Expression Levels of the Tnni3k Gene in the Heart Are Highly Associated with Cardiac and Glucose Metabolism-Related Phenotypes and Functional Pathways
Abstract
:1. Introduction
2. Results
2.1. The Missense Tnni3k T659I Variant Inherent from D2 Parent Segregates among BXDs
2.2. The Strains Carrying the D Allele Have Significantly Reduced Expression of Tnni3k in the Heart
2.3. Interval Mapping Methods Identify a cis-Regulating Genetic Locus for Tnni3k
2.4. Tnni3k-Correlated Genes Modulate Pathways Related to Cardiac Physiology and Glucose Metabolism
2.5. Nfkb1 Regulates Tnni3k-Correlated Genes Involved in Cardiac-Related and Insulin Resistance Pathways
2.6. Tnni3k Directly Interacts with Its Correlated Genes Involved in Cardiac and Insulin Resistance-Related Pathways
2.7. Tnni3k-Correlated Genes Involved in Key Pathways Have Significant Expression Differences between B and D Alleles
2.8. Levels of Cardiac Tnni3k Expression Significantly Correlate with Cardiac Phenotypes in BXD Mice
2.9. Cardiac Tnni3k Expression Is Significantly Correlated with Glucose Metabolism in BXD Mice
3. Discussion
4. Materials and Methods
4.1. Heart Gene Expression Data in BXD Family
4.2. Whole Genome Sequencing (WGS) of BXD Family
4.3. Variant Bioinformatics Analysis
4.4. Evaluation of Heart Function and Rhythm in BXD Mice
4.5. Tnni3k Expression in Multiple Tissues of Mouse and Human
4.6. Expression Quantitative Trait Locus (eQTL) Mapping
4.7. Genetic Correlation Analysis
4.8. Pathway Enrichment Analysis
4.9. Gene Function Analysis
4.10. Protein–Protein Interaction (PPI) Network Analysis
4.11. Transcription Factor (TF) Enrichment Analyses
4.12. Quantitative Real-Time PCR (qRT-PCR)
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, Y.; Meng, X.M.; Wei, Y.J.; Zhao, X.W.; Liu, D.Q.; Cao, H.Q.; Liew, C.C.; Ding, J.F. Cloning and characterization of a novel cardiac-specific kinase that interacts specifically with cardiac troponin I. J. Mol. Med. 2003, 81, 297–304. [Google Scholar] [CrossRef]
- Wang, H.; Chen, C.; Song, X.; Chen, J.; Zhen, Y.; Sun, K.; Hui, R. Mef2c is an essential regulatory element required for unique expression of the cardiac-specific CARK gene. J. Cell. Mol. Med. 2008, 12, 304–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, H.; Xiao, K.; Mao, L.; Rockman, H.A.; Marchuk, D.A. Overexpression of TNNI3K, a cardiac-specific MAPKKK, promotes cardiac dysfunction. J. Mol. Cell. Cardiol. 2013, 54, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Cao, H.Q.; Liu, Z.; Ding, J.F.; Meng, X.M. Identification of the dual specificity and the functional domains of the cardiac-specific protein kinase TNNI3K. Gen. Physiol. Biophys. 2007, 26, 104–109. [Google Scholar] [PubMed]
- Lai, Z.F.; Chen, Y.Z.; Feng, L.P.; Meng, X.M.; Ding, J.F.; Wang, L.Y.; Ye, J.; Li, P.; Cheng, X.S.; Kitamoto, Y.; et al. Overexpression of TNNI3K, a cardiac-specific MAP kinase, promotes P19CL6-derived cardiac myogenesis and prevents myocardial infarction-induced injury. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, H708–H716. [Google Scholar] [CrossRef] [PubMed]
- Brodehl, A.; Rezazadeh, S.; Williams, T.; Munsie, N.M.; Liedtke, D.; Oh, T.; Ferrier, R.; Shen, Y.; Jones, S.J.M.; Stiegler, A.L.; et al. Mutations in ILK, encoding integrin-linked kinase, are associated with arrhythmogenic cardiomyopathy. Transl. Res. 2019, 208, 15–29. [Google Scholar] [CrossRef]
