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Abstract: Peroxynitrite (ONOO−) is a crucial reactive oxygen species that plays a vital role in cellular
signal transduction and homeostatic regulation. Determining and visualizing peroxynitrite accurately
in biological systems is important for understanding its roles in physiological and pathological
activity. Among the various detection methods, fluorescent probe-based spectroscopic detection
offers real-time and minimally invasive detection, high sensitivity and selectivity, and easy structural
and property modification. This review categorizes fluorescent probes by their fluorophore structures,
highlighting their chemical structures, recognition mechanisms, and response behaviors in detail. We
hope that this review could help trigger novel ideas for potential medical diagnostic applications of
peroxynitrite-related molecular diseases.
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1. Introduction

Peroxynitrite (ONOO−) is a kind of reactive oxygen species (ROS) generated by the
rapid reaction of nitric oxide (NO) and a superoxide anion free radical (O2·−) in the absence
of enzyme catalysis, which has strong oxidation, nucleophilic, and nitration properties [1].
It occupies crucial roles in the transformations of other major reactive species. (Scheme 1) Its
pKa value is 6.8 [2], and the half-life is approximately 1 s [3,4] at pH 7.4. ONOO− can react
with a variety of bioactive substances (such as protein, nucleic acid, lipid, etc.) with very
high reactivity. In addition to its oxidation, nucleophilic, and nitration properties, ONOO−

can also be converted into higher activity secondary free radicals, including hydroxyl
radicals (·OH), nitro radicals (·NO2), and carbonate radicals (CO3·−), which further react
with biomolecules and ultimately lead to cell death.
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Scheme 1. The biogenesis of peroxynitrite and its transformations with other major reactive spe-
cies. 
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Scheme 1. The biogenesis of peroxynitrite and its transformations with other major reactive species.

Based on these properties, peroxynitrite exhibits two effects with different directions.
In the living system, when the ONOO− remains at a level which is under normal phys-
iological conditions, it serves as an indispensable physiological activator and signaling
molecule. However, when the concentration of ONOO− elevates, the excess ONOO− will
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turn the redox state of the cell to a pro-oxidant state [5,6]. Eventually, serious inflammation
and disease will be induced, for example, rheumatism, hepatic disease, neurodegenerative
disease, cancer, and so on [7–10]. Therefore, it would be of great significance to develop
a method which could accurately detect ONOO− and explore the physiological role of
ONOO− in living systems.

In comparison to other ONOO− detection methods (positron emission computed
tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI), and
genetically encoded indicators) [11], spectroscopic detections, especially fluorescent probes,
possess advantages such as excellent temporal and spatial resolution, simple operation,
high sensitivity and selectivity, and non-destructive and in situ real-time visualization of
biological samples [12–15].

So far, a variety of reviews on ONOO− fluorescent probes have been published [12–15].
This review focuses on the fluorophore structure in the ONOO− fluorescent probe molecules
with their potential medical diagnostic applications. Herein, we categorized, analyzed, and
discussed the recently reported organic probes according to their fluorophore core, includ-
ing xanthene (rhodamine, rhodol, and fluorescein), cyanine (and hemicyanine), coumarin,
malononitrile-based [Dicyanomethylene-4H-pyrans (DCM), dicyanoisophorone (DCI or
DCO) dyes, quinoline-malononitrile (QM)], 2-benzothiazoleacetonitrile-based dyes, and
naphthalimide. In particular, we summarized the key factors of the ONOO−-responsive
probes, such as chemical structures, responsive pathways, emission wavelength, dynamic
range of fluorescence response, response time, ONOO− detection range, detection limit,
ONOO− production pathways in the biosystem, and bioimaging objects. We believe that
researchers will benefit from this review when they rationally design ONOO− fluorescent
probes, thus contributing more excellent theranostic studies in relating areas. We will
review other spectroscopic probes for the detection of ONOO−.

2. Fluorescent Probes
2.1. Xanthene as Fluorophore Core

Xanthene dyes can be categorized as fluorescein, rhodol, and rhodamine based on the
type of the substituents on the 3- and 6-position [16]. They are well known because of their
switchable fluorescent off–on flexibility. Xanthene dyes can produce fluorescence wave-
lengths above 510 nm, reaching far-red areas depending on the conjugative substituents.
Thus, they are of widespread use in optical diagnostic research [17].

The triggers of ONOO−-responsive probes with xanthene as a fluorophore core were
generally built on (1) oxidation of the hydrazide (Xan1–Xan15) [18–32], (2) oxidative cleav-
age of the substituents at the hydroxyl or amino group (Xan 16–Xan 28) [33–45], (3) oxida-
tion of pyrylium (Xan 29–Xan 33) [46–50], and (4) oxidation of the hydrogenated xanthene
(Xan 34–Xan 37) [51–54] and others (Xan 38–Xan 41) [55–58]. The key elements of the
ONOO− response of probes are summarized in Table 1.

2.1.1. Hydrazide Oxidative Xanthene Probes

In 2002, Guo et al. reported a spiro form hydrazide rhodamine (Xan 1) [18] as the
ONOO− fluorescent probe. The hydrazide probe was colorless and non-fluorescent. Upon
treating with ONOO−, the spiro hydrazide group was oxidized, releasing a highly fluo-
rescent rhodamine B. The response finished in as fast as 30 s. Meanwhile, the detection
limit was only 24 nM. The response avoids interference from the 10−5 M Cu(II) ion. Thus,
it represents the rapid, sensitive, and specific fluorescent detection of ONOO−.

Based on the recognized pattern and the easy structurally modification character of
rhodamine, a series of related probes were developed, aiming to improve the performance
of different aspects of the response (Figure 1). Longer emissive wavelengths (up to the NIR
range) were obtained with more conjugate groups installed in Xan 2–5 [19–22], Xan 8 [25],
and Xan 10 [27]. Dual-channel fluorescence was afforded when coumarins were introduced
to the rhodamine ring (515/700 nm for Xan 5 and 631/669 nm for Xan 10), making the
response produce more information. Ratiometric fluorescence was realized in Xan 6 [23]
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and Xan 7 [24] with the introduction of a 2-(2′-hydroxyphenyl)benzothiazole group and
a 4-hydroxycarbazole group, respectively, in which the intensity of the original band
disappeared with the generation of a new band with a longer wavelength. Large Stokes
shift and excellent lysosome-targeting ability were achieved with the engineering of a fused
tetrahydroquinoxaline ring, making Xan 9 [26] capable of detecting both peroxynitrite
and lysosomal pH. Sodium-dependent multivitamin transporter (SMVT)-targeted ability
was acquired by introducing the biotin group for Xan 9, making it possible to detect the
peroxynitrite in head and neck cancer cells.
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If a phenyl group was introduced into the hydrazide (Xan 11–Xan 12) [28,29], the re-
sponse time would prolong to 10 or more minutes, presumably due to the steric-hindrance-
caused decreased reactivity. It should be noted that, with alkyl substituent groups in both
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nitrogens of the hydrazide, the cyclic hexahydropyridazin probes (Xan 14–Xan 15) [31,32]
displayed a faster response rate than the alkyl-substituted (Xan 13) [30] or phenyl substi-
tuted hydrazide xanthene (Xan 11–Xan 12). The response was usually specific, without
interferences from a lot of metal ions and other reactive oxygen and nitrogen species. [28–32]

Peroxynitrite generated from different cells, such as HeLa, RAW264.7, HepG2, HSC-2,
and Cal-27, could be detected by hydrazide xanthenes. Meanwhile, these probes could
detect peroxynitrite in zebrafish and mouse models. These outstanding performances made
hydrazide xanthenes capable of revealing the important roles of peroxynitrite in many
kinds of diseases, such as respiratory infectious diseases and inflammation in the future.

