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Abstract: A new effective dipole moment model for the XY2 (C2v−symmetry) molecule in a doublet
electronic state is derived that includes (as special cases) all currently known models of effective
dipole moments for such types of molecules, and allows us to take into account the influence of
spin–rotation interactions on the effective dipole moment operator that were not considered in the
preceding studies. Necessary for the analysis of absolute line strengths, the matrix elements of this
dipole moment operator are derived. A comparison with the previous analog models is made and
discussed. The efficiency of the obtained results is illustrated, which have been applied to a set of the
“forbidden” ∆Ka = 2 transitions of the ν3 band of the OClO free radical molecule.

Keywords: asymmetric top molecules in non-singlet electronic states; spin–rotation interactions;
absolute line strengths; effective dipole moment operator

1. Introduction

The problem of the best possible description of absolute strengths of molecular quan-
tum transitions is one of the most important problems of physical chemistry because of
numerous applications in chemical physics itself (e.g., in the determination of an intramolec-
ular multi-dimensional dipole moment supersurface, unimolecular reaction rate theory,
fundamental biomolecular reaction dynamics, etc.) as well as in a number of applied prob-
lems of the earth–atmosphere, planetology, astrophysics and astrochemistry, industry, etc.
This problem was discussed in the literature many times for different types of molecules
(see, e.g., Refs. [1–5]). In the present case, one of the most difficult problems to solve is
associated with the so-called asymmetric top molecules; Refs. [6–8]. As an illustration, we
mention here the basic study by Flaud and Camy-Peyret [1] where correct effective dipole
moment operators for different types of ro-vibrational bands of the XY2 (C2v-symmetry)
molecule and their corresponding matrix elements on the ro-vibrational wave functions
have been derived. The general results of that study were successfully used by many
authors for the analysis of different XY2 (C2v) molecules, and also for more complicated
asymmetric top molecules (not having the possibility to refer here to all these studies, we
mention only a few of them—refs. [9–13]—which have been fulfilled by the authors of this
paper during recent years).

It should be noted that the basic paper [1] and the further above mentioned studies
are dealing with asymmetric top molecules in singlet electronic states. However, even the
simplest from the asymmetric top molecules (namely, the XY2 one with (C2v-symmetry)
ones) can be presented in nature not only in a singlet state but also in multiplet electronic
states as well (the NO2 and ClO2 free radical molecules in the X2B1 electronic ground state
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can be mentioned, for example). The theory and the matrix elements being necessary for
calculations of effective dipole moment operators for such molecules differ considerably
in some aspects from the basic results of Ref. [1]. The corresponding theory and results
for such molecules have been presented in the literature beginning from the eighties of
the twentieth century (see, Refs. [14–17]). However, up to now, not all crucial effects and
interactions are completely and correctly taken into account and described. Namely, it is
evident that not only pure rotational centrifugal effects but also centrifugal effects that
are caused by the spin–rotation interactions should be taken into account. In particular,
it is clear (see, e.g., [18–33] and our recent studies [34–36] where the higher order spin–
rotational effects were taken into account) that influences of both the pure rotational and
spin–rotational centrifugal effects on the spin–ro-vibrational structure of the discussed
type of molecules are comparable in size. Furthemore, related to the absolute strengths
of spin–ro-vibrational transitions, up to now, the influence of spin–rotational interactions
on the absolute transition strengths have been taken into account only via wave functions,
which are eigen functions of the effective Hamiltonian of the considered vibrational band.
The dependence of the effective dipole moment operator on the spin–rotational centrifugal
effects has never been considered despite the obvious fact that neglect of similar effects in
the effective Hamiltonian leads to an increase in the error by several tens of times. In the
present study, we intend to fill this gap and derive an effective dipole moment operator
of the XY2 (C2v) molecule in a doublet electronic state, taking into account its dependence
on the spin–rotational centrifugal effects also. To make the discussion more clear for the
reader, we consider the problem of obtaining the effective dipole moment operator and
the determination of its matrix elements for the pure rotational problem in Section 2 as
a starting point. The main ideas and steps of discussion in Section 2 are then used in
Sections 3 and 4 for the analogous analysis of an effective dipole moment operator and
absolute line intensities for the ro-vibrational problem (without spin–rotational interactions;
Section 3). This is followed by the discussion of a model that takes into account the
presence of spin–rotational interactions in the wave functions, but omits both rotational
and spin–rotational effects in the effective dipole moment (Section 4). Finally, Section 5
presents results that are produced by the complete consideration of both pure rotational
and spin–rotational centrifugal distortion effects in the wave functions and in the effective
dipole moment operator.

2. Absolute Intensity of an Isolated Line of the XY2 (C2v) Molecule in a Singlet
Electronic State: Rotational Transitions

It is well known that (in the absence of an external field) the strength of transition
from the quantum state |ψi〉 to the quantum states |ψ f 〉 is obtained as [1,14]:

SN
ν0
=

8π3ν0

4πε03hc

[
1− exp

(
−hcν0

kBT

)]
gi

Z(T)
exp

(
− Ei

kBT

)
R

f
i , (1)

where [37,38]

R
f
i = ∑

A
|〈ψi|PA|ψ f 〉|2. (2)

In Equations (1) and (2), |ψi〉 and |ψ f 〉 are wavefunctions of the lower and upper states
of a molecule; ν̃0 = (E f − Ei)/hc; Ei and E f are the upper and the lower ro-vibrational
energies of the transition; gi and Z(T) are the degeneracy due to the nuclear spin of the
lower |ψi〉 state and the partition function, which depends on the temperature T; the
operators PA (A = X, Y or Z) are the three components of the dipole moment of a molecule
in the space-fixed coordinate system (SFS)—see, e.g., [37,38]—and, being dependent in the
general case on the instantaneous distances between the nuclei, they can be written as:

PA = ∑
α

kAα

(
µe

α + ∑
λ

µλ
α qλ + ∑

λ,ν≥λ

µλν
α qλqν + . . .

)
. (3)
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Here, kAα are elements of the direction cosines matrix [39]; µe
α are the components of

the permanent (equilibrium) dipole moment of a molecule in the molecule-fixed coordinate
system (MFS); qλ/qν are vibrational normal dimensionless coordinates [7,8] of a molecule;
and µλ

α , µλν
α , . . . are the parameters that describe the dependence of the dipole moment

components µα in the MFS on the normal vibrational coordinates (in the first step of
discussion in this section, we will take into account the first term only in Equation (3) and
consider rotational transitions only).

All the values in Equation (1) are usually known, and the only problem is the determi-
nation of the matrix elements, Equation (2). In this case, it is necessary to note that the |ψi〉
and/or |ψ f 〉 states can be nondegenerate and/or degenerate. In the second case, the R

f
i

value should be changed by

R
f
i = ∑

αβ
∑
A
|〈ψα

i |PA|ψ
β
f 〉|

2, (4)

where indexes α and β numerate sets of degenerate states. Because we speak here about
transitions between rotational states only, it is suitable to use the functions |ψi〉 and |ψ f 〉
in the form of superpositions of the known |Jkm〉 functions (see [39–42]), which are trans-
formed in accordance with the D(J) irreducible representation of the SO(3) symmetry

group, and to use the equations R
( J̃ k̃)
(Jk) :

R
( J̃ k̃)
(Jk) = ∑

mm̃
∑
A
|〈Jkm|PA| J̃ k̃ m̃〉|2 (5)

instead of R
f
i ; Equation (4).

Let us consider now the matrix element 〈Jkm|PZ| J̃ k̃ m̃〉 (A = Z) in Equation (5) and
take into account that the three components PX , PY and PZ, of the dipole moment operator
P (remember that only the first terms in Equation (3) are taken into account in this section)
can be expressed (see, e.g., [40]) in the form of three components of the irreducible first
rank tensor P(1)

S S = 0,±1:

P(1)
0 = PZ, and P(1)

±1 = ∓ 1√
2
(PX ∓ iPY). (6)

In accordance with the known formulas of the irreducible tensorial sets theory [39,41,42],
one can write:

〈Jkm|PZ| J̃ k̃ m̃〉 = 〈Jkm|P(1)
0 | J̃ k̃ m̃〉 = (2J + 1)−1/2C Jm

J̃m̃,10
< Jk ‖ P(1) ‖ J̃ k̃ >

≡ (2J + 1)−1/2C Jm
J̃m̃,10

< Jk|PZ| J̃ k̃ > (7)

and

〈Jkm|PX | J̃ k̃ m̃〉 =
1√
2
〈Jkm|

(
P(1)
−1 − P(1)

1

)
| J̃ k̃ m̃〉

=
1√

2(2J + 1)

{
C Jm

J̃m̃,1−1
− C Jm

J̃m̃,11

}
< Jk|PZ| J̃ k̃ >, (8)

〈Jkm|PY| J̃ k̃ m̃〉 = − i√
2
〈Jkm|

(
P(1)
−1 + P(1)

1

)
| J̃ k̃ m̃〉

= − i√
2(2J + 1)

{
C Jm

J̃m̃,1−1
+ C Jm

J̃m̃,11

}
< Jk|PZ| J̃ k̃ > . (9)
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If one now uses Equations (7)–(9) in Equation (5) and takes into account [39]:

∑
mm̃

∑
S

C Jm
J̃m̃,1S

C Jm
J̃m̃,1S

= (2J + 1), (10)

then it is not difficult to show that

R
( J̃ k̃)
(Jk) = |〈Jk|PZ| J̃ k̃〉|2, (11)

or

R
( J̃ k̃)
(Jk) = |〈Jk|∑

α

kZα| J̃ k̃〉|2, (12)

and the nonzero matrix elements are [43]:

< Jk | kZz | Jk >= k
{
(2J + 1)
J(J + 1)

}1/2

, (13)

< Jk | kZx | Jk± 1 >= ± < Jk | ikZy | Jk± 1 >

=
1
2

{
(2J + 1)(J ∓ k)(J ± k + 1)

J(J + 1)

}1/2

; (14)

< Jk | kZz | J + 1k >=

{
(J + k + 1)(J − k + 1)

(J + 1)

}1/2

, (15)

< Jk | kZx | J + 1k± 1 >= ± < Jk | ikZy | J + 1k± 1 >

= ∓1
2

{
(J ± k + 1)(J ± k + 2)

(J + 1)

}1/2

; (16)

< Jk | kZz | J − 1k >=

{
(J + k)(J − k)

J

}1/2

, (17)

< Jk | kZx | J − 1k± 1 >= ± < Jk | ikZy | J − 1k± 1 >

= ±1
2

{
(J ∓ k)(J ∓ k− 1)

J

}1/2

. (18)

3. Absolute Intensity of an Isolated Line of the XY2 (C2v) Molecule in a Singlet
Electronic State: Ro-Vibrational Transitions

Let us consider now the physically more correct model with the dipole moment
operators PA, which has the whole form of Equation (3), and remember some information
from the general effective Hamiltonian theory [7,8,44]. Let us also assume that we want to
solve the Schrödinger equation

H|ψi〉 = Ei|ψi〉 (19)

with a rotation–vibration Hamiltonian H (see, e.g., [7,8]), and are not interested in a full set
of eigenvalues of the Hamiltonian H, but only in a subset of ro-vibrational states |v, R(Jk)〉,
which are connected with a separate vibrational state (v). In this case, in accordance
with the “effective Hamiltonian theory”, it is suitable to change Equation (19) (which,
in the general case, is a very complicated problem, if at all possible in principle) by the
Schrödinger equation

H̃ | v′, Ri(Jk)〉 = δvv′E
(v)
Ri(JK) | v, Ri(Jk)〉 = δvv′E

(v)
Ri(Jk) | v〉 | Ri(Jk)〉, (20)
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whose set of Eigen ro-vibrational energies E(v)
Ri(Jk) totally coincides with a corresponding

subset of eigenvalues of Equation (19); the | v〉 and | Ri(Jk)〉 in Equation (20) are pure
vibrational and rotational functions (the latter depend on quantum numbers J and k of the
MFS). Such an operator H̃, which is usually presented in the form of

H̃ = G+HG (21)

(G is a unitary ro-vibration operator) is called an “effective rotational operator” of the (v)
vibrational state of a molecule (see details, e.g., in [7,8,44]). Here, evidently, the | v, Ri(Jk)〉
functions from Equation (20) are connected with the corresponding | ψi〉 functions from
Equation (19) as

| ψi〉 = G | v, Ri(Jk)〉. (22)

Let us take into account that the rotational parts | Ri(Jk)〉 of the eigen functions
| v〉 | Ri(Jk)〉 of the effective operator H̃ can be, evidently, presented in the form of
superpositions of the functions | Jk′〉, which are presented in Equation (11):

| Ri(Jk)〉 = ∑
k̃

Bi
Jk̃
| Jk̃〉. (23)

To construct new functions, now

| Ri(Jkm)〉 = ∑
k′

Bi
Jk′ | Jk′m〉, (24)

use the latter in Equation (2), and make the transformation analogous to the transforma-
tions from Section 2; then, it is not difficult to obtain the following form analogous to
Equation (11), but, already for a ro-vibrational transition,

R
(ṽ, R̃j( J̃ k̃))
(v, Ri(Jk)) =| 〈v, Ri(Jk) |

{
G+PZG

}
| ṽ, R̃j( J̃ k̃)〉 |2 . (25)

In turn, taking into account that ∑v | v〉〈v |= 1, the operator G+PZG in Equation (25)
can be re-written as

G+PZG = ∑
v′ ṽ′
| v′〉

(
〈v′ | G+PZG | ṽ′〉

)
〈ṽ′ | . (26)

The pure rotational operator (v′−ṽ′)PZ = 〈v′ | G+PZG | ṽ′〉 is usually called an
“effective dipole moment” operator for the (ν̃− ν) band. Because, for the XY2 (C2v) molecule,
the symmetry of vibrational functions | v〉 can be A1 or B1, only two types of the “effective
dipole moment” operators can be realized, namely (v′−ṽ′)PA2

Z for the parallel bands and
(v′−ṽ′)PB2

Z for the perpendicular bands. In both cases, from the general point of view (see,
e.g., [8]), the ”effective dipole moment“ operator can be written as:

(v−ṽ)P
γ
Z =

1
2

{
∑
α

kΓ
Zα,

∞

∑
p+q+r=0

µ
(v−ṽ)
pqr

(
Jp
x Jq

y Jr
z + Jr

z Jq
y Jp

x

)Γ̃
}γ

+

, (27)

where we use the operator (v−ṽ)P
γ
Z in the form of an anticommutator because of the

requirement of its hermiticity; and the values µ
(v−ṽ)
pqr are of different orders of the values of

effective dipole moment parameters. First- and second-order µ
(v−ṽ)
pqr parameters both for

the parallel and perpendicular bands have been presented in [1], and, for the convenience
of the reader, we simply reproduce results from [1] in Tables 1 and 2.
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Table 1. Operators and matrix elements for the perpendicular band (∆k = ±1) (reproduced from
Ref. [1]).

j v Aj n < JK|v Aj|J + ∆J K + n∆K >; ∆K = ±1

1 ϕx 1 < JK|ϕx|J + ∆J K + ∆K > ∆J = 0,±1

2 {ϕx, J2} 1 [J(J + 1) + (J + ∆J)(J + ∆J + 1)] < JK|ϕx|J + ∆J K + ∆K > ∆J = 0,±1

3 {ϕx, J2
z } 1 [K2 + (K + ∆K)2] < JK|ϕx|J + ∆J K + ∆K > ∆J = 0,±1

4 {iϕy, Jz} 1 (1 + 2K∆K) < JK|ϕx|J + ∆J K + ∆K > ∆J = 0,±1

5 {ϕz, i Jy} 1 (1 + 2K∆K) < JK|ϕx|J K + ∆K > ∆J = 0
(1 + 2K∆K− 2m) < JK|ϕx|J + ∆J K + ∆K > ∆J = ±1

6 {ϕz, Jx Jz + Jz Jx} 1 (1 + 2K∆K)2 < JK|ϕx|J K + ∆K > ∆J = 0
(1 + 2K∆K)(1 + 2K∆K− 2m) < JK|ϕx|J + ∆J K + ∆K > ∆J = ±1

7 1
2

[
{ϕx, J2

xy} − {iϕy, i(Jx Jy + Jy Jx)}
]

1 [J(J + 1)− K∆K− K2 − 1] < JK|ϕx|J K + ∆K > ∆J = 0

−[m(m− 1)− (2m− 1)K∆K + K2 + 1] < JK|ϕx|J + ∆J K + ∆K > ∆J = ±1

1
2

[
{ϕx, J2

xy}+ {iϕy, i(Jx Jy + Jy Jx)}
]

[(J − K∆K− 1)(J − K∆K− 2)(J + K∆K + 2)(J + K∆K + 3)]1/2

8 3 < JK|ϕx|J K + ∆K > ∆J = 0
[(m− K∆K− 1)(m− K∆K− 2)(m + K∆K + 2)(m + K∆K + 3)]1/2

< JK|ϕx|J + ∆J K + ∆K > ∆J = ±1

Table 2. Operators and matrix elements for the parallel band (∆k = 0) (reproduced from Ref. [1]).

j v Aj n < JK|v Aj|J + ∆J K + n∆K >; ∆K = ±1

1 ϕz 0 < JK|ϕz|J + ∆J K > ∆J = 0,±1

2 {ϕz, J2} 0 [J(J + 1) + (J + ∆J)(J + ∆J + 1)] < JK|ϕz|J + ∆J K > ∆J = 0,±1

3 {ϕz, J2
z } 0 2K2 < JK|ϕz|J + ∆J K > ∆J = 0,±1

4 1
2
[
{ϕx, i Jy} − {iϕy, Jx}

]
0 0 ∆J = 0
0 m < JK|ϕz|J + ∆J K > ∆J = ±1

5 1
2{ϕx, Jx Jz + Jz Jx} 0 [2(J(J + 1)− K2)− 1] < JK|ϕz|J K > ∆J = 0
− 1

2{iϕy, i(Jy Jz + Jz Jy)} −(1 + 2K2) < JK|ϕz|J + ∆J K > ∆J = ±1

6 1
2
[
{ϕx, i Jy}+ {iϕy, Jx}

]
2 ∆K[(J − K∆K− 1)(J + K∆K + 2)]1/2 < JK|ϕx|J K + ∆K > ∆J = 0

∆K[(m− K∆K− 1)(m + K∆K + 2)]1/2 < JK|ϕx|J + ∆J K + ∆K > ∆J = ±1

7 1
2{ϕx, Jx Jz + Jz Jx} 2 2(K + ∆K)[(J − K∆K− 1)(J + K∆K + 2)]1/2 < JK|ϕx|J K + ∆K > ∆J = 0
+ 1

2{iϕy, i(Jy Jz + Jz Jy)} 2(K + ∆K)[(m− K∆K− 1)(m + K∆K + 2)]1/2 < JK|ϕx|J + ∆J K + ∆K > ∆J = ±1