- Vagnozzi, R.J.; Gatto, G.J., Jr.; Kallander, L.S.; Hoffman, N.E.; Mallilankaraman, K.; Ballard, V.L.; Lawhorn, B.G.; Stoy, P.; Philp, J.; Graves, A.P.; et al. Inhibition of the cardiomyocyte-specific kinase TNNI3K limits oxidative stress, injury, and adverse remodeling in the ischemic heart. Sci. Transl. Med. 2013, 5, 207ra141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podliesna, S.; Delanne, J.; Miller, L.; Tester, D.J.; Uzunyan, M.; Yano, S.; Klerk, M.; Cannon, B.C.; Khongphatthanayothin, A.; Laurent, G.; et al. Supraventricular tachycardias, conduction disease, and cardiomyopathy in 3 families with the same rare variant in TNNI3K (p.Glu768Lys). Heart Rhythm 2019, 16, 98–105. [Google Scholar] [CrossRef]
- Lodder, E.M.; Scicluna, B.P.; Milano, A.; Sun, A.Y.; Tang, H.; Remme, C.A.; Moerland, P.D.; Tanck, M.W.; Pitt, G.S.; Marchuk, D.A.; et al. Dissection of a quantitative trait locus for PR interval duration identifies Tnni3k as a novel modulator of cardiac conduction. PLoS Genet. 2012, 8, e1003113. [Google Scholar] [CrossRef]
- Xi, Y.; Honeywell, C.; Zhang, D.; Schwartzentruber, J.; Beaulieu, C.L.; Tetreault, M.; Hartley, T.; Marton, J.; Vidal, S.M.; Majewski, J.; et al. Whole exome sequencing identifies the TNNI3K gene as a cause of familial conduction system disease and congenital junctional ectopic tachycardia. Int. J. Cardiol. 2015, 185, 114–116. [Google Scholar] [CrossRef] [Green Version]
- Xie, T.; Yang, Y.; Gong, K.; Luo, Y.; Guo, H.; Liu, R.; Wang, L.; Tan, Z.; Luo, J.; Xie, L. Whole-Exome Sequencing Identifies a Novel Variant (c.1538T > C) of TNNI3K in Arrhythmogenic Right Ventricular Cardiomyopathy. Front Cardiovasc Med 2022, 9, 843837. [Google Scholar] [CrossRef] [PubMed]
- Theis, J.L.; Zimmermann, M.T.; Larsen, B.T.; Rybakova, I.N.; Long, P.A.; Evans, J.M.; Middha, S.; de Andrade, M.; Moss, R.L.; Wieben, E.D.; et al. TNNI3K mutation in familial syndrome of conduction system disease, atrial tachyarrhythmia and dilated cardiomyopathy. Hum. Mol. Genet. 2014, 23, 5793–5804. [Google Scholar] [CrossRef] [PubMed]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alfoldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, F.C.; Tang, H.; Marks, O.A.; Hadnott, T.N.; Chu, P.L.; Mao, L.; Rockman, H.A.; Marchuk, D.A. Tnni3k modifies disease progression in murine models of cardiomyopathy. PLoS Genet. 2009, 5, e1000647. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Zhao, T.; Chen, Y.; Zhao, F.; Gu, Q.; Williams, R.W.; Bhattacharya, S.K.; Lu, L.; Sun, Y. A Murine Hypertrophic Cardiomyopathy Model: The DBA/2J Strain. PLoS ONE 2015, 10, e0133132. [Google Scholar] [CrossRef]
- Orgil, B.O.; Xu, F.; Munkhsaikhan, U.; Alberson, N.R.; Bajpai, A.K.; Johnson, J.N.; Sun, Y.; Towbin, J.A.; Lu, L.; Purevjav, E. Echocardiography phenotyping in murine genetic reference population of BXD strains reveals significant QTLs associated with cardiac function and morphology. Physiol. Genom. 2023, 55, 51–66. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Su, M.; Wang, C.; Chen, J.; Wang, H.; Song, L.; Zou, Y.; Zhang, L.; Zhang, Y.; et al. TNNI3K, a cardiac-specific kinase, promotes physiological cardiac hypertrophy in transgenic mice. PLoS ONE 2013, 8, e58570. [Google Scholar] [CrossRef] [Green Version]
- Patterson, M.; Barske, L.; Van Handel, B.; Rau, C.D.; Gan, P.; Sharma, A.; Parikh, S.; Denholtz, M.; Huang, Y.; Yamaguchi, Y.; et al. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat. Genet. 2017, 49, 1346–1353. [Google Scholar] [CrossRef]
- Reuter, S.P.; Soonpaa, M.H.; Field, D.; Simpson, E.; Rubart-von der Lohe, M.; Lee, H.K.; Sridhar, A.; Ware, S.M.; Green, N.; Li, X.; et al. Cardiac Troponin I-Interacting Kinase Affects Cardiomyocyte S-Phase Activity but Not Cardiomyocyte Proliferation. Circulation 2023, 147, 142–153. [Google Scholar] [CrossRef]
- Pham, C.; Munoz-Martin, N.; Lodder, E.M. The Diverse Roles of TNNI3K in Cardiac Disease and Potential for Treatment. Int. J. Mol. Sci. 2021, 22, 6422. [Google Scholar] [CrossRef]