2.1.2. Oxidative Cleavage of the Recognition Groups to Release Xanthene Probes

Utilizing the oxidative ability of peroxynitrite, the recognition groups at the 2- or
6-hydroxyl or amino group of xanthenes derivative could be cleaved to release xanthenes
with high fluorescence (Figure 2).
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Yang et al. developed the HKGreen series of rhodamine probes (Xan 16 [33] and Xan
24 [41]) for detecting peroxynitrite with the employment of the trifluoromethyl ketone
as the recognition group, which involved dioxirane rearrangement and oxidative O- or
N-diarylation. The response was highly selective and sensitive, with high-fold fluorescent
enhancement, though the response time was relatively long (>15 min).
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While using the benzyl boronates moiety as a recognition group, Xan 17–19 [33–35]
exhibited quite different responsive behaviors upon reactive species. Xan 17 [33] reacted
not only to peroxynitrite but also with hypochlorite and hydrogen peroxide, though with
different second-order rate constants. However, Xan 18 [34] and Xan 19 [35] responded
exclusively to peroxynitrite, even when hypochlorite and hydrogen peroxide were at much
higher concentrations. Nevertheless, all of them displayed obvious fluorescent enhance-
ment and low detection limits, and thus they were all further employed for fluorescent
imaging in biosystems involving diseases such as drug-introduced liver injury.

The 1-methylindoline-2,3-dione group can also be employed as the recognition moiety
for the specific detection of peroxynitrite (Xan 20 [36] and Xan 21 [37]). The mechanism in-
volving intramolecular cyclization of peroxynitrite with indoline-2,3-dione, rearrangement,
and 1,6-elimination was proposed [36]. Leveraging the probes, the two-photon (TP) in vivo
NIR imaging technique was applied to observe the peroxynitrite level in a mouse tumor, a
tumor onset on the second day, a kidney injury of zebrafish, and the microvessels of mouse
brains with strokes [37].

Xanthenes with the electron-donating groups substituted phenyl groups as recognition
groups (Xan 16 [33], Xan 24 [41], Xan 25 [42], Xan 26 [43], and Xan 28 [45]) produced very
high fluorescent enhancement, probably due to their better quenching effect.

2.1.3. Oxidation of Pyrylium

Yuan et al. discovered an aminophenyl-substituted pyrylium as a highly sensitive
and selective scaffold towards peroxynitrite after the screening of nineteen dyes and then
further modified it to a FRET probe (Xan 29) [46] with TP absorption. After the response,
the pyrylium emission band at 651 nm disappeared, and a coumarin characteristic emission
band at 473 nm was enhanced. Detailed response mechanisms involving nucleophilic
addition, oxidation, elimination, and hydrolysis reactions on chromenylium fluorophore
were proposed and verified by MS spectra. Although the destroyed-type response led to the
decrease of the emission wavelength, the combination technique of the ratiometric measure
and TP imaging made it possible to specifically and rapidly visualize the peroxynitrite
in an inflamed mouse model. Furthermore, the detection limit was as low as 11.3 nM,
which was at a super level among the peroxynitrite probes. Subsequently, similar structures
were synthesized for different applications. Gong et al. reported esterified Xan 30 [47]
with better membrane penetrability and mitochondria targeting ability, which could image
the peroxynitrite in the acute liver injury model in living cells. Li et al. introduced a
piperazine ring to respond to the pH and finally realized the fluorescent imaging of the
cellular peroxynitrite level as well as the mitophagy behavior [48].

Yuan et al. performed an original structure–activity relationship study of the sub-
stituents at the recognition site. (Figure 3) They discovered that pyrylium involving aryl
substituents with strong electron-withdrawing groups could improve the sensitivity; mean-
while, pyrylium involving aryl substituents with strong electron-donating groups could
improve the selectivity. Hence, they designed a coumarin, which was a not strong electron-
withdrawing and -donating group, substituted pyrylium (Xan 32) [49] to satisfy the high
requirements of both selectivity and sensitivity, and the results showed that an outstanding
detection sensitivity of 4.1 nM of the detection limit as well as a high 130-fold ratiometric
emission signal were realized. Employing the probe, the changing content of peroxynitrite
in the diseases model involving nonalcoholic fatty liver and drug-induced liver injury was
successfully visualized to unfold the functionality of a related enzyme. Zhou et al. intro-
duced a naphthimide fluorophore in the xanthene carboxylic position. After the response,
both coumarin and naphthimide fluorescence were produced to output a multicolor signal.
The probe Xan 33 was applied for the early detection and evaluation of arthritis [50].

However, a similar structure–activity relationship study conducted by Tang et al.
produced totally different results and response mechanisms, in which electron-withdrawing
groups were installed in the 6-position of coumarin moiety. They found that because of
the installation of the electron-withdrawing groups in the 6-position of coumarin, Xan 34
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produced 4-(2-carboxylphenyl)-7-diethylaminocoumarin (λem = 520 nm) and 3-hydroxy-6-
bromocoumarin (non-fluorescent) as products after the response [51]; nevertheless, Xan
32 and Xan 33 produced 3-carboxyl-7-diethylaminocoumarin (λem = ~468 nm) and a ring-
opening product of pyrylium (non-fluorescent). Furthermore, Xan 34 could also detect
biothiols by the additional recognition site on coumarin.
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2.1.4. Oxidation of Hydrogenated Xanthene

Peroxynitrite can oxidize t non-fluorescent hydrogenated xanthene to produce highly
fluorescent aromatic products. (Figure 4) Gong et al. developed 9,10-dihydroacridine Xan
35 as the peroxynitrite detection probe. An over 100-fold fluorescence enhancement could
be achieved after reacting with peroxynitrite. The probe was utilized to detect intracellular
peroxynitrite [52]. Similar O-, Si-, and P- hydrogenated rhodamine systems were also
reported. Xan 36–37 [53,54] displayed a very fast response speed (<20 s); for Xan 38 [55],
the relatively low response speed was probably due to the low reactivity caused by the
presence of the electron-withdrawing phosphonic group. Nevertheless, Xan 35–38 [52–55]
all exhibited very low detection limits at the nanomolar level, and they were all applied to
fluorescent imaging of cell endogenous peroxynitrite.
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2.1.5. Others

Wu et al. described a Rhodol-based probe, Xan 39 [56], which introduced 1,1-dimethyl-
hydrazone as a peroxynitrite recognition group. (Figure 5) The probe was non-fluorescent
as a result of the rotational vibration of the C=N bond. Using the oxidative ability of
peroxynitrite, the hydrazine was oxidatively cleaved into the corresponding aldehyde with
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significant fluorescence. The response exhibited a low detection limit (57 nM) with a short
response time (<60 s). The probe was applied in the fluorescent imaging of exogenous and
endogenous peroxynitrite in living cells.
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Miao et al. reported Xan 40 [57] as a peroxynitrite off–on probe. The probe showed
little fluorescence because of the photo-induced electron transfer (PeT) quenching effect of
the 3-dibenzylaminophenyl group. Upon reaction with peroxynitrite, a benzyl group was
removed and formed an N-oxide product, and the fluorescent was turned on.

Li et al. released the study on Xan 41 [58] as a peroxynitrite probe, in which the
fluorescence was turned off by the intramolecular charge transfer (ICT) effect of the 4-
methylthiophenyl group. After the response with peroxynitrite, the thiol ether was trans-
formed into sulfoxide and discontinued the ICT effect, thus recovering the fluorescence
and realizing the detection of the peroxynitrite concentration.

Zhang et al. reported a novel rhodamine probe Xan 42 with the dibenzo[1,4]oxazepine
core as the responsive moiety [59]. Synthesized by the reaction of rhodamine with hy-
droxylamine, the probe was of little fluorescence at 672 nm. However, after the treatment
with peroxynitrite, oxazines was generated with high fluorescence. The probe was used to
monitor the peroxynitrite level in living cells.

2.2. Dicyano-Based Compounds as Fluorophore Core

Dicyano-based compounds are characteristic of their donor–π–acceptor structure,
which endows them with large Stokes shifts and excellent photostability as a result of the
ICT process. In addition, this sort of chromophore was generally easily synthesized and
structurally modified. Thus, great attention has been attracted towards dicyano-based
compounds to build probes with different functionalities [60].

The designing rule for dicyano-based peroxynitrite probes was a consensus, which
was described in Figure 6. In general, the responsive groups, such as diphenylphosphonyl,
benzyl boronates, and 4-hydroxyphenyl, were modified on the donor moiety to stop
the ICT process. The response with peroxynitrite would break the links between the
donor moiety and the response groups and release the dicyano-based chromophores with
strong fluorescence.

As summarized in Table 1, Dic 1–4 [61–64], with diphenylphosphonyl as a recognition
group, took more than 10 min to respond, which was relatively longer than those of Dic
5–14 [65–74]. This was probably due to their high intrinsic structural stability. However,
their detection selectivity and sensitivity were not reduced. Thus, they were employed
for fluorescent imaging of the exogenous peroxynitrite in living cells. Among them, Dic 4
were further used to manifest the changing peroxynitrite concentration in the rat epilepsy
model with the aid of two-photon fluorescent technology [64].