8 {ϕz, J2
xy} 2 2(K + ∆K)[(J − K∆K− 1)(J + K∆K + 2)]1/2 < JK|ϕx|J K + ∆K > ∆J = 0

−2∆K(m− 1− K∆K)[(m− K∆K− 1)(m + K∆K + 2)]1/2 ∆J = ±1
< JK|ϕx|J + ∆J K + ∆K >

4. Absolute Intensity of an Isolated Line of the XY2 (C2v) Molecule in Doublet
Electronic State: Spin–Rotational Transitions in the Model That Neglects
Spin–Rotational Interactions in the Effective Dipole Moment Operator

Let us consider now an object that is more important for the present study, namely
the XY2 (C2v symmetry) molecule in a doublet electronic state. To our knowledge, for
a description of absolute strengths of spin–ro-vibrational transitions in such molecules,
up to now, the modern chemical physics uses the model that takes into account the pres-
ence of spin–rotation interactions in the wave functions of the lower and upper states of
the transition considered, but neglects the presence of spin–rotational interactions in the
effective dipole moment operator (see, e.g., [14–17]). It looks rather inconsistent if one
takes into account the following arguments: (a) the influence of the rotational centrifugal
distortion effects on an effective dipole moment operator is always taken into account
for molecules both in singlet and doublet electronic states (see, e.g., above-mentioned
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Refs. [1,14–17]); (b) as was discussed above, influences of both the pure rotational and
spin–rotational centrifugal distortion effects on the spin–ro-vibrational energies of asym-
metric top molecules in doublet electronic states are practically of the same orders of value;
(c) in this respect, one can expect that taking into account spin–rotation interactions in an
effective dipole moment operator can improve the accuracy of the description of absolute
transition strengths in a doublet electronic state molecule by the same order as the pure
rotational centrifugal effects improve the description of absolute transition strengths in a
singlet electronic state molecule.

In this Section 4 and the next Section 5, following the scheme of transformation in
the preceding Section 2, we discuss both models (without and with taking into account
spin–rotation interactions in the effective dipole moment operator).

Following the traditional approach [40], the transition from the description of the
absolute line strength of a molecule in a singlet electronic state to the corresponding
description of a molecule in a doublet electronic state needs some changes in the general
formula; Equation (5). Namely, it is necessary to change the pure rotational functions |Jkm〉
by the spin–rotational functions (|Jk〉 ⊗ |S〉)N

km. In this case, in accordance with [39]:

(〈J| ⊗ 〈S|)N
km

(
PZ ≡ P(1)

)1

0

(
| J̃〉 ⊗ |S〉

)Ñ

k̃ m̃

≡ (〈J| ⊗ 〈S|)N
km

(
P(1) ⊗ 1

)1

0

(
| J̃〉 ⊗ |S〉

)Ñ

k̃ m̃

= (2N + 1)−1/2CNm
Ñm̃,10


J S N
J̃ S Ñ
1 0 1

(2N + 1)1/2(2Ñ + 1)1/2

×
√

3 < Jk ‖ P(1) ‖ J̃ k̃ >< S ‖ 1 ‖ S >, (28)

where < Jk ‖ P(1) ‖ J̃ k̃ > can be taken from Equation (7), < S ‖ 1 ‖ S >= 1, and
J S N
J̃ S Ñ
1 0 1

 are 9J−symbols of the SO(3) symmetry group [39]. Analogously (taking

into account Equation (6)), one can obtain the corresponding matrix elements of the PX and
PY components of the dipole moment operator:

(〈J| ⊗ 〈S|)N
kmPX

(
| J̃〉 ⊗ |S〉

)Ñ

k̃ m̃

=
1√
2
(〈J| ⊗ 〈S|)N

km

{(
P(1) ⊗ 1

)1

−1
−
(

P(1) ⊗ 1
)1

1

}(
| J̃〉 ⊗ |S〉

)Ñ

k̃ m̃
(29)

=
1√
2

(
CNm

Ñm̃,1−1
− CNm

Ñm̃,11

)
J S N
J̃ S Ñ
1 0 1

(2Ñ + 1)1/2
√

3 < Jk ‖ P1 ‖ J̃ k̃ >

and

(〈J| ⊗ 〈S|)N
kmPY

(
| J̃〉 ⊗ |S〉

)Ñ

k̃ m̃

=
−i√

2
(〈J| ⊗ 〈S|)N

km

{(
P(1) ⊗ 1

)1

−1
+
(

P(1) ⊗ 1
)1

1

}(
| J̃〉 ⊗ |S〉

)Ñ

k̃ m̃
(30)

=
−i√

2

(
CNm

Ñm̃,1−1
+ CNm

Ñm̃,11

)
J S N
J̃ S Ñ
1 0 1

(2Ñ + 1)1/2
√

3 < Jk ‖ P1 ‖ J̃ k̃ > .

If one now uses the relations (28)–(30) in Equation (5) (but uses the functions (|J〉 ⊗ |S〉)N
km

instead of functions |Jkm〉) and takes into account Equation (10), then the following result
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can be derived (the numerical values of the 9J−symbols in Equation (30) can be easily
obtained on the basis of formulas from Ref. [39]):

R
(Ñ J̃ k̃)
(NJk) = 3(2N + 1)(2Ñ + 1)


J S = 1/2 N
J̃ S = 1/2 Ñ
1 0 1


2

|〈Jk|PZ| J̃ k̃〉|2

≡ g̃(NJ, Ñ J̃)|〈Jk|(PZ ≡∑
α

kZα)| J̃ k̃〉|2. (31)

Corresponding nonzero g̃(NJ, Ñ J̃) coefficients are presented in Table 3. It is interesting
that, for values of the g̃(NJ, Ñ J̃) coefficient, the following relations are valid:

g̃(NJ, Ñ J̃) =
1
2

g(NJ, Ñ J̃), (32)

where g̃(NJ, Ñ J̃) are the analogous coefficients from Ref. [14]. This circumstance practically
does not affect the result of the description of absolute spin–ro-vibrational transitions
but nevertheless leads to different (changed by the factor close to

√
2) values of effective

dipole moment parameters that can be derived from the analysis of experimental data.
It is also important that, for any of the three multiplets (Ñ = N, N ± 1) in Table 3, sums
of corresponding g̃−coefficients are equal to 1. This circumstance gives the possibility to
interpret the values g̃(NJ, Ñ J̃) from Table 3 as coefficients of the distribution of the absolute
strengths of the transition |NJk〉 → |Ñ J̃ k̃〉 between its spin–rotational components.

Table 3. Nonzero values of the g̃(NJ, Ñ J̃)− coefficients (“relative intensities”) of spin–rotational
components of rotational transitions.

Ñ J̃ J ∆J = J̃− J Value

Ñ = N − 1 J̃ = Ñ + 1/2 =
N − 1/2

J = N + 1/2 ∆J = ∆N 2N−1
4N

J̃ = Ñ − 1/2 =
N − 3/2

J = N − 1/2 ∆J = ∆N 2N+1
4N

J̃ = Ñ + 1/2 =
N − 1/2

J = N − 1/2 ∆J 6= ∆N 1
4N2

J̃ = Ñ − 1/2 =
N − 3/2

J = N + 1/2 ∆J 6= ∆N 0

Ñ = N J̃ = N + 1/2 J = N + 1/2 ∆J = ∆N N(2N+3)
4(N+1)2

J̃ = N − 1/2 J = N − 1/2 ∆J = ∆N (N+1)(2N−1)
4N2

J̃ = N − 1/2 J = N + 1/2 ∆J 6= ∆N 1
4N(N+1)

J̃ = N + 1/2 J = N − 1/2 ∆J 6= ∆N 1
4N(N+1)

Ñ = N + 1 J̃ = Ñ + 1/2 =
N + 3/2

J = N + 1/2 ∆J = ∆N 2N+1
4(N+1)

J̃ = Ñ − 1/2 =
N + 1/2

J = N − 1/2 ∆J = ∆N 2N+3
4(N+1)

J̃ = Ñ − 1/2 =
N + 1/2

J = N + 1/2 ∆J 6= ∆N 1
4(N+1)2

J̃ = Ñ + 1/2 =
N + 3/2

J = N − 1/2 ∆J 6= ∆N 0



Int. J. Mol. Sci. 2023, 24, 12734 9 of 18

5. Absolute Intensity of an Isolated Line of the XY2 (C2v) Molecule in Doublet
Electronic State: Spin–Rotational Transitions: PZ-Operator Depends on
Molecular Vibrations

Let us consider now the more correct model of the dipole moment operator in the form
of Equation (3), which depends on molecular vibrations, and connect it to the transforma-
tions and discussion from Section 3. It is necessary to take into account that the analogous
form of Equation (20) should be the following (because the operator, Equation (21), depends
not only on the rotational variables but on the spin variables as well):

H̃ | v′, Ri(Nk, SJ)〉 = δvv′E
(v)
v,Ri(Nk,SJ) | v, Ri(Nk, SJ)〉

= δvv′E
(v)
v,Ri(Nk,SJ) | v〉 | Ri(Nk, SJ)〉, (33)

where | v〉 | Ri(Nk, SJ)〉 are eigenfunctions of the effective spin–rotation Hamiltonian of
Equation (20) type (for details concerning an effective spin–rotation Hamiltonian, see, e.g.,
our recent papers [34–36]). In this case, the basic Equation (5) should be also changed by