- Hanna, A.; Humeres, C.; Frangogiannis, N.G. The role of Smad signaling cascades in cardiac fibrosis. Cell. Signal. 2021, 77, 109826. [Google Scholar] [CrossRef]
- Gordon, J.W.; Shaw, J.A.; Kirshenbaum, L.A. Multiple facets of NF-kappaB in the heart: To be or not to NF-kappaB. Circ. Res. 2011, 108, 1122–1132. [Google Scholar] [CrossRef] [PubMed]
- Poornima, I.G.; Parikh, P.; Shannon, R.P. Diabetic cardiomyopathy: The search for a unifying hypothesis. Circ. Res. 2006, 98, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Copps, K.D.; White, M.F. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 2012, 55, 2565–2582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Amily, I.M.; Duner, P.; Groop, L.; Salehi, A. The functional impact of G protein-coupled receptor 142 (Gpr142) on pancreatic beta-cell in rodent. Pflug. Arch. 2019, 471, 633–645. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, L.S.; Liu, J.; Sakamoto, A.; Xie, T.; Chen, M. Minireview: GNAS: Normal and abnormal functions. Endocrinology 2004, 145, 5459–5464. [Google Scholar] [CrossRef]
- Wieneke, H.; Svendsen, J.H.; Lande, J.; Spencker, S.; Martinez, J.G.; Strohmer, B.; Toivonen, L.; Le Marec, H.; Garcia-Fernandez, F.J.; Corrado, D.; et al. Polymorphisms in the GNAS Gene as Predictors of Ventricular Tachyarrhythmias and Sudden Cardiac Death: Results from the DISCOVERY Trial and Oregon Sudden Unexpected Death Study. J. Am. Heart Assoc. 2016, 5, e003905. [Google Scholar] [CrossRef] [Green Version]
- Gu, Q.; Xu, F.; Orgil, B.O.; Khuchua, Z.; Munkhsaikhan, U.; Johnson, J.N.; Alberson, N.R.; Pierre, J.F.; Black, D.D.; Dong, D.; et al. Systems Genetics Analysis Defines Importance Of TMEM43/LUMA for Cardiac and Metabolic Related Pathways. Physiol. Genom. 2021, 54, 22–35. [Google Scholar] [CrossRef]
- Wang, X.; Pandey, A.K.; Mulligan, M.K.; Williams, E.G.; Mozhui, K.; Li, Z.; Jovaisaite, V.; Quarles, L.D.; Xiao, Z.; Huang, J.; et al. Joint mouse-human phenome-wide association to test gene function and disease risk. Nat. Commun. 2016, 7, 10464. [Google Scholar] [CrossRef] [Green Version]
- Orgil, B.O.; Munkhsaikhan, U.; Pierre, J.F.; Li, N.; Xu, F.; Alberson, N.R.; Johnson, J.N.; Wetzel, G.T.; Boukens, B.J.D.; Lu, L.; et al. The TMEM43 S358L mutation affects cardiac, small intestine, and metabolic homeostasis in a knock-in mouse model. Am. J. Physiol. Heart Circ. Physiol. 2023, 324, H866–H880. [Google Scholar] [CrossRef]
- Fagerberg, L.; Hallstrom, B.M.; Oksvold, P.; Kampf, C.; Djureinovic, D.; Odeberg, J.; Habuka, M.; Tahmasebpoor, S.; Danielsson, A.; Edlund, K.; et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteom. 2014, 13, 397–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, F.; Cheng, Y.; Breschi, A.; Vierstra, J.; Wu, W.; Ryba, T.; Sandstrom, R.; Ma, Z.; Davis, C.; Pope, B.D.; et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature 2014, 515, 355–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012, 44, 821–824. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Furlotte, N.; Lin, Y.; Heinrich, K.; Berry, M.W.; George, E.O.; Homayouni, R. Functional cohesion of gene sets determined by latent semantic indexing of PubMed abstracts. PLoS ONE 2011, 6, e18851. [Google Scholar] [CrossRef] [Green Version]