Dic 5 [65] with the 4-nitrophenyl oxoacetyl group as the responsive unit showed a
much faster response rate (<2 s) than Dic 1–4, but its detection limit was at a similar level
(81 nM). The probe was used for fluorescence imaging of the endogenous peroxynitrite in
zebrafish and mice.

All of the benzyl boronates derived dicyano-based probes Dic 6–10 showed analogous
response times to each other. Interestingly, Dic 6 [66] and Dic 10 [70] only displayed green-
channel fluorescence, although they both have an extra conjugate phenyl ring compared
Dic 7 [67] and Dic 9 [69], respectively. The boronate group of Dic 10–11 was oxidized to
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the hydroxyl group in situ by peroxynitrite, and the transformation generated the donor,
thus forming the ICT process and producing fluorescence.
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The response rates of the probes Dic 12–14 [72–74], which employed 4-hydroxylphenyl
as a masking group, were all found to be ultrafast, which were 5, 25, and 1 s, respectively.
This phenomenon was in accordance with those of Xan 25–26 [42,43] and Xan 28 [45], sug-
gesting the great advantage of this mask group. Possessing the superior detecting sensitivity
and selectivity, the probes Dic 12–14 were applied to visualize the peroxynitrite in different
diseases, including inflammation, acute liver injury, and Parkinson’s disease [72–74].

2.3. Coumarin as Fluorophore Core

The research history of coumarin (also known as 1-benzopyran-2-one or 2H-chromen-
2-one) was more than 200 years. Plenty of extensive investigations have been performed
to modify the weak fluorescent parent coumarin to its derivatives with different desired
photophysical properties, with a considerable amount of them now very active in the
commercial market [75].
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Inserting the electron-donors in the 7-position leads to a bathochromic shift to the
emission wavelength; in addition, a donor–π–donor structure was formed, which facilitates
the use of itself to design the ICT type probes by further introducing an electron-acceptor
recognition group. (Figure 7) Xie et al. adopted this strategy and synthesized Cou 1 [76].
The 4-nitrophenyl oxoacetyl recognition group reacted with peroxynitrite rapidly and
produced the deprotected product Cou 2 [77]. They used Cou 1, together with the two-
photon fluorescent imaging technology, to visualize the peroxynitrite produced in the
mitochondria in an anthracycline-induced cardiotoxicity mouse model. However, Li et al.
reported that the deprotected product, Cou 2, also further reacted with peroxynitrite in
5 s in the concentration range of 0.064–0.64 µM, and the resulting nitration products were
confirmed by ESI-MS analysis. The 3-position of coumarin could also be introduced with
electron-donors to generate the donor–π–donor structure. Wei et al. developed Cou 3 as the
peroxynitrite probe using the 4-nitrophenyl oxoacetyl group as a recognition moiety [78].
The fluorescence of Cou 3 was quenched but could be quickly recovered with eight-fold
enhancement after the response with peroxynitrite. The probe was used to image exogenous
peroxynitrite formation in living cells in a biosystem.

The electron effect of the substituents of the 3-position of 7-dialkylaminocoumarin
derivatives decided their emission properties. The existence of an electron-acceptor can
cause a strong ICT effect and fluorescence, and the stronger the electron-withdrawing ability
the group owned, the longer the emission wavelength and stronger fluorescence the probes
owned. If the electron-withdrawing ability changed, the fluorescent property would change
accordingly. For example, the formyl group is a medium-ability electron-withdrawing
group. If it was transformed into stronger electron-withdrawing groups, the emission
wavelength of the product, Cou 4, would increase [79]. In reverse, after the response
with peroxynitrite, the C=C bond of Cou 4 broke and generated the aldehyde product.
The response was completed in a very short time with high selectivity and sensitivity to
peroxynitrite. If the aldehyde group was reacted with hydrazine, the hydrazone product
Cou 5 would emit only little fluorescence. However, after the reaction with peroxynitrite,
the fluorescence would recover [80].
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The ICT process is very strong in the quaternized pyridinium probe Cou 6 [81]. After
the addition of peroxynitrite, the diphenyl phosphinate was eliminated, and the product
owned a very weak ICT process. The fluorescence undergoes a hypochromatic shift from
643 nm to 538 nm, and the emission ration displays a 153-fold increase. The probe was
applied to detect the peroxynitrite in living cells.
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Parthiban et al. reported a coumarin–chalcone hybrid peroxynitrite probe Cou 7
containing a tetrahydroquinoxaline ring [82]. The probe displayed a large Stokes shift
of 149 nm. The aryl boronate group was employed as the recognition group for perox-
ynitrite. The probe exhibited exceptional speed and sensitivity in detecting peroxynitrite.
Palanisamy described another coumarin probe Cou 8 with a 7-position aryl boronate group
as the response moiety, and the probe was applied to fluorescence imaging of peroxynitrite
in a high-fat diet-induced obese mouse model [83].

Wang et al. reported a coumarin probe Cou 9-based 7-position benzyl borate as a
recognition group. The probe exhibited weak ICT and weak fluorescence at 421 nm [84].
After the reaction with peroxnitrie, a strong ICT and FRET process was turned on and
led to an incredible 1200-fold enhancement of the fluorescence. The probe was used for
fluorescent imaging of the content of peroxnitrie in cancer cells.

2.4. N-Substituted Coumarin as Fluorophore Core

As analogues for coumarin dyes, 2-(benzo[d]thiazol-2-yl)phenylacrylonitrile deriva-
tives exhibited longer emission wavelengths than the related coumarins. (Figure 8) In
particular, 2-(benzo[d]thiazol-2-yl)-3-(2-hydroxyphenyl)acrylonitrile derivatives (NCou
1–3) [85–87] served as the precursors for iminocoumarin, and they exhibited aggregation-
induced emission luminogens (AIEgens) in aqueous conditions. Upon the response with
peroxynitrite, 2-(benzo[d]thiazol-2-yl)-3-(2-hydroxyphenyl)acrylonitrile would be gener-
ated, which would further transform into iminocoumarin in situ. The probes were applied
for the fluorescent imaging of cell exogenous and endogenous peroxynitrite, though the
response rate was usually relatively slow.

The hydroxyl group was also converted from the borate group. The probe NCou 4
exhibited high speed and sensitivity in detecting peroxynitrite [88]. The detection limit of
the probe for peroxynitrite was 0.83 nM.
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2.5. 1,8-Naphthalimide as Fluorophore Core

1,8-Naphthalimide and its derivatives have been employed in a variety of analyte-
detecting applications owing to their good chemical stability and outstanding photophysi-
cal properties [89]. (Figure 9) The switch to control the off-and-on state of the fluorescence
was usually installed on the 4- or 5-position of the hydroxy or amino group at the 1,8-
naphthalimide. Through protection with a recognition group on the hydroxy or amino
group, the ICT process stopped. After the reaction with peroxynitrite, the recognition group
was removed, the ICT process was restored, and the fluorescence was enhanced.

Wang et al. reported a 4-hydroxyl-1,8-naphthalimide derivative probe Nap 1 targeting
lysosomes with benzyl borate as the response group for the detection of peroxynitrite. After
the addition of peroxynitrite, the fluorescence at 550 nm was greatly increased [90]. The
response finished in a very short period (<70 s), without interference by a lot of common
metal ions and ROS, and the detection limit was only 130 nM. The probe was used for the vi-
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sualization of the changing levels of peroxynitrite in three types of acute liver injury mouse
models. Sun et al. described a similar probe, Nap 2, with a p-toluenesulfonamide group
used as the endoplasmic reticulum (ER)-targeted group [91]. With the aid of ratiometric
two-photon fluorescent technology, they revealed the increased exogenous peroxynitrite
level at ER in the hippocampus of the depressive mouse.
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The aminophenol group could also be used to prevent the ICT process of the 5-hydroxy-
1,8-naphthalimide and quench its fluorescence. Meanwhile, it was easily oxidized and
de-arylated. Thus, it was very suitable to be employed as the recognition group for the
peroxynitrite probe. Nap 3 [92] and Nap 4 [93] probes were built on the above strategy.
Both of them exhibited good sensitivity and specificity over peroxynitrite, and they were
used for the fluorescent imaging of the exogenous and endogenous peroxynitrite of the
living cells and zebrafish or C. elegans.