R
(ṽ, R̃j(Ñ k̃, S J̃))
(v,Ri(Nk,SJ)) = ∑

mm̃λ

∣∣∣∣(〈J| ⊗ 〈S|)N
km〈v |

(
G+P(1)G

)1

λ
| ṽ〉
(
| J̃〉 ⊗ |S〉

)Ñ

k̃ m̃

∣∣∣∣2, (34)

or (analogously to Equations (7)–(10)):

R
(ṽ, R̃j(Ñ k̃, S J̃))
(v,Ri(Nk,SJ)) =

∣∣∣∣(〈J| ⊗ 〈S|)N
k ‖〈v |

(
G+P(1)G

)1
| ṽ〉‖

(
| J̃〉 ⊗ |S〉

)Ñ

k̃

∣∣∣∣2
=

∣∣∣∣(〈J| ⊗ 〈S|)N
k ∑

α

{
1
2

kΓ
Zα,

∞

∑
p+q+r=0

(α)µ
(v−ṽ)
pqr

(
Jp
x Jq

y Jr
z + Jr

z Jq
y Jp

x
)Γ̃

+
∞

∑
p+q+r=1

x,y,z

∑
β

(α)µ
(v−ṽ)
pqrβ

(
Jp
x Jq

y Jr
zSβ + Sβ Jr

z Jq
y Jp

x
)Γ̃
}γ

+

(
| J̃〉 ⊗ |S〉

)Ñ

k̃

∣∣∣∣2 (35)

=

∣∣∣∣(〈J| ⊗ 〈S|)N
k ∑

α

{
1
2

kΓ
Zα, (α)µΓ̃

rot +
(α)µΓ̃

sp-rot

}γ

+

(
| J̃〉 ⊗ |S〉

)Ñ

k̃

∣∣∣∣2.

Here, γ = (Γ× Γ̃), and, in the right hand side of Equation (35), we omitted a term,
which depends on the Sα operators only, because it can give only an insufficient addition to
the main effective dipole moment parameters µ

(v−ṽ)
000 .

Before further discussion, we would like to make the following remark concerning the
main term ∑α

αµ
(v−ṽ)
000 kΓ

Zα. If one will come back to the formulas Equations (28)–(30) and
use the general relation

(〈J| ⊗ 〈S|)N
km

(
P(1)

λ

)(
| J̃〉 ⊗ |S〉

)Ñ

k̃ m̃
= (2N + 1)−1/2CNm

Ñm̃,1λ
(〈J| ⊗ 〈S|)N

k ‖P
(1)‖

(
| J̃〉 ⊗ |S〉

)Ñ

k̃
, (36)

then it is not difficult to obtain

∑
m,m̃,λ

∣∣∣∣(〈J| ⊗ 〈S|)N
km

(
P(1)

λ

)(
| J̃〉 ⊗ |S〉

)Ñ

k̃ m̃

∣∣∣∣2 =

∣∣∣∣(〈J| ⊗ 〈S|)N
k ‖P

(1)‖
(
| J̃〉 ⊗ |S〉

)Ñ

k̃

∣∣∣∣2

=

∣∣∣∣(〈J| ⊗ 〈S|)N
k

(
∑
α

kZα

)(
| J̃〉 ⊗ |S〉

)Ñ

k̃

∣∣∣∣2. (37)

Now, from a comparison of Equations (31) and (37) , one can obtain the following relation:

(〈J| ⊗ 〈S|)N
k

(
∑
α

kZα

)(
| J̃〉 ⊗ |S〉

)Ñ

k̃
=
√

g̃(NJ, Ñ J̃) 〈Jk|
(

∑
α

kZα

)
| J̃ k̃〉, (38)

whose right-side part is nothing else than the main part of the effective operator in
Equation (35).

Because the µΓ̃
rot operator in Equation (35) depends on the rotational operators only,

then both itself and its matrix elements are not different from the corresponding results
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discussed in Section 5. With regard to the spin–rotational effects that are described by the
µΓ̃

sp-rot operator and that have never been discussed in the literature earlier, their main parts
(which are proportional to the products RαSβ) are considered below on the basis of the
symmetry properties of the discussed molecule (here, and further in Section 5, we use the
notation R1

0, R1
∓1 for the rotational angular momentum operators, which are written in the

notation of the irreducible rotational sets theory). It is not difficult to show that, for the XY2
(C2v) molecule, the Rα (α = x, y, z) components in the MFS are:

Rx =
1√
2
(R(1)
−1 − R(1)

1 ) ∈ A2, Ry = − i√
2
(R(1)
−1 + R(1)

1 ) ∈ B1, and Rz = R(1)
0 ∈ B2, (39)

where A2, B1, and B2 are irreducible representations of the C2v point symmetry group.
First of all, taking into account the symmetry of the operators Rα and Sβ in the XY2

(C2v symmetry) molecule (evidently, the same as for the Rα operators, Sx ∈ A2, Sy ∈ B1,
and Sz ∈ B2), it is not difficult to obtain symmetrized combinations of different products of
operators Jα and Sβ. They are:

(R · S) ≡∑
α

RαSα ∈ A1, RzSz ∈ A1, (40)

(RxSx − RySy) = (R(1)
1 S(1)

1 + R(1)
−1S(1)

−1)

=
(

R(1) ⊗ S(1)
)2

2
+
(

R(1) ⊗ S(1)
)2

−2
∈ A1, (41)

(RxSy + RySx) = i(R(1)
1 S(1)

1 − R(1)
−1S(1)

−1)

= i
(

R(1) ⊗ S(1)
)2

2
− i
(

R(1) ⊗ S(1)
)2

−2
∈ B2, (42)

(RxSz + RzSx) = R(1)
0 (S(1)

−1 − S(1)
1 ) + (R(1)

−1 − R(1)
1 )S(1)

0

= 2
(

R(1) ⊗ S(1)
)2

−1
− 2
(

R(1) ⊗ S(1)
)2

1
∈ B1, (43)

and
(RySz + RzSy) = R(1)

0 (S(1)
−1 − S(1)

1 )− (R(1)
−1 − R(1)

1 )S(1)
0

= 2i
(

R(1) ⊗ S(1)
)2

−1
+ 2i

(
R(1) ⊗ S(1)

)2

1
∈ A2. (44)

Following Equation (26) and subsequent discussion, one can expect that the symmetry
γ in Equation (35) is A2 for a parallel band (the symmetry of the states | v〉 and | ṽ〉 is the
same), or B2 for a perpendicular band (the symmetry of the states | v〉 and | ṽ〉 is different).
We consider here both types of bands, taking into account Equations (40)–(44) and the
symmetry of the kΓ

Zα operators (kA2
Zx, kB1

Zy, or kB2
Zz).

5.1. Parallel Ro-Vibrational Bands

As was mentioned above, the index γ in Equation (35) for a parallel band is equal to A2.

This means (taking into account Equations (40)–(43)) that the operator 1
2

{
∑α kΓ

Zα, µΓ̃
sp-rot

}A2

+
in Equation (35) should be taken as:

1
2

{
∑
α

kΓ
Zα, µΓ̃

sp-rot

}A2

+

=
1
2

{
kZx, µ̃

(v−ṽ)
1 (R · S) + µ̃

(v−ṽ)
2 (RzSz) + µ̃

(v−ṽ)
3 (RxSx − RySy)

}
+

+
1
2

{
kZy, µ̃

(v−ṽ)
4 (RxSy + RySx)+

}
+

(45)

+
1
2

{
kZz, µ̃

(v−ṽ)
5 (RxSz + RzSx)

}
+

.
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Let us apply the first term of the operator, Equation (45), in the right-hand side of
Equation (35). After some transformation, one can obtain the following result:

(〈J| ⊗ 〈S|)N
k

1
2

{
kZx, µ̃

(v−ṽ)
1 (R · S)

}
+

(
| J̃〉 ⊗ |S〉

)Ñ

k̃

=
1
2

µ̃
(v−ṽ)
1 ∑

J′N′k′

{[
(〈J| ⊗ 〈S|)N

k {kZx}
(
|J′〉 ⊗ |S〉

)N′

k′

][(
〈J′| ⊗ 〈S|

)N′

k′ {(R · S)}
(
| J̃〉 ⊗ |S〉

)Ñ

k̃

]}

+
1
2

µ̃
(v−ṽ)
1 ∑

J′N′k′

{[
(〈J| ⊗ 〈S|)N

k {(R · S)}
(
|J′〉 ⊗ |S〉

)N′

k′

][(
〈J′| ⊗ 〈S|

)N′

k′ {kZx}
(
| J̃〉 ⊗ |S〉

)Ñ

k̃

]}
= µ

(v−ṽ)
1

√
g̃(NJ, Ñ J̃) 〈Jk|kZx| J̃ k̃〉

[
J̃( J̃ + 1)− Ñ(Ñ + 1) + J(J + 1)− N(N + 1)− 2S(S + 1)

]
, (46)

where (k̃ = k± 1), and we collected all coefficients from the calculated matrix elements and
the µ̃

(v−ṽ)
1 −value in the new parameter µ

(v−ṽ)
1 . Analogously, nonzero matrix elements of

the second term of Equation (45) can be easily obtained, and they have the following form:

(〈J| ⊗ 〈S|)N
k

1
2

{
kZx, µ̃

(v−ṽ)
2 (RzSz)

}
+

(
| J̃〉 ⊗ |S〉

)Ñ

k̃
= µ

(v−ṽ)
2

√
g̃(NJ, Ñ J̃) 〈Jk|kZx| J̃ k̃〉

×
{

k2

N(N + 1)
[J(J + 1)− N(N + 1)− S(S + 1)] +

k̃2

Ñ(Ñ + 1)