- Homayouni, R.; Heinrich, K.; Wei, L.; Berry, M.W. Gene clustering by latent semantic indexing of MEDLINE abstracts. Bioinformatics 2005, 21, 104–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Benjamini, Y.; Drai, D.; Elmer, G.; Kafkafi, N.; Golani, I. Controlling the false discovery rate in behavior genetics research. Behav. Brain Res. 2001, 125, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, A.K.; Davuluri, S.; Tiwary, K.; Narayanan, S.; Oguru, S.; Basavaraju, K.; Dayalan, D.; Thirumurugan, K.; Acharya, K.K. Systematic comparison of the protein-protein interaction databases from a user’s perspective. J. Biomed. Inform. 2020, 103, 103380. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Han, H.; Cho, J.W.; Lee, S.; Yun, A.; Kim, H.; Bae, D.; Yang, S.; Kim, C.Y.; Lee, M.; Kim, E.; et al. TRRUST v2: An expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018, 46, D380–D386. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
KEGG Pathway | Adjusted p-Value | Gene Count | Gene Name |
---|---|---|---|
Diabetic cardiomyopathy | 0.0185 | 24 | Atp5g3, Slc25a4, Ndufa13, Uqcrfs1, Akt3, Sdhd, Ncf2, Cox5a, Ace, Ndufa7, Ncf4, Tgfb3, Slc2a1, Agtr1b, Agt, Ppp1cb, Agtr1a, Gfpt2, Prkcd, Akt1, Col1a1, Irs1, Nfkb1, Cox2 |
Adrenergic signaling in cardiomyocytes | 0.0198 | 19 | Akt3, Myl3, Scn5a, Scn7a, Atp1a2, Creb5, Cacng2, Agtr1b, Agt, Ppp1cb, Gnas, Adcy4, Agtr1a, Creb1, Bcl2, Akt1, Cacng4, Cacnb1, Cacng8 |
Insulin resistance | 0.0147 | 17 | Akt3, Cpt1a, Prkag1, Mlxip, Ppp1r3b, Creb5, Prkce, Slc2a1, Agt, Ppp1cb, Gfpt2, Creb1, Prkcd, Akt1, Irs1, Pck2, Nfkb1 |
AGE-RAGE signaling pathway in diabetic complications | 0.0185 | 15 | Akt3, Col4a1, Tgfb3, Edn1, Prkce, Agtr1b, Agt, Agtr1a, Prkcd, Bcl2, Akt1, Col1a1, Nfkb1, Diaph1, Jak2 |
TGFβ signaling pathway | 0.0158 | 15 | Bambi, Bmpr2, Chrd, Smad7, Smurf2, Acvr2b, Smurf1, Bmp7, Grem2, Acvr1b, Hjv, Tgfb3, Inhbc, Nodal, Zfyve9 |
Nfkb1 Target Genes | KEGG (Kyoto Encyclopedia of Genes and Genomes) Pathway | ||||
---|---|---|---|---|---|
Insulin Resistance | AGE-RAGE Signaling Pathway in Diabetic Complications | Diabetic Cardiomyopathy | Adrenergic Signaling in Cardiomyocytes | TGFβ Signaling Pathway | |
Agt | ✓ | ✓ | ✓ | ✓ | -- |
Slc2a1 | ✓ | -- | ✓ | -- | -- |
Edn1 | -- | ✓ | -- | -- | -- |
Akt1 | ✓ | ✓ | ✓ | ✓ | -- |
Nfkb1 | ✓ | ✓ | ✓ | -- | -- |
Col1a1 | -- | ✓ | ✓ | -- | -- |
Bcl2 | -- | ✓ | ✓ | -- | -- |
Bmpr2 | -- | -- | -- | -- | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, Q.; Orgil, B.-O.; Bajpai, A.K.; Chen, Y.; Ashbrook, D.G.; Starlard-Davenport, A.; Towbin, J.A.; Lebeche, D.; Purevjav, E.; Sheng, H.; et al. Expression Levels of the Tnni3k Gene in the Heart Are Highly Associated with Cardiac and Glucose Metabolism-Related Phenotypes and Functional Pathways. Int. J. Mol. Sci. 2023, 24, 12759. https://doi.org/10.3390/ijms241612759
Gu Q, Orgil B-O, Bajpai AK, Chen Y, Ashbrook DG, Starlard-Davenport A, Towbin JA, Lebeche D, Purevjav E, Sheng H, et al. Expression Levels of the Tnni3k Gene in the Heart Are Highly Associated with Cardiac and Glucose Metabolism-Related Phenotypes and Functional Pathways. International Journal of Molecular Sciences. 2023; 24(16):12759. https://doi.org/10.3390/ijms241612759
Chicago/Turabian StyleGu, Qingqing, Buyan-Ochir Orgil, Akhilesh Kumar Bajpai, Yufeng Chen, David G. Ashbrook, Athena Starlard-Davenport, Jeffrey A. Towbin, Djamel Lebeche, Enkhsaikhan Purevjav, Hongzhuan Sheng, and et al. 2023. "Expression Levels of the Tnni3k Gene in the Heart Are Highly Associated with Cardiac and Glucose Metabolism-Related Phenotypes and Functional Pathways" International Journal of Molecular Sciences 24, no. 16: 12759. https://doi.org/10.3390/ijms241612759
APA StyleGu, Q., Orgil, B. -O., Bajpai, A. K., Chen, Y., Ashbrook, D. G., Starlard-Davenport, A., Towbin, J. A., Lebeche, D., Purevjav, E., Sheng, H., & Lu, L. (2023). Expression Levels of the Tnni3k Gene in the Heart Are Highly Associated with Cardiac and Glucose Metabolism-Related Phenotypes and Functional Pathways. International Journal of Molecular Sciences, 24(16), 12759. https://doi.org/10.3390/ijms241612759