To enclose the ROS level during the ferroptosis process in the mitochondria, Xie et al.
built a photocontrol peroxynitrite probe Nap 5 [94]. The fluorescence could be turned on
only when the probe was simultaneously exposed to peroxynitrite and light irradiation.
This avoided the false fluorescent signal generated outside the mitochondria. The ability
to target mitochondria was endowed by the lipophilic cation group. Based on the solid
evidence, the authors revealed the changing peroxynitrite level and its possible biological
source during ferroptosis and suggested that the mitochondrial peroxynitrite was closely
related to ferroptotic progression.

The N-methyl-D-aspartate (NMDA) receptor acted as a significant role in memory-
related molecular biology. Lee et al. developed a 1,8-naphthalimide-based probe, Nap 6,
to visualize peroxynitrite near the NMDA receptor in neuronal cells and hippocampal
tissues [95]. The oxidation of the boric acid by peroxynitrite led to the generation of a
hydroxy group at the 5-position of 1,8-naphthalimide. The fluorescence was increased after
the response. The cytotoxicity of Nap 6 was negligible, and its sensitivity and selectivity
to peroxynitrite upon other ROS and RNS were extremely high. Thus, it could be used to
investigate the cellular functions related to peroxynitrite near NMDA receptors.
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Xie et al. described an oxindole derivative probe Nap 7 for the detection of peroxynitrite [96].
The probe could specifically and quickly respond to peroxynitrite. In addition, it was able
to cross the blood–brain barrier. Therefore, it was used to visualize the peroxynitrite
level in live animals to disclose the cerebral peroxynitrite stress state in the 4-month-old
Alzheimer’s disease (AD) mouse model.

Zeng et al. discovered that peroxynitrite could oxidize 4-akylamino-1,8-naphthalimide
Nap 8 and cause a reduction in fluorescence [97]. The ratiometric behavior could be used to
detect the concentration of peroxynitrite. The recognition was highly selective and sensitive
and can be used to sense the peroxynitrite in living cells and zebrafish.

2.6. Cyanines as Fluorophore Core

Cyanines have of long research history and are widely used in photo diagnostic
and therapy applications due to their excellent optical properties as well as their facile
structural modification. Meanwhile, cyanines have remarkable biocompatibility; thus, they
are often employed in fluorescent imaging-related clinical trials in which Indocyanine
Green (ICG) has been approved by the FDA [98,99]. Cyanines are readily accessed by
traditional pyridine or cycloalkyl ketone-initiated procedures or by furfurals derivative
started protocols which were recently developed by Mo et al. [100].

When exposed to oxidants or nucleophiles, the polymethine bridge of the cyanines
could be broken, or form adducts [101]. (Figure 10) Additionally, the longer the bridge is, the
more fragile it will be, and the more likely the destructive reactions will happen [102]. Based
on this phenomenon, Jia et al. developed Cyanine 3 and Cyanine 5 covalent small-molecule
Cy 1 as the FRET-based ratiometric probe for the detection of peroxynitrite [103]. As the
probe response to peroxynitrite, the Cyanine 5 fluorescence band at 660 nm decreased,
while the Cyanine 3 band at 560 nm was enhanced. The fluorescent intensity ratio between
the two bands realized a 324-fold increase. The detection limit was as low as 0.65 nM, which
was an incredible value among those produced from the reported peroxynitrite probes.
The probe was used to semiquantitatively detect the peroxynitrite in living cells [103].
In comparison, the probes Cy 2 [104] and Cy 3 [105] contained only one cyanine dye.
Consequently, their reaction with peroxynitrite resulted in the observation of a relatively
smaller wavelength fluorescent signal generated from a cleaved aldehyde fragment.

The conjugated system of phenol-ether center Cyanine 7 was divided in half, which
was not capable of emitting typical Cyanine 7 fluorescence. However, when the phenol-
ether was fused and turned into the quinone form, the molecule became a heptathine
cyanine conjugate system and produced Cyanine 7 fluorescence. Compared to traditional
Cy 7anine, quinone Cyanine 7 displayed a generally large Stokes shift of more than 100 nm.
In Cy 4 [106] and Cy 5 [107], a benzyl boronate and a 1-methylindoline-2,3-dione group
were installed in the phenol-ether, which could be fused by peroxynitrite and thus turn the
fluorescence on. This fluorescent response was sensitive, exhibiting 55.9 and 25.5 nM of
the detection limits, respectively. The probes were applied to visualize peroxynitrite in the
mouse model of hepatotoxicity and stroke [106,107].

Huang et al. reported an anisole C4-substituted Cyanine 7 as a peroxynitrite probe
Cy 6 [108]. The probe’s fluorescence was efficiently quenched by the 1,1,1-trifluoro-4-(4-
oxyphenyl)butan-2-one group, which produced a clean fluorescent background. After the
treatment with peroxynitrite, a dienone product was formed and produced fluorescence at
630 nm. The detection limit was only 9.2 nM. Using the probe, the changing concentration
of peroxynitrite in zebrafish and mice under several hypoxic conditions was evaluated,
proving that the peroxynitrite produced from hypoxic stress could oxidatively damage
cells and tissues.
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2.7. Half-Cyanines as Fluorophore Core

As a milestone event, Yuan et al. accidentally obtained a new category of hydroxyl
hemicyanine (also known as HDs) by the treatment of chloro-substituted Cyanine 7 with
resorcin [109]. The HDs produced NIR range fluorescence, offering an outstanding platform
for the establishment of off–on probes. (Figure 11) Although the hydroxyl or amine
group is usually used to regulate the optical performance, the C=C bond was a reliable
recognition site when the HDs were used to detect peroxynitrite. By the oxidative cleavage
of the C=C bond in HDs, an aldehyde product with a lower fluorescent wavelength was
generated [110–112]. The response was fast and was generally finished in a few minutes.
With the Cy 10 probe, the fluorescence intensity ratio achieved a 1728-fold enhancement
after the reaction with peroxynitrite [113]. The aldehyde product was well characterized by
MS and NMR, proving the response mechanism. With the use of the probe, the authors
realized the ratiometric image visualization of the peroxynitrite in living cells. Very similar
spectral behaviors were obtained with similar structure HDs Cy 11–15 [114–118], regardless
of their difference in the quaternized heterocycles and aryl substituents.

The hemicyanine type of peroxynitrite probes could also be constructed via the con-
densation of the quaternized heterocycles with various aryl aldehydes. (Figure 12) The
aryl group in aryl aldehydes included EDG-substituted naphthalene (Cy 12 [115] and Cy
13 [116]) and dihydronaphthalene (Cy 14 [117]), coumarin (Cy 15–20 [118–123]), porphrin
(Cy 21 [124]), and rhodamine (Cy 22 [125])). The porphrin and rhodamine groups were
relatively less electron-donating than others, leading to longer response times (90 min and
40 min, respectively). However, their detection sensitivity was not reduced (56 and 13 nM,
respectively). Depending on the size of the conjugate system, the fluorescence wavelength
ranged from 477 to 680 nm. All of these probes were capable of detecting exogenous and
endogenous peroxynitrite from living cells.



Int. J. Mol. Sci. 2023, 24, 12821 14 of 32

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 13 of 33 
 

 

cyanine conjugate system and produced Cyanine 7 fluorescence. Compared to traditional 
Cy 7anine, quinone Cyanine 7 displayed a generally large Stokes shift of more than 100 
nm. In Cy 4 [106] and Cy 5 [107], a benzyl boronate and a 1-methylindoline-2,3-dione 
group were installed in the phenol-ether, which could be fused by peroxynitrite and thus 
turn the fluorescence on. This fluorescent response was sensitive, exhibiting 55.9 and 25.5 
nM of the detection limits, respectively. The probes were applied to visualize peroxynitrite 
in the mouse model of hepatotoxicity and stroke [106,107]. 

Huang et al. reported an anisole C4-substituted Cyanine 7 as a peroxynitrite probe 
Cy 6 [108]. The probe’s fluorescence was efficiently quenched by the 1,1,1-trifluoro-4-(4-
oxyphenyl)butan-2-one group, which produced a clean fluorescent background. After the 
treatment with peroxynitrite, a dienone product was formed and produced fluorescence 
at 630 nm. The detection limit was only 9.2 nM. Using the probe, the changing concentra-
tion of peroxynitrite in zebrafish and mice under several hypoxic conditions was evalu-
ated, proving that the peroxynitrite produced from hypoxic stress could oxidatively dam-
age cells and tissues. 