[
J̃( J̃ + 1)− Ñ(Ñ + 1)− S(S + 1)

]}
, (47)

where, again, (k̃ = k± 1).
With regard to the three remaining terms in Equation (45), determining their matrix elements

is not an easy problem. To solve it, some preliminary discussion is needed. As one can see from

Equations (46) and (47), they give only corrections to the main parts,
√

g̃(NJ, Ñ J̃) 〈Jk|kZx| J̃ k̃〉
(see Equation (38)), of transitions with ∆k = ±1. In this case (if one takes into account
Table 3), it is not difficult to see that the values of the g̃(NJ, Ñ J̃)−coefficients with ∆J 6= ∆N
are considerably smaller in comparison to values of g̃(NJ, Ñ J̃)−coefficients with ∆J = ∆N.
Taking into account that the discussed centrifugal spin–rotational corrections themselves
are small corrections to the main terms, we will not further take into account the effects
that correspond in Table 3 terms with ∆J 6= ∆N. We will also take into account the evident
fact that matrix elements of the operators, Equations (41) and (42), are nonzero only for
∆k = ±2 and ∆N = 0,±1, and matrix elements of the operators, Equations (43) and (44),
are nonzero only for ∆k = ±1 and ∆N = 0,±1. Taking all of these into account, after
some transformation, one can produce the following general result for the third term of
Equation (45):

(〈J| ⊗ 〈S|)N
k

1
2

{
kZx, µ̃

(v−ṽ)
3 (RxSx − RySy)

}
+

(
| J̃〉 ⊗ |S〉

)Ñ

k̃

=
1
2

µ̃
(v−ṽ)
3 ∑

J′N′k′

{[
(〈J| ⊗ 〈S|)N

k {kZx}
(
|J′〉 ⊗ |S〉

)N′

k′

][(
〈J′| ⊗ 〈S|

)N′

k′

{
(R(1)

1 S(1)
1 + R(1)

−1S(1)
−1)
}(
| J̃〉 ⊗ |S〉

)Ñ

k̃

]}

+
1
2

µ̃
(v−ṽ)
3 ∑

J′N′k′

{[
(〈J| ⊗ 〈S|)N

k

{
(R(1)

1 S(1)
1 + R(1)

−1S(1)
−1)
}(
|J′〉 ⊗ |S〉

)N′

k′

][(
〈J′| ⊗ 〈S|

)N′

k′ {kZx}
(
| J̃〉 ⊗ |S〉

)Ñ

k̃

]}

= µ
(v−ṽ)
3

√
g̃(NJ, LJ̃) 〈Jk|kZx| J̃ l〉

{(
〈 J̃| ⊗ 〈S|

)L

l

[(
R(1) ⊗ S(1)

)2

2
+
(

R(1) ⊗ S(1)
)2

−2

](
| J̃〉 ⊗ |S〉

)Ñ

k̃

}
+µ

(v−ṽ)
3

{
(〈J| ⊗ 〈S|)N

k

[(
R(1) ⊗ S(1)

)2

2
+
(

R(1) ⊗ S(1)
)2

−2

]
(|J〉 ⊗ |S〉)M

m

}√
g̃(MJ, Ñ J̃) 〈Jm|kZx| J̃ k̃〉. (48)

One can see that, in the final result, the initial summation is absent; the indexes in
Equation (48) are: k̃ = k ± 3, or k̃ = k ± 1; Ñ = N + ∆N (∆N = 0,±1,±2); J̃ = J + ∆J
(∆J = 0,±1); L = N + ∆J, M = Ñ − ∆J. Possible combinations of indexes for nonzero
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values of matrix elements are shown in Table 4, and nonzero matrix elements of the
(R1 ⊗ S1)2

±2 operators are:

(〈J| ⊗ 〈S|)N
k

(
R(1) ⊗ S(1)

)2

±2
(|J〉 ⊗ |S〉)N

k̃=k∓2

= (−1)2(N−J) (2N + 1)
4J(2J + 1)

{(N ± k− 1)(N ± k)(N ∓ k + 1)(N ∓ k + 2)}1/2, (49)

and

(〈J| ⊗ 〈S|)N
k

(
R(1) ⊗ S(1)

)2

±2
(|J〉 ⊗ |S〉)(N+∆N)

k̃=k∓2

=
∆N(k− k̃)

4

{
(N ± k)(N ∓ k + 1)[(N + 1) + ∆N(2∓ k)][N + ∆N(2∓ k)]

(2J + 1)(2J + 2 + ∆N)

}1/2

. (50)

Table 4. Possible combinations of indexes for nonzero values of matrix elements; Equations (48)
and (52) (a).

∆N = Ñ− N J ∆J = J̃− J L M

0 N ± 1/2 0 N N
N − 1/2 1 N + 1 N − 1
N + 1/2 −1 N − 1 N + 1

1 N + 1/2 0 N N + 1
N ± 1/2 1 N + 1 N

−1 N − 1/2 0 N N − 1
N ± 1/2 −1 N − 1 N

2 N + 1/2 1 N + 1 N + 1

−2 N − 1/2 -1 N − 1 N − 1
(a) Only four combinations of ∆l = l − k and ∆m = m− k are available: for ∆k = +3, ∆l = +1 and ∆m + 2; for
∆k = +1, ∆l = −1 and ∆m + 2; for ∆k = −1, ∆l = +1 and ∆m− 2; and for ∆k = −3, ∆l = −1 and ∆m− 2.

As one can see from the comparison of the right-hand sides of Equations (49) and (50),
all of them are values of the same order and are approximately proportional to N. Taking
into account that, firstly, the µ

(v−ṽ)
3 in Equation (48) is a small parameter in comparison with

the main µ
(v−ṽ)
1 one, and, secondly, in Equation (48), (N −M) = (J − J̃) (see discussion

above), one can conclude that an influence of the terms, Equation (48), on the absolute
line strengths of the molecule considered is of the same order of value as the influence

of the main µ
(v−ṽ)
1

√
g̃(NJ, MJ̃) 〈Jk|kZx| J̃ k〉 parts for the condition (N − M) 6= (J − J̃)

(“forbidden” transitions). If speaking about “allowed” transitions (N − M) = (J − J̃),
Equation (48) gives only small corrections to the main terms (which nevertheless can
increase significantly with an increasing value of quantum number N). At the same time,
for “forbidden” transitions, Equation (48) gives results that are comparable by order of
value with such “main” parts. Moreover (as is seen from Table 3), the “main” parts of
“forbidden” transitions decrease by 1/N2 with the increasing quantum number N while the
values, Equation (48), increase by N. This can be considered as an important consequence of
the obtained result. One more interesting consequence is the fact that Equation (48) allows
for transitions with the value ∆k = ±, 3 or ∆N = ±2, which are absent in the description
by formulas that use data from Table 3. The same as for the “forbidden” transitions with
∆k = ±1 and ∆N = 0,±1, corresponding values for ”allowed“ transitions with ∆k = ±3
or ∆N = ±2 increase by N with increasing N.

The analogous consideration for the fourth term in Equation (45) leads to the following
result:
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(〈J| ⊗ 〈S|)N
k

1
2

{
kZy, µ̃

(v−ṽ)
4 (RxSy + RySx)

}
+

(
| J̃〉 ⊗ |S〉

)Ñ

k̃
=

= µ
(v−ṽ)
4

√
g̃(NJ, MJ̃) 〈Jk|kZx| J̃ l〉(l − k)

{(
〈 J̃| ⊗ 〈S|

)M

l

[(
R(1) ⊗ S(1)

)2

2
−
(

R(1) ⊗ S(1)
)2

−2

](
| J̃〉 ⊗ |S〉

)Ñ

k̃

}
(51)

+µ
(v−ṽ)
4

√
g̃(NJ, MJ̃) 〈Jk|kZx| J̃ l〉(l − k)

{(
〈 J̃| ⊗ 〈S|

)M

l

[(
R(1) ⊗ S(1)

)2

2
−
(

R(1) ⊗ S(1)
)2

−2

](
| J̃〉 ⊗ |S〉

)Ñ

k̃

}
,

if one takes into account the known relation (see, e.g., [43]):

〈Jk|ikZy| J̃ l〉 = (l − k)〈Jk|kZx| J̃ l〉. (52)

And, finally, for the fifth term of Equation (45), it is possible to obtain the following
relation:

(〈J| ⊗ 〈S|)N
k

1
2

{
kZx, µ̃

(v−ṽ)
5 (RxSz + RzSx)

}
+

(
| J̃〉 ⊗ |S〉

)Ñ

k̃

= µ
(v−ṽ)
5

√
g̃(NJ, LJ̃) 〈Jk|kZx| J̃ l〉

{(
〈 J̃| ⊗ 〈S|

)L

l

[(
R(1) ⊗ S(1)

)2

−1
−
(

R(1) ⊗ S(1)
)2

1

](
| J̃〉 ⊗ |S〉

)Ñ

k̃

}
(53)

+µ
(v−ṽ)
5

{
(〈J| ⊗ 〈S|)N

k

[(
R(1) ⊗ S1

)2

−1
−
(

R(1) ⊗ S(1)
)2

1

]
(|J〉 ⊗ |S〉)M

m

}√
g̃(MJ, Ñ J̃) 〈Jm|kZx| J̃ k̃〉,

where evidently weak “forbidden” transitions with ∆k = 0,±2 are described. Indexes
in Equation (53) are: k̃ = k, or k̃ = k ± 2; Ñ = N + ∆N (∆N = 0,±1,±2); J̃ = J + ∆J
(∆J = 0,±1); L = N +∆J, M = Ñ−∆J, and nonzero matrix elements of the (R(1)⊗ S(1))2

