [76] evaluated the effectiveness of injecting injectable platelet-rich
fibrin (i-PRF) into the joint space after arthrocentesis compared with arthrocentesis alone
for treating patients with temporomandibular joint (TMJ) disc displacement with reduction.
The findings revealed statistically significant decreases in pain intensity and clicking sounds,
as well as increases in mouth opening and lateral movement, in the group of patients treated
with i-PRF compared with the group treated with arthrocentesis alone. The TMJ has a
distinct structure characterized by articular surfaces that are covered by nearly acellular
fibrocartilage consisting of a minimal number of chondrocyte-like and fibroblast-like cells.
Additionally, the predominant collagen type present in the TMJ is type I collagen, which
is primarily synthesized by fibroblast-like cells. Kütük et al. [77] applied PRP to the right
joints of rabbits and physiological saline to the left joints. The study demonstrated a
significant increase in new bone regeneration in the PRP group compared with that in the
saline group. A scanning electron microscopy analysis showed an improved ultrastructural
architecture of the collagen fibrils, specifically in the PRP group. Giacomello et al. [78]
assessed the efficacy of platelet-rich growth factor–Endoret® injections for the treatment of
TMJ osteoarthritis in 52 patients who were followed for 1 year. Their findings showed the
effectiveness of platelet-rich in growth factor–Endoret injections in decreasing osteoarthritis
symptoms and improving them over time.

3.2. Musculoskeletal Disorders
3.2.1. Repair and Regeneration of Cartilage

In the last decade, platelet concentrates (such as PRP and PRF) have been widely
investigated as useful therapeutic agents for the treatment of musculoskeletal disorders.
PRF has been investigated as a potential treatment option for cartilage damage. The spe-
cialized connective tissue of diarthrodial joints is known as the articular cartilage. It is
deficient in blood vessels, lymphatics, and nerves, leading to a limited natural ability to
heal and repair itself. Owing to the absence of blood vessels in articular cartilage, it cannot
trigger the same healing process as other tissues that have robust regenerative potential.
However, the introduction of a PRF scaffold may simulate the initial stages of wound
healing and tissue repair. The growth factors and cytokines present in PRF have been
shown to exert chondrogenic and anti-inflammatory effects by enhancing the viability,
differentiation, and migration of chondrocytes, which can support cartilage healing [75].
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Since cartilage repair and regeneration are always limited by vascular inadequacy, it is
important to have adequate nutrition in the development of cell-based therapies. PRF
has been effective in providing nutritional support and increasing the number of cultured
chondrocytes, comparable with other PRP-related in vitro studies [75]. In addition, PRF has
been proven to provide an appropriate environment for the proliferation and maturation
of chondrocytes; therefore, it can be used as a potential bioactive scaffold for cartilage
regeneration [79]. Wong et al. [75] developed a one-stage method to combine PRF and
autologous cartilage autografts for porcine articular cartilage repair. They reported that
the regenerated cartilage surfaces in the treatment groups were smooth and continuous,
suggesting that the cartilage repair was relatively complete. Chien et al. [80] demonstrated
that human platelet-rich fibrin exudates with high platelet cytokine and growth factor
levels can be integrated into biodegradable fibrin scaffolds for use as a regeneration matrix
to stimulate chondrocyte proliferation and redifferentiation. In an injured cartilage rabbit
model, Kuo et al. [45] reported the regenerative potential of cartilage with higher T2 values
via MRI in the PRF-treated group compared to the control group, showing a reduction
in proteoglycans and a progressive increase in collagen content. In a cartilage defect rab-
bit model, Taufik et al. [81] developed a treatment method involving the integration of
microfractures, synovial grafts, and a PRF membrane. This combined method effectively
promoted the regeneration of cartilage defects. The PRF membrane contributed essential
growth factors, whereas the synovium supplied stem cells. The researchers observed
significantly increased levels of aggrecan and type 2 collagen expression in the healing
tissue of cartilage treated with microfracture and synovium–PRF transplantation. Several
studies [82–86] have focused on the ability of chondrocytes to proliferate and differentiate
in response to PRP and i-PRF. Appropriate cell types and chondrocytes are required for the
first stage of cartilage tissue healing. Mustafa et al. [84] demonstrated that compared to
PRP, the injection of i-PRF using the concept of low-speed centrifugation led to significantly
increased chondrocyte activity and enhanced cartilage regeneration. Wang et al. [87]
investigated the effects of arthroscopic surgery combined with PRP and PRF gels in
28 patients with defective knee cartilages. They showed that this combination therapy
could repair knee cartilage defects, improve patient function, and relieve symptoms. Knee
osteoarthritis (OA) is a chronic joint disease that mainly results from wear and tear and
a progressive loss of articular cartilage. Many previous studies [88–91] have proven the
positive effects of PRP or its combination with hyaluronic acid in the treatment of knee
osteoarthritis, although few studies have investigated the benefits of PRF. Cheeva-Akrapan
et al. [92] conducted a 36-month survival analysis of treatment with PRP enhanced with
injectable PRF in osteoarthritis knee patients, resulting in an 80.18% survival rate in patients
who did not require surgical intervention during the follow-up period. PRP releases growth
factors shortly after injection, whereas PRF acts as a natural mesh for PRP and releases
growth factors slowly.