2.7. Half-Cyanines as Fluorophore Core 
As a milestone event, Yuan et al. accidentally obtained a new category of hydroxyl 

hemicyanine (also known as HDs) by the treatment of chloro-substituted Cyanine 7 with 
resorcin [109]. The HDs produced NIR range fluorescence, offering an outstanding plat-
form for the establishment of off–on probes. (Figure 11) Although the hydroxyl or amine 
group is usually used to regulate the optical performance, the C=C bond was a reliable 
recognition site when the HDs were used to detect peroxynitrite. By the oxidative cleavage 
of the C=C bond in HDs, an aldehyde product with a lower fluorescent wavelength was 
generated [110–112]. The response was fast and was generally finished in a few minutes. 
With the Cy 10 probe, the fluorescence intensity ratio achieved a 1728-fold enhancement 
after the reaction with peroxynitrite [113]. The aldehyde product was well characterized 
by MS and NMR, proving the response mechanism. With the use of the probe, the authors 
realized the ratiometric image visualization of the peroxynitrite in living cells. Very simi-
lar spectral behaviors were obtained with similar structure HDs Cy 11–15 [114–118], re-
gardless of their difference in the quaternized heterocycles and aryl substituents. 

 
Figure 11. Chemical structures of the half-cyanine probes Cy 7–Cy11. 

The hemicyanine type of peroxynitrite probes could also be constructed via the con-
densation of the quaternized heterocycles with various aryl aldehydes. (Figure 12) The 
aryl group in aryl aldehydes included EDG-substituted naphthalene (Cy 12 [115] and Cy 

Figure 11. Chemical structures of the half-cyanine probes Cy 7–Cy11.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 14 of 33 
 

 

13 [116]) and dihydronaphthalene (Cy 14 [117]), coumarin (Cy 15–20 [118–123]), porphrin 
(Cy 21 [124]), and rhodamine (Cy 22 [125])). The porphrin and rhodamine groups were 
relatively less electron-donating than others, leading to longer response times (90 min and 
40 min, respectively). However, their detection sensitivity was not reduced (56 and 13 nM, 
respectively). Depending on the size of the conjugate system, the fluorescence wavelength 
ranged from 477 to 680 nm. All of these probes were capable of detecting exogenous and 
endogenous peroxynitrite from living cells. 

 
Figure 12. Chemical structures of the half-cyanine probes Cy 12–Cy22. 

The C=C bonds of the above half-cyanine probes were fused after the reaction with 
peroxynitrite. (Figure 13) However, when there was another responsive unit in the half-
cyanine structure (Cy 23–29 [126–131]), the C=C bond would be maintained, which avoids 
the hypochromatic shift of the fluorescent wavelength. In these probes, EWG responsive 
units, including benzyl boronates 1,1,1-trifluoro-4-(4-oxyphenyl)butan-2-one diphe-
nylphosphonyl, were employed to form the ICT process and quench the fluorescence of 
the probes. The Cy 23 probe developed by Sonawane et al. displayed good water solubility 
as a result of the incorporation of a sulfonate group [126]. A remarkable 32-fold fluorescent 
enhancement was achieved after the response with peroxynitrite. The probe was found to 
have a mitochondria-targeting ability, and it was applied to investigate peroxynitrite in 
the zebrafish inflammatory model. The probe Cy 25 exhibited a wide pH application range 
of pH 3–9 for the detection of peroxynitrite [128], which was utilized for the fluorescent 
imaging of peroxynitrite in living cells and thus diagnosing drug-induced liver injury. 
The probe Cy 26 could respond to peroxynitrite at a very fast rate with very good 

Figure 12. Chemical structures of the half-cyanine probes Cy 12–Cy22.



Int. J. Mol. Sci. 2023, 24, 12821 15 of 32

The C=C bonds of the above half-cyanine probes were fused after the reaction with
peroxynitrite. (Figure 13) However, when there was another responsive unit in the half-
cyanine structure (Cy 23–29 [126–131]), the C=C bond would be maintained, which avoids
the hypochromatic shift of the fluorescent wavelength. In these probes, EWG responsive
units, including benzyl boronates 1,1,1-trifluoro-4-(4-oxyphenyl)butan-2-one diphenylphos-
phonyl, were employed to form the ICT process and quench the fluorescence of the probes.
The Cy 23 probe developed by Sonawane et al. displayed good water solubility as a
result of the incorporation of a sulfonate group [126]. A remarkable 32-fold fluorescent
enhancement was achieved after the response with peroxynitrite. The probe was found to
have a mitochondria-targeting ability, and it was applied to investigate peroxynitrite in the
zebrafish inflammatory model. The probe Cy 25 exhibited a wide pH application range
of pH 3–9 for the detection of peroxynitrite [128], which was utilized for the fluorescent
imaging of peroxynitrite in living cells and thus diagnosing drug-induced liver injury. The
probe Cy 26 could respond to peroxynitrite at a very fast rate with very good selectivity and
sensitivity [129]. The authors used the probe to detect the changing concentration of the
cell endogenous peroxynitrite and proved that H2S was able to scavenge the peroxynitrite
produced in living cells. Zhang et al. reported the use of Cy 27 for the real-time fluores-
cent and photoacoustic dual-modal imaging of peroxynitrite in the mice tumor, achieving,
respectively, 2.1- and 5.3-fold higher signals than the background [130]. Xu et al. devel-
oped a dual-responsive probe, Cy 28, for the detection of viscosity and peroxynitrite [131].
The fluorescent signals were at 740 nm and 580 nm, respectively. The probe showed low
cytotoxicity, very good sensitivity, and high selectivity over a variety of oxidizing species
as well as metal, halide, and sulfite ions. The authors employed the probe to realize the
fluorescent imaging of peroxynitrite in living HepG2 cells.
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Table 1. The response behavior of probes.

Reference
Number Dye λem

(nm)

Dynamic Range
of Fluorescence
Response (Fold)

Response
Time Range (µM) Detection

Limit (nM)

Interference Species
(Reactive Species; Anion; Cation;

Neutral Species)

ONOO—Production
Pathways in the

Biosystem

Fluorescent
Bioimaging

Objects

[18] Xan1 556 NR <30 s 0.075–3.0 24 H2O2; NO2
−, NO3

−; Cu2+; Cys, Met, GSH,
NHOH, Glucose, ascorbic acid, Epinephrine

Aqueous NR

[19] Xan2 638 80 <180 0–34 45 H2O2, ClO−, ·OH, ·O2
−, 1O2, tBuOOH,

tBuOO·, NO·; NO2
−, NO3

−

Pseudomonas
aeruginosa

(PAO1)-infected bone
marrow-derived

neutrophils

HeLa and
RAW264.7 cells,

mouse

[20] Xan3 630 40 <5 s 0.5–8 17

1O2, H2O2, tBuOOH, ·O2
−, ·OH, tBuOO·,

OCl−; SO4
2−, NO3

−, NO2
−, Cl−; K+, Na+,

Mg2+, Zn2+, Ca2+, Al3+; Cys, GSH
Cell endogenous HeLa cells

[21] Xan4 698 100 <2 s 0–100 25

tBuOO·, tBuOOH, NO·, ClO−, ·OH, ·O2
−,

H2O2; NO2
−, F−, Cl−, I−, SO4

2−, H2PO4
−,

SO3
2−, HCO3

−, HS−, AcO−; Na+, Mg2+, K+,
Ca2+, Cu2+; Cys, Hcy, GSH, Gly, Leu,

Lys, Val, Glu

Cell exogenous and
endogenous RAW264.7 cells

[22] Xan5 515/700 NR ~60 s 0–50 59

NO, ClO−, ·O2
−, tBuOO·, tBuOOH,

·OH, H2O2; F−, Cl−, I−, H2PO4
−, SO3

2−,
HCO3

−, AcO−, NO2
−; Na+, Mg2+, K+, Ca2+;