±1
operators are:

(〈J| ⊗ 〈S|)N
k

(
R(1) ⊗ S(1)

)2

±1
(|J〉 ⊗ |S〉)N

k̃=k∓1

= (−1)2(N−J) (2N + 1)(1∓ 2k)
4J(2J + 1)

{(N ± k)(N ∓ k + 1)}1/2 (54)

and
(〈J| ⊗ 〈S|)N

k

(
R(1) ⊗ S(1)

)2

±1
(|J〉 ⊗ |S〉)(N+∆N)

k̃=k∓1

=
∆N(k− k̃)(N ∓ 2k + 1)

4

{
(N ∓ k + 1)[N + ∆N(2∓ k)]

(2J + 1)(2J + 2 + ∆N)

}1/2

. (55)

5.2. Perpendicular Ro-Vibrational Bands

As discussed above, for a perpendicular ro-vibrational band, the index γ in Equation (35)
is equal to B2. This means that the analogous form of Equation (45) for a perpendicular
band should be written as

1
2

{
∑
α

kΓ
Zα, µΓ̃

sp-rot

}B2

+

=
1
2

{
kZz, µ̃

(v−ṽ)
1 (R · S) + µ̃

(v−ṽ)
2 (RzSz) + µ̃

(v−ṽ)
3 (RxSx − RySy)

}
+

+
1
2

{
kZy, µ̃

(v−ṽ)
4

[
(RySz + RzSy)

]}
+

(56)

+
1
2

{
kZx, µ̃

(v−ṽ)
5 [(RxSz + RzSx)]

}
+

.

In the same way as in Section 5.1, it is possible to show that, for the first two operators in
Equation (56), the corresponding matrix elements have the same form as Equations (46) and (47)
if one changes the values 〈Jk|kZx| J̃ k̃〉 in Equations (46) and (47) by the 〈Jk|kZz| J̃ k̃〉 ones:
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(〈J| ⊗ 〈S|)N
k

1
2

{
kZz, µ̃

(v−ṽ)
1 (R · S)

}
+

(
| J̃〉 ⊗ |S〉

)Ñ

k̃

= µ
(v−ṽ)
1

√
g̃(NJ, Ñ J̃) 〈Jk|kZz| J̃ k̃〉

[
J̃( J̃ + 1)− Ñ(Ñ + 1) + J(J + 1)− N(N + 1)− 2S(S + 1)

]
(57)

and

(〈J| ⊗ 〈S|)N
k

1
2

{
kZz, µ̃

(v−ṽ)
2 (RzSz)

}
+

(
| J̃〉 ⊗ |S〉

)Ñ

k̃
= µ

(v−ṽ)
2

√
g̃(NJ, Ñ J̃) 〈Jk|kZz| J̃ k̃〉

×
{

k2

N(N + 1)
[J(J + 1)− N(N + 1)− S(S + 1)] +

k̃2

Ñ(Ñ + 1)

[
J̃( J̃ + 1)− Ñ(Ñ + 1)− S(S + 1)

]}
. (58)

Here, of course, one should take into account that (k̃ = k).
For the third term in Equation (56), the use of the scheme from Section 5.1 gives the

following result:

(〈J| ⊗ 〈S|)N
k

1
2

{
kZz, µ̃

(v−ṽ)
3 (RxSx − RySy)

}
+

(
| J̃〉 ⊗ |S〉

)Ñ

k̃

= µ
(v−ṽ)
3

√
g̃(NJ, LJ̃) 〈Jk|kZz| J̃ k〉

{(
〈 J̃| ⊗ 〈S|

)L

l=k

[(
R(1) ⊗ S(1)

)2

2
+
(

R(1) ⊗ S(1)
)2

−2

](
| J̃〉 ⊗ |S〉

)Ñ

k̃

}
(59)

+µ
(v−ṽ)
3

{
(〈J| ⊗ 〈S|)N

k

[(
R(1) ⊗ S(1)

)2

2
+
(

R(1) ⊗ S(1)
)2

−2

]
(|J〉 ⊗ |S〉)M

m=k̃

}√
g̃(MJ, Ñ J̃) 〈Jk̃|kZz| J̃ k̃〉,

where k̃ = k± 2, Ñ = N + ∆N (∆N = 0,±1,±2); J̃ = J + ∆J (∆J = 0,±1); L = N + ∆J,
M = Ñ − ∆J. Possible combinations of indexes for nonzero values of matrix elements are
the same as in Table 4 (in this case, one should not take into account the footnote to Table 4;
possible values of indexes l and m are given directly in Equation (59)), and nonzero matrix
elements of the (R(1) ⊗ S(1))2

±2 operators are presented in Equations (49) and (50).
It is not difficult to show that the nonzero matrix elements of the fourth and fifth term

of Equation (56) are:

(〈J| ⊗ 〈S|)N
k

1
2

{
kZy, µ̃

(v−ṽ)
4 (RySz + RzSy)

}
+

(
| J̃〉 ⊗ |S〉

)Ñ

k̃

= µ
(v−ṽ)
4 (l − k)

√
g̃(NJ, LJ̃) 〈Jk|kZx| J̃ l〉

{(
〈 J̃| ⊗ 〈S|

)L

l

[(
R(1) ⊗ S(1)

)2

−1
+
(

R(1) ⊗ S(1)
)2

1

](
| J̃〉 ⊗ |S〉

)Ñ

k̃

}
(60)

+µ
(v−ṽ)
4 (k̃−m)

{
(〈J| ⊗ 〈S|)N

k

[(
R(1) ⊗ S(1)

)2

−1
+
(

R(1) ⊗ S(1)
)2

1

]
(|J〉 ⊗ |S〉)M

m

}√
g̃(MJ, Ñ J̃) 〈Jm|kZx| J̃ k̃〉

(here, we took into account Equation (53)), and

(〈J| ⊗ 〈S|)N
k

1
2

{
kZy, µ̃

(v−ṽ)
5 (RxSz + RzSx)

}
+

(
| J̃〉 ⊗ |S〉

)Ñ

k̃

= µ
(v−ṽ)
5

√
g̃(NJ, LJ̃) 〈Jk|kZy| J̃ l〉

{(
〈 J̃| ⊗ 〈S|

)L

l

[(
R(1) ⊗ S(1)

)2

−1
−
(

R(1) ⊗ S(1)
)2

1

](
| J̃〉 ⊗ |S〉

)Ñ

k̃

}
(61)

+µ
(v−ṽ)
5

{
(〈J| ⊗ 〈S|)N

k

[(
R(1) ⊗ S(1)

)2

−1
−
(

R(1) ⊗ S(1)
)2

1

]
(|J〉 ⊗ |S〉)M

m

}√
g̃(MJ, Ñ J̃) 〈Jm|kZy| J̃ k̃〉.

The values of the indexes Ñ, J̃, L, M in Equations (60) and (61) are the same as in
Equations (48), (53), and (59); k̃ = k or ±k; l = k ± 1; m = k ± 1; and nonzero matrix
elements of the (R(1) ⊗ S(1))2

±1 operators can be taken from Equations (54) and (55).
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As an illustration of the importance and correctness of the results, let us consider
one of the obtained formulas, e.g., Equation (59), which is applied to perpendicular
spin–ro-vibrational bands with the allowed transitions ∆K = 0. In accordance with
this formula, “forbidden” transitions with ∆K = ±2 can also be seen in absorption
spectra of the considered type of molecules. If one uses the matrix elements (49) and
(50) in Equation (59) and takes into account Equations (13), (15), and (17), then it is
possible to conclude the following: the matrix elements which correspond to the Q
that transitions decrease by k√

N
with increasing quantum number N, and matrix ele-

ments that correspond to the P and R transitions increase by
(

N2−k2
√

N

)
with increasing

N. For this reason, we present here, as an illustration, a set of R transitions of the
(N + 1 Ka = 0 Kc = N (±)) ←− (N Ka = 2 Kc = (N − 2) (±))−type for the ν3 band
of the 35ClO2 molecule whose experimental values can be found in Ref. [36] (they are
reproduced from [36] in column 3 of Table 5). Column 2 of Table 5 presents theoretically
predicted values of the same transition frequencies. These predicted values were obtained
as differences between values of corresponding spin–ro-vibrational energies of the (001)
upper vibrational state (the latter have been taken from Table 4 of Ref. [36]) and those of
the ground vibrational state (in this case, spin–rotational energies of the ground vibrational
state have been calculated with the parameters from column 2 of Table 2; [36]).

Column 1 of this table indicates quantum numbers of the upper and lower spin–ro-
vibrational states of a transition (in this case, sign (+) corresponds to the value J = N + 1/2
and sign (−) corresponds to the value J = N − 1/2). Columns 2 and 3 present calculated
line positions (in cm−1) and corresponding experimental line positions from spectrum I of
Ref. [36] (also in cm−1). The values in column 4 are transmittances of experimental lines.
One can see that the “forbidden” transition is strong enough (for a comparison with the
“allowed” transitions of the ν3 band, see the small fragment of the mentioned experimental
spectrum in Figure 1). One can argue that the reason for the appearance of the discussed
transitions can be a superposition of the spin–rotational basic functions with ∆K = 0 and
∆K = ±2 in the effective Hamiltonian eigenfunctions, which are used in the calculation of
matrix elements of the effective dipole moment of a molecule. However, the analysis of
corresponding wave functions and the estimation of corresponding numerical values show
that such influence of superpositions in wave functions is negligible in comparison with
the effect of Equation (59).