3.2.2. Meniscal Repair

Many meniscal injuries to the knee are caused by trauma, which results in instability
and loss of joint function. They can lead to pain or disability, degenerative joint changes,
and symptomatic osteoarthritis [93,94]. When the meniscus is damaged, especially because
of the complete or partial cutting of the meniscus, it changes the distribution of forces
on the meniscus, accelerating the process of knee osteoarthritis. Unlike PRP, which re-
quires an additional scaffold for in situ tissue transplantation, PRF is a strictly autogenous
fibrin-based biomaterial that encourages microvascularization and enables the local and
progressive delivery of growth factors, which can be used to enhance bone and tissue
regeneration [7,64]. Wong et al. [75] reported the positive stimulatory effects of PRF on
meniscocyte migration, proliferation, and extracellular matrix synthesis in a rabbit model.
Furthermore, they observed that PRF supplementation resulted in the increased formation
and deposition of the cartilaginous matrix produced by cultured meniscocytes. Through
morphological and histological evaluations, this study demonstrated that PRF facilitates
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meniscal repair in rabbits. Researchers have highlighted the potential benefits of using PRF
to enhance the healing process of meniscal injuries. Narita et al. [95] employed biodegrad-
able gelatin hydrogel as a carrier for PRP application in horizontal meniscal tears. They
discovered that the combination of fibroblast growth factor-2 (FGF-2) with a gelatin hydro-
gel significantly promoted the proliferation of meniscal cells. Moreover, this combination
effectively inhibited meniscal cell death for up to four weeks, leading to increased meniscal
cell density and enhanced meniscal repair in a rabbit model. In contrast, PRP did not
positively contribute to the healing process in Shin’s study [96]. They evaluated the effect
of PRP on horizontal meniscal tears using an experimental rabbit model with a single
injection. Griffin et al. [97] indicated that there was no significant difference in the clinical
and functional scores between a group treated with PRP and a control group. Indeed,
future prospective randomized studies with adequate sample sizes are needed to clarify the
use of PRP and PRF in meniscal healing following meniscal repair. By conducting robust
investigations, we can enhance our understanding of the role of platelets in this context
and make informed decisions regarding their clinical application.

3.2.3. Repair and Regeneration of Tendons

In addition, PRF has been reported to enhance tendon healing and improve clin-
ical symptoms, particularly chronic pain. Owing to insufficient tissue vascularization,
tendinopathies have a limited ability to repair and cause irreversible lesion symptoms. Dur-
ing tendon damage, PRF improves cellular and biomechanical responses and enhances the
quality of repair. Alviti et al. [94] investigated the effectiveness of PRF in enhancing Achilles
tendon healing and restoring tendon elongation through a gait analysis evaluation in
20 males during 6 months of follow-up compared with surgical repair alone. Contro-
versially, Zumstein et al. [95] conducted a prospective randomized, controlled study of
thirty-five patients randomized to receive arthroscopic rotator cuff repair with or without
L-PRF at the repair site. Their findings revealed no significant improvement in structural
integrity or tissue quality. In addition, the overall rates of non-healing were not significantly
different between the two groups. Two systematic reviews and meta-analyses examining
treatment with PRP reported that lateral epicondylitis, commonly known as tennis elbow,
improves pain and function more effectively than corticosteroid injections in the interme-
diate term (12–26 weeks) [96] and for long-term follow-up (24 weeks post-treatment) [97].
Another systematic review demonstrated that PRP injection did not significantly reduce
the pain intensity in chronic greater trochanteric pain syndrome compared with placebo
injection (saline) [98], and a randomized, double-blind, controlled trial showed that PRP
could achieve greater clinical improvements at 12 weeks than corticosteroid injection [99]. A
systematic review of 34 randomized trials revealed that the use of PRP injections has a low
risk of harm and is beneficial for long-term outcomes (≥12 months). Other systematic re-
views of musculoskeletal disorders, such as carpal tunnel syndrome, patellar tendinopathy,
and plantar fasciopathy, have described the promising efficacy of PRP treatment [100–102].

3.2.4. Repair Ligament

The use of PRF for acute ligament injuries has also grown in popularity, despite the
limited evidence. Matsunaga et al. [98] found that PRF scaffolds promote medial collateral
ligament repair in rabbit models. In a rabbit model, Weng et al. [99] demonstrated the
effectiveness of L-PRF in enhancing the biological healing of anterior cruciate ligament
(ACL) mid-substance tears. When cultured in a three-dimensional environment, viable cells
exhibited a high-density arrangement, forming layers on the surface of the L-PRF scaffold.
This culture condition demonstrated significant cell ingrowth and the deposition of an
abundant collagenous matrix. A comparative MRI study involved 44 patients with ACL
injury who underwent arthroscopic ACL reconstruction with a semitendinosus tendon
graft and intervention-sprayed PRF to the surface of the graft [100]. The results showed
lower MRI signal intensities and less fluid in the tunnel in the PRF-treated group than in the
control group. A study [101] evaluated the use of a platelet-rich plasma preparation rich in
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growth factors (PRGF) during ACL surgery, leading to more remodeling compared with
the untreated graft group, with excellent ratings of 57.1% and 33.3%, respectively. Here,
77% of PRGF-treated grafts had histologically identifiable newly generated connective
tissue enclosing them compared to 40% of the controls. Eggli et al. [102] reported that
incorporating dynamic intraligamentary stabilization microfracturing and L-PRF led to
stable clinical and radiological healing of torn ACL patients after one year. Given the
existing in vitro and clinical evidence, further investigation is warranted to explore the role
of PRF in tendon augmentation and repair. Specifically, a controlled randomized trial is
necessary to assess its potential as a therapeutic modality for clinical use.