Gly, Leu, Glu, Val, Lys, Tyr, Cys, Hcy, GSH

Cell exogenous and
endogenous

RAW264.7 cells
and mouse

[23] Xan6 581 NR <10 0–18 93

tBuOO·, tBuOOH, ·OH, H2O2, ·O2
−, 1O2,

ClO−; NO3
−, NO2

−, Cl−, SO4
2−; Zn2+, Al3+,

Na+, Mg2+, K+, Ca2+, Fe2+, Fe3+, Cu2+;
Cys, Hcy, GSH

Cell exogenous and
endogenous

RAW264.7 cells
and zebrafish

[24] Xan7 585 NR <15 0–8.0 10.9 ·O2
−, tBuOO·, tBuOOH,·OH, H2O2, 1O2;

Zn2+, Na+, Mg2+, K+, Ca2+; Glu, Cys, GSH
Cell exogenous and

endogenous
HeLa cells and

zebrafish

[25] Xan8 678 100 <2 min 0–70 30

ClO−, H2O2, ·O2
−, tBuOO·,·OH; SO3

2−,
HSO3

−, SCN−, CO3
2−, S2O3

2−, NO2
−,

HSO4
−, S2O7

2−, AcO−, HCO3
−, NO3

−, F−,
Br−, I−, Cl−, HS−; Zn2+, Na+, K+, Ca2+, Fe2+,
Ba2+, Cu2+; Lys, Val, Asp, Phe, Asn, Ser, Ile,
Arg, Tyr, His, Trp, Glu, Ala, Met, Thr, Leu

Cell exogenous and
endogenous RAW264.7 cells
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Table 1. Cont.

Reference
Number Dye λem

(nm)

Dynamic Range
of Fluorescence
Response (Fold)

Response
Time Range (µM) Detection

Limit (nM)

Interference Species
(Reactive Species; Anion; Cation;

Neutral Species)

ONOO—Production
Pathways in the

Biosystem

Fluorescent
Bioimaging

Objects

[26] Xan9 575 NR <1 min 0–10 7

·1O2, tBuOO·,·OH, tBuOOH, H2O2, NO,
HClO; NO3

−, NO2
−, F−, CO3

2−, S2−, SO3
2−;

Zn2+, Na+, Mg2+, K+, Ca2+, Fe2+, Fe3+, Cu2+,
Mn2+; Cys, Hcy, GSH

Cell exogenous and
endogenous

HSC-2 and
Cal-27 cells, 3D
spheroid and

mice

[27] Xan10 631/669 10 ~1 min 0–20 8

1O2, H2O2, ·O2
−, tBuOO·, tBuOOH, ·OH,

HClO; Cl−, NO3
−, NO2

−, S2−;
Cys, GSH, HSO3

−

Cell exogenous and
endogenous

HeLa and
HepG2 cells,

zebrafish.

[28] Xan11 580 NR <10 min 2–20 1.4

H2O2; SO4
2−, NO3

−, NO2
−; Zn2+, Na+,

Mg2+, K+, Ca2+, Fe2+, Fe3+, Cu2+, Mn2+, Hg2+;
Cys, Met, Thr, Glu, Glucose, Urea,

Ascorbic acid

Cell exogenous and
endogenous MCF-7 Cells

[29] Xan12 578 80 <30 min 0–100 55 ClO−, NO, H2O2, ·O2
−, 1O2, tBuOOH,

tBuOO·; NO2
−

Cell exogenous and
endogenous

HeLa and
RAW264.7 cells

[30] Xan13 574 200 <2 min 0–14 NR NR Arginase 1 regulated RAW264.7 cells
and mouse

[31] Xan14 585 NR <3 s 0–10 0.68

tBuOO·,·OH, 1O2, ·O2
−, NO, H2O2, tBuOOH,

ClO−; Br−, SO3
2−, CO3

2−, NO3
−, NO2

−;
Zn2+, Na+, Mg2+, K+, Ca2+, Fe2+, Fe3+, Cu2+,

Cu+; Cys, Hcy, GSH

Cell exogenous and
endogenous

RAW264.7 cells
and zebrafish

[32] Xan15 585 NR <10 s 0–5 61

tBuOO·,·OH, 1O2, ·O2
−, NO, H2O2, tBuOOH,

ClO−; Br−, SO3
2−, CO3

2−, NO3
−, NO2

−;
Zn2+, Na+, Mg2+, K+, Ca2+, Fe2+, Fe3+, Cu2+,

Cu+; Cys, Hcy, GSH,

Cell exogenous and
endogenous

RAW264.7 cells
and zebrafish

[33] Xan16 521 8 <15 min 0–20 NR ·OH, 1O2, ·O2
−, NO, ClO−, tBuOO· Cell exogenous and

endogenous

Primary
cultured

neuronal cells

[34] Xan17 518 NR <40 s 0–20 NR H2O2, HClO, tBuOO·, GSH, ·O2
−, ·NO Doxorubicin

introduced EA.hy926 cells
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Table 1. Cont.

Reference
Number Dye λem

(nm)

Dynamic Range
of Fluorescence
Response (Fold)

Response
Time Range (µM) Detection

Limit (nM)

Interference Species
(Reactive Species; Anion; Cation;

Neutral Species)

ONOO—Production
Pathways in the

Biosystem

Fluorescent
Bioimaging

Objects

[35] Xan18 570 NR <15 min 0–20 52 HClO, H2O2, ·OH, 1O2, ·O2
−, tBuOOH,

tBuOO·; Cys, Hcy, GSH
APAP-induced liver

injury
HepG2 cells,

mice

[36] Xan19 573 130 <10 s 0–20 34 HClO, H2O2, ·OH, 1O2, ·O2
−, tBuOOH,

tBuOO·, NO2
−, NO

Liver
ischemia/reperfusion

HL-7702 cells,
mice

[37] Xan20 653 NR <4 min 0–35 72 ClO−, H2O2, ·OH, O2
−, NO; NO2

−; Zn2+,
Na+, Mg2+, K+, Ca2+, Fe2+, Cu2+

Cancer cell exogenous
and endogenous

HeLa and
RAW264.7 cells
zebrafish, mice

[38] Xan21 557 71 <2 min 0.1–10 NR ClO−, H2O2, ·OH, O2
−, NO; NO2

−; Zn2+,
Na+, Mg2+, K+, Ca2+, Fe2+, Cu2+

Brain stroke in mice,
LPS induced kidney

injury

RAW264.7 cells,
zebrafish, mice

[39] Xan22 698 50 <30 min 0–10 3.4
ClO−, H2O2, ·OH, O2

−, NO; NO2
−, S2−;

Zn2+, Na+, Mg2+, K+, Ca2+, Fe2+, Cu2+, Fe3+;
Hcy, Cys, GSH, vitamin C, Aβ oligomer

Alzheimer’s disease PC12 cells, mice

[40] Xan23 725 NR <2 min 0–10 85
ClO−, H2O2, ·OH, ·NO; S2−, HS−, NO3

−,
SO3

2−, SO4
2−, NO2

−; Na+, K+, Ca2+, Fe2+,
Fe3+; Cys, GSH

Myocardium
ischemia–reperfusion

injury
H9c2 cells, mice

[41] Xan24 535 140 <30 min 0–5 50 tBuOO·, ClO−, H2O2, ·OH, O2
−, ·NO, ClO− Cell exogenous and

endogenous RAW264.7 cells

[42] Xan25 535 290 <5 s 0–4 10 tBuOO·, H2O2, ·OH, ·O2
−, ·NO Escherichia

coli-challenged
RAW264.7

cells, mouse

[43] Xan26 570 93 <2 s 0–8 - tBuOO·, H2O2, ·O2
−, 1O2,·NO

Acute
alcohol-induced liver

injury and hepatic
ischemic/reperfusion

injury

SH-SY5Y cells
and live tissues

[44] Xan27 558 14 <30 min 0–16 43
HClO, H2O2, ·O2

−, HNO, NO, tBuOO·, ·OH;
HSO3

−, NO2
−, NO3

−, AcO−, SO4
2−; Na+,

Mg2+, K+, Fe2+, Cu2+; H2S, H2S2, Cys, GSH

Drug-induced
hepatotoxicity HepG2 cells,
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Number Dye λem
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Dynamic Range
of Fluorescence
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ONOO—Production
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[45] Xan28 536 1800 <98 s - 40 ClO−, tBuOO·,·OH, ·O2
−, H2O2, NO Cellular phagocytosis RAW264.7 cells