Table 5. Illustration of the “forbidden” ∆K = 2 transitions in the ν3 band of 35ClO2.

Transition νcalc. νexp. Transmitt.

[N′ = N + 1 K′a = 0 K′c (σ′)] − [N Ka = 2 Kc (σ)] in cm−1 in cm−1 in %

1 2 3 4

[4 0 4 (−)] − [3 2 1 (−)] 1106.7267 1106.7262 92
[4 0 4 (+)] − [3 2 1 (+)] 1106.7824 1106.7828 92

[6 0 6 (−)] − [5 2 3 (−)] 1107.7978 1107.7976 95
[6 0 6 (+)] − [5 2 3 (+)] 1107.8319 1107.8315 89

[8 0 8 (−)] − [7 2 5 (−)] 1108.6547 1108.6546 86
[8 0 8 (+)] − [7 2 5 (+)] 1108.6882 covered 62

[10 0 10 (−)] − [9 2 7 (−)] 1109.1992 1109.2000 80
[10 0 10 (+)] − [9 2 7 (+)] 1109.2575 covered 61

[12 0 12 (−)] − [11 2 9 (−)] 1109.3568 1109.3563 85
[12 0 12 (+)] − [11 2 9 (+)] 1109.4050 1109.4050 80
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Figure 1. Small portion of the experimental spectrum of ClO2 compared with Ref. [36]. “Forbidden
transitions” ∆K = ±2 are marked by dark circles. Experimental conditions: resolution is 0.0015 cm−1;
number of scans is 400; source is a Globar; detector is a MCT313; beam-splitter is made from KBr;
optical path length is 0.23 m; aperture is 1.15 mm; temperature is 22 ± 0.3 ◦C; pressure is 100 Pa;
calibration was performed by CO2 and H2O spectral lines.

6. Conclusions

We derived a new model of the effective dipole moment of the XY2 (C2v−symmetry)
molecule in a doublet electronic state by taking into account spin–rotational centrifugal
corrections that have never been considered earlier for such kind of problems. Corre-
sponding relations (which are necessary for determination of absolute spin–ro-vibrational
transition strengths and which contain all effects known up to now, as special cases) are
obtained on the basis of the irreducible tensorial sets theory. The derived results allow
us to take into account both the higher-order corrections to the allowed transitions and
also to describe weak transitions of the ∆K = ±2,±3−types in the parallel bands, of the
∆K = ±1,±2−types in the perpendicular bands, and of the ∆N = ±2−type in both kinds
of spin–ro-vibrational bands. To illustrate the correctness and efficiency of the derived
model, we compared the estimated line strengths of a set of the “forbidden” ∆Ka = 2
transitions of the ν3 band of the OClO free radical with corresponding experimental data,
which confirm the validity of the obtained results.

Author Contributions: Conceptualization, O.U. and S.B.; Methodology, O.U. and S.B.; Software, E.B.,
O.G., A.K. and C.S.; Validation, E.B. and O.G.; Investigation, E.B. and C.S.; Writing—original draft,
O.U.; Writing—review & editing, O.U.; Supervision, O.U. All authors have read and agreed to the
published version of the manuscript.



Int. J. Mol. Sci. 2023, 24, 12734 17 of 18

Funding: This research was supported by the TPU development program “Priority 2030” (project
NIP/EB-010-375-2023). The German authors also thank the Deutsche Forschungsgemeinschaft (grants
BA 2176/4-1, BA 2176/4-2, BA 217/5-1 and BA 2176/9-1) as well as the Volkswagen Foundation for
financial support.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Flaud, J.; Camy-Peyret, C. Vibration-rotation intensities in H2O—Type molecules application to the 2ν2, ν1, ν3 band of H2
16O.

J. Mol. Spectrosc. 1975, 55, 278–310. [CrossRef]
2. Loéte, M. Devéloppement complet du moment dipolaire des molécules tétraé. Application aux bandes triplement dégénéréet a la

diade ν2 et ν4. Can. J. Phys. 1983, 61, 1242–1259. [CrossRef]
3. Boudon, V.; Grigoryan, T.; Philipot, F.; Richard, C.; Tchana, F.K.; Manceron, L.; Rizopoulos, A.; Auwera, J.V.; Encrenaz, T. Line

positions and intensities for the ν3 band of 5 isotopologues of germane for planetary applications. J. Quant. Spectrosc. Radiat.
Transf. 2018, 205, 174–183. [CrossRef]

4. Tarrago, J.; Ulenikov, O.; Poussigue, G. Dipole moment matrix for vibration–rotation transitions in C3v molecules. J. Phys. Paris
1984, 45, 1429–1447. [CrossRef]

5. Saveliev, V.N.; Ulenikov, O.N. Calculation of vibration–rotation line intensities of polyatomic molecules based on the formalism
of irreducible tensorial sets. J. Phys. B At. Mol. Phys. 1987, 20, 67–83. [CrossRef]

6. Herzberg, G. Molecular Spectra and Molecular Structure, Volume 2: Infrared and Raman and Spectra of Polyatomic Molecules, 1st ed.; D.
Van Nostrand Company: New York, NY, USA, 1945.

7. Nielsen, H.H. The Vibration-Rotation Energies of Molecules. Rev. Mod. Phys. 1951, 23, 90–136. [CrossRef]
8. Papouek, D.; Aliev, M.R. Molecular Vibrational—Rotational Spectra; Elsevier: Amsterdam, The Netherlands, 1982.
9. Ulenikov, O.; Bekhtereva, E.; Gromova, O.; Raspopova, N.; Sydow, C.; Bauerecker, S. Extended analysis of the ν3 band of HD32S:

Line positions, energies, and line strengths. J. Quant. Spectrosc. Radiat. Transf. 2019, 230, 131–141. [CrossRef]
10. Ulenikov, O.; Bekhtereva, E.; Gromova, O.; Raspopova, N.; Belova, A.; Maul, C.; Sydow, C.; Bauerecker, S. Experimental line

strengths of the 5ν2 band of H2
32S in comparison with the results of "variational” calculation and HITRAN database. J. Quant.

Spectrosc. Radiat. Transf. 2020, 243, 106812. [CrossRef]
11. Ro–vibrational analysis of the first hexad of hydrogen sulfide: Line position and strength analysis of the 4ν2 band of H2

32S and
H2

34S for HITRAN applications. J. Quant. Spectrosc. Radiat. Transf. 2020, 255, 107236. [CrossRef]
12. Ulenikov, O.; Bekhtereva, E.; Gromova, O.; Konova, Y.; Aslapovskaya, Y.; Sydow, C.; Berezkin, K.; Bauerecker, S. Quantitative

analysis of ro–vibrational spectra of ethylene: Line strengths of the ν12 and ν3 bands of 12C2H2D2−cis. J. Quant. Spectrosc. Radiat.
Transf. 2021, 261, 107434. [CrossRef]

13. Ulenikov, O.; Bekhtereva, E.; Gromova, O.; Belova, A.; Morzhikova, Y.; Sydow, C.; Maul, C.; Bauerecker, S. Line strength analysis
of the second overtone 3ν2 band of D2

32S. J. Quant. Spectrosc. Radiat. Transf. 2021, 270, 107686. [CrossRef]
14. Malathy Devi, V.; Das, P.P.; Bano, A.; Narahari Rao, K.; Flaud, J.M.; Camy-Peyret, C.; Chevillard, J.P. Diode laser measurements

of intensities, N2−broadening, and self–broadening coefficients of lines of the ν2 band of 14N16O2. J. Mol. Spectrosc. 1981,
88, 251–258. [CrossRef]

15. Perrin, A.; Flaud, J.M.; Camy-Peyret, C.; Carli, B.; Carlotti, M. The far infrared spectrum of 14N16O2 electron spin-rotation and
hyperfine fermi contact resonances in the ground state. Mol. Phys. 1988, 63, 791–810. [CrossRef]

16. Perrin, A.; Flaud, J.M.; Camy-Peyret, C.; Vasserot, A.M.; Guelachvili, G.; Goldman, A.; Murcray, F.; Blatherwick, R. The ν1, 2ν2,
and ν3 interacting bands of 14N16O2: Line positions and intensities. J. Mol. Spectrosc. 1992, 154, 391–406. [CrossRef]

17. Ortigoso, J. ; Escribano, R.; Burkholder, J.B.; Lafferty, W.J. Intensities and dipole moment derivatives of the fundamental bands of
35ClO2 and an intensity analysis of the ν1 band. J. Mol. Spectrosc. 1992, 156, 89–97. [CrossRef]

18. Curl, R.; Kinsey, J.L.; Baker, J.G.; Baird, J.C.; Bird, G.R.; Heidelberg, R.F.; Sugden, T.; Jenkins, D.; Kenney, C. Microwave spectrum
of chlorine dioxide. I. Rotational assignment. Phys. Rev. 1961, 121, 1119–1123. [CrossRef]

19. Curl, R., Jr.; Heidelberg, R.F.; Kinsey, J.L. Microwave spectrum of chlorine dioxide. II. Analysis of hyperfine structure and the
spectrum of 35Cl16O18O. Phys. Rev. 1962, 125, 1993–1999. [CrossRef]

20. Curl, R., Jr. Microwave spectrum of chlorine dioxide. III. Interpretation of the hyperfine coupling constants obtained in terms of
the electronic structure. J. Chem. Phys. 1962, 37, 779–784. [CrossRef]

21. Pillai, M.G.K.; Curl, R., Jr. Microwave spectrum of chlorine dioxide. IV. Determination of centrifugal distortion effects and
potential constants. J. Chem. Phys. 1962, 37, 2921–2926. [CrossRef]