However, the outcomes of PRF administration in the treatment of musculoskeletal
disorders are variable. For instance, two systematic reviews on the use of PRP injections
in the treatment of rotator cuff tears reported that the constant shoulder scores, simple
shoulder test scores, UCLA scores, and visual analog scale scores improved with PRP
compared to the control group [103,104]. In contrast, PRF does not improve the tendon
healing rates or functional outcomes [103]. The current evidence for the clinical application
of PRP or PRF is summarized in Table 3.

Table 3. Current evidence of clinical applications of PRP and PRF.

Indication or Procedure PRP PRF

Achilles tendinopathy PRP is not superior to placebo treatment [105]
Acute muscle injuries Abundance of high-quality evidence [106]

Aging skin Temporarily induce modest improvement in facial skin
appearance, texture, and lines [107]

Alopecia areata Abundance of high-quality evidence [108] Leukocyte PRF is superior to control
treatment [109]

Androgenic alopecia PRP is likely to reduce hair loss, increase hair diameter and
density [110]

Arthrogenous temporomandibular
disorders PRP is more effective than conservative treatments [111]

Carpal tunnel syndrome PRP represents a promising therapy for patients with mild
to moderate CTS [112]

Diabetic ulcers PRP may improve ulcer healing [113]

Elbow tendinopathy

PRP injections improved pain and function more effectively
than corticosteroid injections at the long-term follow-up
[114]
PRP significantly improved pain and elbow function in the
intermediate term (12–26 weeks) [115]

Greater trochanteric pain syndrome
PRP is not superior to placebo treatment [116]
A single PRP injection is superior to a single corticosteroid
injection [117]

Knee osteoarthritis PRP injections have a low risk of harm and beneficial ≥12
month outcomes [118]

Mandibular third molar surgery Decrease in prevalence of alveolar
osteitis [119]

Maxillary sinus augmentation Improves the healing period and bone
formation [120]

Medication-related osteonecrosis of
the jaw Abundance of high-quality evidence [121] Abundance of high-quality evidence [121]

Patellar tendinopathy Multiple injections of PRP obtained positive outcome [122]
Pain relieving and functional improvement [123]

Plantar fasciopathy PRP may provide a long-term effect in relieving pain [124]

Ridge preservation procedure L-PRF reduced the magnitude of vertical
and horizontal bone resorption [125]

Rotator cuff tears
PRP treatment decreases the retear rate and improves the
clinical outcomes [104]
PRP improves patient outcomes [103]

L-PRF yields no beneficial effect in clinical
outcome [126]
PRF has no benefit in improving patient
outcomes [103]

4. Conclusions and Future Perspectives

PRP and PRF continue to evolve as investigational treatments in maxillofacial surgery,
musculoskeletal disorders, dermatology, and other fields. The inconsistencies in the clinical
results were due to the large heterogeneity of the preparation protocols. Large variations
in the centrifugal force and total centrifugation time significantly affected the platelet
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concentrations and growth factor release from the final products. The concentrations of
PDGF-AB, TGF-β1, and VEGF in PRP were 3133–293,500, 20–153,863, and 0–44,000 pg/mL,
respectively, according to the different centrifugation protocols [127]. Multiple modifica-
tions of basic protocols have led to the development of many techniques for obtaining PRP
using either commercial centrifugation kits or manual or homemade procedures. Different
protocols obtain different platelet concentrations; leukocyte concentrations; and growth fac-
tor (PDGF) concentrations (PDGF-AB, TGF-β1, and VEGF) according to Mariani et al. [127].
Similarly, the accumulated growth factor concentration ranges in PRF are 593-774 (VEGF),
23-36 (TGF-β1), and 859-1147 (EGF) pg/mL [128]. Furthermore, individual characteristics,
especially age and sex, also influence the growth factor levels in PRF [71]. Therefore, a
standard preparation protocol for PRP and PRF is necessary [129].

Our study obtained several results from the systematic reviews (Table 3). However,
most systematic reviews concluded a lack of high-quality studies because the primary clini-
cal studies included a small number of participants, were unblinded and unrandomized,
lacked a proper control treatment, and lacked consistent treatment procedures for PRP or
PRF. Although the standard treatment protocol for PRP and PRF is still being investigated,
there is increasing evidence that PRP can provide positive outcomes in disease treatment.
We suggest that more high-quality clinical trials are needed to determine the efficacy of
PRF treatment and the most suitable treatment for PRP or PRF.
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