[46] Xan29 651 93 <20 s 0–7.5 11.3 HClO, NO, tBuOO·, ·OH, ·O2
−, H2O2,

tBuOOH, HNO; SO3
2−, NO2

−; H2S, H2S2
Inflamed mouse

HepG2/RAW264.7
cells, hepatic
tissue, mouse

[47] Xan30 462 134 <30 min 0–6 1.8 HClO, ·OH, ·O2
−, H2O2, tBuOOH; SO3

2−,
NO2

−; H2S, H2S2, Cys, GSH
Drug-induced acute

liver injury RAW264.7 cells

[48] Xan31 640 NR <80 s 0.2–1.5 23 1O2, ClO−, ·OH, H2O2, NO; HS−, HSO3
− Cell endogenous HeLa and

RAW264.7 cells

[49] Xan32 469 130 <25 s 0–7 4.1 tBuOO·, ·OH, tBuOOH, HClO, NO, ·O2
−,

H2O2; NO2
−, SO3

2−; H2S, H2S2, Cys, GSH

Nonalcoholic fatty
liver and

drug-induced liver
diseases

HepG2 and L02
cells, mouse

[50] Xan33 468/526 116 ~20 s 0–20 11.6 ClO−, ·OH, H2O2, NO, ·O2
−, HNO; HSO3

−,
NO3

−, SO3
2−, NO2

−; H2S, Hcy, GSH, Cys Arthritis RAW264.7 cells,
tissue, mouse

[51] Xan34 520 NR NR 0–40 1.2 H2S, Hcy, Cys, GSH Acrylamide-induced
PC-12 and

HepG2 cells,
mice

[52] Xan35 496 100 <5 s 0–2.6 16
1O2, ClO−, H2O2, ·OH, NO, ·O2

−;
NO3

−, NO2
− Cell endogenous RAW264.7 cells

[53] Xan36 648 NR <5 s 0–10 30

1O2, ClO−, H2O2, ·OH, NO, ·O2
−; Zn2+, Na+,

Mn2+, Hg2+, Ca2+, Fe2+, Cu2+, Fe3+; Cys,
GSH, Hcy, NADH

Cell endogenous
HeLa and

RAW264.7 cells,
mouse

[54] Xan37 760 216 <15 s 0–2 5 1O2, ClO−, H2O2, ·OH, NO, ·O2
− Idiopathic pulmonary

fibrosis
RAW264.7
cells, mice

[55] Xan38 672 50 <50 min 0–60 80

tBuOO·,·1O2, ClO−, tBuOOH, KO2, H2O2,
·OH; CO3

2−, SO3
2−, SO4

2−, S2−, HS−,
HSO3

−, NO3
−, NO2

−; Zn2+, Na+, Mg2+,
Ca2+, K+, Cu2+, Fe3+; Hcy, Cys, GSH

Cell endogenous RAW264.7
cells, mouse
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Table 1. Cont.

Reference
Number Dye λem
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ONOO—Production
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[56] Xan39 571 15 <60 s 0–15 57
NO, tBuOOH, ClO−, ·O2

−, ·OH; NO3
−,

NO2
−, Cl−, S2O3

2−, Br−, HS−; K+,Fe3+; Cys,
Hcy, Cys, GSH, Pro

Cell exogenous and
endogenous HeLa cells

[57] Xan40 680 NR <30 s 0–4 3

1O2, H2O2, ·OH, ·O2
−, ClO−, NOC-9; NO2

−;
Zn2+, Al3+, Fe2+, Fe3+, Cu2+, Cu+, Na+, Mg2+,

Ca2+, K+; GSH, DHA

Ischemia–reperfusion
injury

RAW264.7,
EA.hy926 and

INS-1 cells,
tissues, mouse

[58] Xan41 548 NR <5 s 0–26 47
TEMPO, tBuOOH, ·OH, H2O2, ·O2

−,
1O2,·NO, HOCl; NO3

−, NO2
−; Fe2+, Cu2+,

Cu+; Hcy, Cys, GSH
Peritonitis RAW264.7 cells,

mouse

[59] Xan42 672 NR <10 min 0.05–2 6.3

1O2, ClO−, H2O2, ·OH, NO, ·O2
−, tBuOOH;

SO4
2−, Cl−, NO2

−; Zn2+, Na+, K+, Mg2+,
Ca2+, Cu2+; Glu, Cys, Glucose, BSA

Inflammatory RAW264.7 and
foam cells

[61] Dic1 690 120 <20 min 0–180 4620 KO2, NO, ClO−, tBuOO·,·tBuOOH,
H2O2, ·OH Cell exogenous HeLa cells

[62] Dic2 670 NR <20 min 0–10 53

HOCl, 1O2, ·O2
−, tBuOOH, tBuOO·, H2O2,

·OH; NO2
−, NO3

−, F−, Cl−, Br−, CO3
2−,

H2PO4
−, AcO−; Zn2+, Al3+, Fe3+, Cu2+,

K+;·Hcy, Cys, GSH,

Cell endogenous HepG2 cells

[63] Dic3 678 NR ~25 min 10–200 78.7 ·OH, NO, ClO−, ·O2
−, tBuOO·, H2O2;

S2O3
2−; H2S,Hcy, Cys, GSH, Cell endogenous HepG2 cells

[64] Dic4 685 NR <10 min 0–20 96 ·O2
−, tBuOO·, H2O2, ·OH, NO, ClO−;

NO2
−, NO3

−
Kainate (KA)-induced

rat epilepsy

RAW264.7,
HT22 cells,
brain tissue,

mouse

[65] Dic5 660 30 <2 s 0–100 81

HNO, NO, ·OH, ·O2
−, tBuOO·, H2O2, ClO−;

F−, Cl−, I−, HCO3
−, HSO3

−, HS−, NO2
−;

Na+, K+, Fe3+, Cu2+; Tyr, Ala, Asp, Thr, Met,
Ile, Phe, Hcy, Cys, GSH

Cell exogenous and
endogenous

HeLa cells,
zebrafish,

mouse
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[66] Dic6 620 10 <4 min 1–6 27.5
NO, HNO, ClO−, ·OH, tBuOOH, 1O2, ·O2

−;
F−, Cl−, Br−, I−, AcO−, CO3

2−, SO4
2−,

NO2
−, NO3

−; Hcy, Cys, GSH

Cell exogenous and
endogenous EC1 cells

[67] Dic7 678 NR <1 min 0–15 212

·OH, tBuOOH, 1O2, H2O2, ClO−; Cl−, Br−,
I−, S2−, NO3

−, NO2
−, CO3

2−, HSO3
−,

HCO3
−, HSO4

−; Fe2+, Cu2+, Fe3+, Na+, Ca2+,
K+; Cys, GSH,

Parkinson’s disease HeLa cells and
zebrafish

[68] Dic8 535 NR <5 min 2–10 810

ClO−, ·OH, 1O2, ·O2
−, H2O2; Cl−, AcO−,

SO4
2−, ClO4

−, S2−, NO3
−, NO2

−,CO3
2−,

HSO3
−; Mg2+, Zn2+, Na+, Ca2+, K+;

Hcy, Cys, GSH

Idiopathic pulmonary
fibrosis

BEAS cells,
mouse

[69] Dic9 657 NR <100 s 0–20 5300
ClO−, ·OH, ·O2

−, H2O2; SO3
2−, AcO−,

SO4
2−, Cl−, NO2

−; Al3+, Fe2+, Cu2+, Na+,
Ca2+, K+

Cell exogenous and
endogenous

HeLa, Raw264.7
and HepG2

cells, zebrafish

[70] Dic10 667 50 <5 min 0–270 NR tBuOO·, ·OH, ·O2
−, 1O2, ClO−, H2O2 Cell exogenous HeLa cells

[71] Dic11 660 NR <3 s 0–15 5

·OH, tBuOOH, ClO−, H2O2, tBuOO·, NO,
·O2
−, 1O2; NO3

−, Cl−, NO2
−, SO4

2−; Fe2+,
Cu2+, Fe3+, Na+, Ca2+, K+, Mg2+, Zn2+, Cys,

GSH, Hcy

Cell exogenous and
endogenous

RAW264.7 cells
and zebrafish

[72] Dic12 650 30 <5 s 0–20 53 tBuOOH, NO, ·OH, ·O2
−, tBuOO·, 1O2, ClO−,

H2O2; HSO3
−, SO3

2−, NO2
−; Cys

Inflammation HepG2 cells and
mouse

[73] Dic13 560 NR <25 s 0–10 130

NO, ClO−, 1O2, ·O2
−, H2O2, ·OH; Cl−, S2−,

NO3
−, NO2

−, CO3
2−, AcO−, SO3

2−; Na+,
Ca2+, K+, Mg2+, Al3+, Fe2+, Cu2+;