22. Tolles, W.; Kinsey, J.L.; Curl, R.; Heidelberg, R.F. Microwave spectrum of chlorine dioxide. V. The Stark and Zeeman effects. J.
Chem. Phys. 1962, 37, 927–930. [CrossRef]

http://doi.org/10.1016/0022-2852(75)90270-2
http://dx.doi.org/10.1139/p83-158
http://dx.doi.org/10.1016/j.jqsrt.2017.10.017
http://dx.doi.org/10.1051/jphys:019840045090142900
http://dx.doi.org/10.1088/0022-3700/20/1/012
http://dx.doi.org/10.1103/RevModPhys.23.90
http://dx.doi.org/10.1016/j.jqsrt.2019.04.005
http://dx.doi.org/10.1016/j.jqsrt.2019.106812
http://dx.doi.org/10.1016/j.jqsrt.2020.107236
http://dx.doi.org/10.1016/j.jqsrt.2020.107434
http://dx.doi.org/10.1016/j.jqsrt.2021.107686
http://dx.doi.org/10.1016/0022-2852(81)90176-4
http://dx.doi.org/10.1080/00268978800100571
http://dx.doi.org/10.1016/0022-2852(92)90217-C
http://dx.doi.org/10.1016/0022-2852(92)90095-6
http://dx.doi.org/10.1103/PhysRev.121.1119
http://dx.doi.org/10.1103/PhysRev.125.1993
http://dx.doi.org/10.1063/1.1733160
http://dx.doi.org/10.1063/1.1733118
http://dx.doi.org/10.1063/1.1733247


Int. J. Mol. Sci. 2023, 24, 12734 18 of 18

23. Mariella, R.P., Jr.; Curl, R., Jr. Microwave spectrum of chlorine dioxide. VI. v2 = 1 State. J. Chem. Phys. 1970, 52, 757–763.
[CrossRef]

24. Jones, H.; Brown, J.M. Infrared–microwave double–resonance spectroscopy of the ClO2 radical: A textbook example. J. Mol.
Spectrosc. 1981, 90, 222–248. [CrossRef]

25. Tanoura, M.; Chiba, K.; Tanaka, K.; Tanaka, T. Microwave spectroscopy of chlorine dioxide: Centrifugal distortion, spin-rotation
interaction, and hyperfine interaction constants of 35ClO2 and 37ClO2. J. Mol. Spectrosc. 1982, 95, 157–181. [CrossRef]

26. Miyazaki, K.; Tanoura, M.; Tanaka, K.; Tanaka, T. Microwave spectrum of chlorine dioxide in excited vibrational states. J. Mol.
Spectrosc. 1986, 116, 435–449. [CrossRef]

27. Müller, H.S.; Sørensen, G.; Birk, M.; Friedl, R.R. The Rotational Spectrum and Anharmonic Force Field of Chlorine Dioxide, OClO.
J. Mol. Spectrosc. 1997, 186, 177–188. [CrossRef]

28. Hamada, Y.; Tsuboi, M. High Resolution Infrared Spectrum of Chlorine Dioxide: The ν2 Fundamental Band. Bull. Chem. Soc. Jpn.
1979, 52, 383–385. [CrossRef]

29. Hamada, Y.; Tsuboi, M. High–resolution infrared spectrum of chlorine dioxide: The ν1 fundamental band. J. Mol. Spectrosc. 1980,
83, 373–390. [CrossRef]

30. Tanaka, K.; Tanaka, T. CO2 and N2O laser Stark spectroscopy of the ν1 band of the ClO2 radical. J. Mol. Spectrosc. 1983, 98, 425–452.
[CrossRef]

31. Ortigoso, J.; Escribano, R.; Burkholder, J.B.; Howard, C.J.; Lafferty, W.J. High–resolution infrared spectrum of the ν1 band of
OClO. J. Mol. Spectrosc. 1991, 148, 346–370. [CrossRef]

32. Ortigoso, J.; Escribano, R.; Burkholder, J.B.; Lafferty, W.J. The ν2 and ν3 bands and ground state constants of OClO. J. Mol.
Spectrosc. 1992, 155, 25–43. [CrossRef]

33. Ortigoso, J.; Escribano, R.; Burkholder, J.; Lafferty, W. Infrared Spectrum of (OClO) in the 2000 cm−1 Region: The 2ν1 and ν1 + ν3
Bands. J. Mol. Spectrosc. 1993, 158, 347–356. [CrossRef]

34. Ulenikov, O.N.; Bekhtereva, E.S.; Gromova, O.V.; Quack, M.; Berezkin, K.B.; Sydow, C.; Bauerecker, S. High resolution ro–
vibrational analysis of molecules in doublet electronic states: The ν1 fundamental of chlorine dioxide (16O35Cl16O) in the X2B1
electronic ground state. Phys. Chem. Chem. Phys. 2021, 23, 4580–4596. [CrossRef]

35. Ulenikov, O.; Bekhtereva, E.; Gromova, O.; Kakaulin, A.; Sydow, C.; Berezkin, K.; Bauerecker, S. High resolution spectroscopy of
the ν1 + ν3 band of the 35Cl16O2 free radical: Spin–rotation–vibration interactions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
2022, 278, 121379. [CrossRef]

36. Ulenikov, O.N.; Bekhtereva, E.S.; Gromova, O.V.; Kakaulin, A.N.; Merkulova, M.A.; Sydow, C.; Berezkin, K.B.; Bauerecker, S.
High resolution spectroscopy of asymmetric top molecules in nonsinglet electronic states: The ν3 fundamental of chlorine dioxide
(16O35Cl16O) free radical in the X2B1 electronic ground state. Phys. Chem. Chem. Phys. 2023, 25, 6270–6287. [CrossRef] [PubMed]

37. Griffits, D.J. Introduction to Quantum Mechanics; Prentice Hall, Inc.: Hoboken, NJ, USA, 1995.
38. Schmitt, M.; Meerts, L. Structures and dipole moments of molecules in their electronically excited states. In Structures and Dipole

Moments of Molecules in Their Electronically Excited States, in Frontiers and Advances in Molecular Spectroscopy; Laane, J., Ed.; Elsevier:
Amsterdam, The Netherlands, 2018; pp. 143–193. [CrossRef]

39. Varshalovitch, D.A.; Moskalev, A.N.; Khersonsky, V.K. Quantum Theory of Angular Momentum; Nauka: Leningrad, Russia, 1975.
40. Van Vleck, J. The coupling of angular momentum vectors in molecules. Rev. Mod. Phys. 1951, 23, 213–227. [CrossRef]
41. Fano, U.; Racah, G.D. Irreducible Tensorial Sets; Academic Press: New York, NY, USA, 1959.
42. Wigner, E.P. Quantum Theory of Angular Momentum; Academic Press: New York, NY, USA, 1965.
43. Ulenikov, O.; Bekhtereva, E.; Gromova, O.; Fomchenko, A.; Morzhikova, Y.; Sidko, S.; Sydow, C.; Bauerecker, S. Effective

dipole moment model for axially symmetric C3v molecules: Application to the precise study of absolute line strengths of the ν6
fundamental of CH3Cl. Int. J. Mol. Sci. 2023, 24, 12122. [CrossRef]

44. Cheglokov, A.; Ulenikov, O.; Zhilyakov, A.; Cherepanov, V.; Makushkin, Y.; Malikova, A. On the determination of spectroscopic
constants as functions of intramolecular parameters. J. Phys. B At. Mol. Opt. Phys. 1989, 22, 997–1015. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1063/1.1673051
http://dx.doi.org/10.1016/0022-2852(81)90343-X
http://dx.doi.org/10.1016/0022-2852(82)90245-4
http://dx.doi.org/10.1016/0022-2852(86)90138-4
http://dx.doi.org/10.1006/jmsp.1997.7435
http://dx.doi.org/10.1246/bcsj.52.383
http://dx.doi.org/10.1016/0022-2852(80)90062-4
http://dx.doi.org/10.1016/0022-2852(83)90253-9
http://dx.doi.org/10.1016/0022-2852(91)90392-N
http://dx.doi.org/10.1016/0022-2852(92)90546-Z
http://dx.doi.org/10.1006/jmsp.1993.1079
http://dx.doi.org/10.1039/D0CP05515H
http://dx.doi.org/10.1016/j.saa.2022.121379
http://dx.doi.org/10.1039/D2CP05604F
http://www.ncbi.nlm.nih.gov/pubmed/36762534
http://dx.doi.org/10.1016/B978-0-12-811220-5.00005-8
http://dx.doi.org/10.1103/RevModPhys.23.213
http://dx.doi.org/10.3390/ijms241512122
http://dx.doi.org/10.1088/0953-4075/22/7/009

	Introduction 
	Absolute Intensity of an Isolated Line of the XY2 (C2v) Molecule in a Singlet Electronic State: Rotational Transitions
	Absolute Intensity of an Isolated Line of the XY2 (C2v) Molecule in a Singlet Electronic State: Ro-Vibrational Transitions
	Absolute Intensity of an Isolated Line of the XY2 (C2v) Molecule in Doublet Electronic State: Spin–Rotational Transitions in the Model That Neglects Spin–Rotational Interactions in the Effective Dipole Moment Operator
	Absolute Intensity of an Isolated Line of the XY2 (C2v) Molecule in Doublet Electronic State: Spin–Rotational Transitions: PZ-Operator Depends on Molecular Vibrations
	Parallel Ro-Vibrational Bands
	Perpendicular Ro-Vibrational Bands

	Conclusions
	References