Cys, GSH, Hcy

Acute liver injury LX-2 cells and
mouse

[74] Dic14 670 NR <1 s 0–20 4.59

·O2
−, tBuOO·, ·OH, 1O2, ClO−, H2O2, NO,

BrO−; HS−, SO4
2−, HSO3

−, SO3
2−, S2−,

CO3
2−, NO3

−, NO2
−; Zn2+, Na+, Ca2+, K+,

Mg2+; Hcy, Cys, GSH

Parkinson’s disease

PC12 and
SH-SY5Y cells,

tissues,
drosophila

brains, mouse
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[76] Cou1 630 8 <10 0–50 34

tBuOOH, ·O2
−, ·OH, 1O2, ClO−, H2O2, NO;

NO2
−, NO3

−, CO3
2−, SO4

2−, SO3
2−, PO4

3−;
Fe3+, Zn2+, Fe2+, Cu2+, Na+, Ca2+, K+; H2S,

Hcy, Cys, GSH, vitamin C

Anthracycline-
induced

cardiotoxicity

H9c2
cardiomyocytes

and mouse

[77] Cou2 510 25 <60 0–40 21.4

ClO−, ·NO, ·O2
−, 1O2, H2O2; F−, ClO4

−,
Cr2O7

2−, S2O3
2−, I−, S2−, CO3

2−, NO3
−;

Ca2+, K+, Cd2+, Mn2+, Cu2+, Ni2+, Ba2+, Al3+,
Mg2+, Hg2+, Cr3+, Zn2+, Ag+

γ-carrageenan-
induced

inflammation

RAW264.7 cells
and mouse

[78] Cou3 628 8 <5 s 0.064–0.64 3.7 ClO−, H2O2, NO, ·OH, ·O2
−, HNO; NO2

−,
SCN−, HSO3

−, HS−; K+, Mg2+; Cys, GSH, FA
Cell exogenous and

endogenous
SMMC-7721 and
RAW264.7 cells

[79] Cou4 520 111 <5 min 7–16 210

HClO, tBuOO·, tBuOOH, ·OH, 1O2, NO,
H2O2; NO2

−, AcO−, SO4
2−, CO3

2−, S2O3
2−,

S2−, SCN−; Zn2+, Ca2+, Mg2+, Fe2+, Cu2+,
Na+, K+; Hydrazine hydrate, Cys, Hcy, GSH

Cell exogenous and
endogenous

MCF cells and
HepG2 cells

[80] Cou5 480 76 <1 min 0–10 35 ·O2
−, tBuOO·, ·OH, 1O2, NO, HClO,

tBuOOH, H2O2; NO2
−, NO3

−; Hcy, Cys, GSH
Cell exogenous and

endogenous
RAW264.7 and

H1299 cells

[81] Cou6 538 153 <3 min 0–18 16 ClO−, ·OH, 1O2, tBuOOH, ·O2
−, H2O2, HNO;

NO3
−, NO2

−; Ca2+, Mg2+, Fe2+, Cu2+; H2S2
Cell endogenous HepG2 cells

[82] Cou7 650 NR <5 s 0–15 53.8

1O2, ·O2
−, HNO, NO, ClO−, H2O2, ·OH;

SO3
2−, N3

−, HSO4
−, NO2

−, Br−, CN−, F−,
Cl−; Cys, Hcy, GSH

Cell exogenous and
endogenous Hela cells

[83] Cou8 450 NR <4 min 0–10 29.8
ClO−, ·OH, ·O2

−, NO, H2O2, tBuOOH,
tBuOO·; NO3

−, NO2
−; IAA, Trp,

Glu, BSA, HSA

High-fat diet-induced
obese

RAW264.7 and
EAhy926 cells,

zebrafish and in
live tissues

[84] Cou9 500 1200 <2 s 0–2 70.8
NO, ClO−, ·OH, tBuOOH; Fe3+, Fe2+, Ca2+,
Cu2+, Al3+, Hg2+, Pb2+, Mg2+, Zn2+; HNO3,

GSH, Cys, Hcy

Cell exogenous and
endogenous

HepG2 and
HL772 cells
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[85] NCou1 540 NR <30 min 3–10 2500 ·O2
−, ·NO, H2O2, tBuOO·, ClO−,

·OH, tBuOOH
Cell exogenous and

endogenous J774A.1cells

[86] NCou2 530 NR <20 min 0–10 15 ·O2
−, H2O2, tBuOO·,·OH, tBuOOH, ClO−;

Fe3+, Ca2+, Cu2+, Zn2+; Cys, Glu Drug-damaged liver HepG2 cells and
mouse

[87] NCou3 525 24 <50 min 10–35 30

1O2, HNO, ·OH, ·O2
−, tBuOOH, ClO−, H2O2;

Zn2+, S2−, NO2
−, NO3

−; Ca2+, Mg2+, Na+,
K+, Fe3+; GSH, Cys, Hcy

Cell exogenous and
endogenous

HeLa cells and
mouse

[88] NCou4 522 155 50 s 0–5 0.83
·OH, NO, ·O2

−, H2O2, ClO−, 1O2; NO2
−,

SO4
2−, H2PO4

−, I−, HCO3
−, Br−, F−; Fe2+,

Cu2+, Zn2+, Ca2+, Mg2+, Na+, K+

Cell exogenous and
endogenous RAW264.7 cells

[90] Nap1 550 NR <70 s 0–1000 130

ClO−; SCN−, F−, Cl−, NO3
−, I−, HPO4

2−,
CO3

2−, HSO4
−, SO4

2−; K+, Li+, Ba2+, Al3+,
Fe2+, Pb2+, Cu2+, Ca2+, Mg2+; Asn,

Arg, Leu, Trp

Acute liver injury LX-2 cells,
mouse

[91] Nap2 558 NR <6 s 2–15 69
HNO, ·OH, NO, ·O2

−, H2O2, ClO−; S2−,
SO3

2−, I−; Zn2+, Ca2+, Fe2+; CO, vitamin C,
Cys, Hcy, GSH

Cell exogenous and
endogenous

Hela and
HepG2 cells,

mouse

[92] Nap3 550 NR <100 s 0–20 69

HClO, tBuOO·,1O2, ·OH, ·O2
−, tBuOOH, NO,

H2O2; Cl−, SO4
2−, NO3

−, NO2
−, S2−; Fe3+,

Cu2+, Fe2+, Zn2+, Mg2+, Na+, K+, Ca2+; Cys,
Hcy, GSH

Cell exogenous and
endogenous

RAW264.7 cells
and zebrafish

[93] Nap4 548 NR <12 min 10–80 49.7

1O2, ClO−, ·OH, ·O2
−, tBuOOH, NO, H2O2;

Cl−, HSO3
−, SO4

2−, S2O3
2−, NO2

−, NO3
−;

Fe3+, Cu2+, Fe2+, Mg2+, Na+, K+, Ca2+; Cys,
Hcy, GSH

Cell exogenous and
endogenous

HepG2 cells and
C. elegans

[94] Nap5 553 NR <200 s 0–44 48
ClO−, ·OH, ·O2

−, NO, H2O2; SO3
2−; Zn2+,

Mg2+, Fe3+, Cu2+, Fe2+, Na+, K+; H2S, H2Sn,
Cys, Hcy, GSH, BSA, DNA, erastin

Ferroptosis HepG2 cells and
zebrafish
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[95] Nap6 550 4 <1 min 0–10 184 ClO−, ·OH, NO·, H2O2, tBuOO·, tBuOOH Cell exogenous and
endogenous

SH-SY5Y cells
and mouse

[96] Nap7 565 NR <120 s 0–18 NR
1O2, ·OH, ·O2

−, ClO−, tBuOOH, H2O2, NO;
Cys, Hcy, GSH, H2S, Aβ42 peptide, BSA, DNA

Alzheimer’s disease PC12 cells and
mouse

[97] Nap8 545 15 <5 0–20 320

ClO−, 1O2, ·OH, ·O2
−, tBuOOH, tBuOO·,

H2O2; HS−, ClO3
−, HCO3

−, SO4
2−, ClO−,

SO3
2−, CO3

2−, NO3
−, NO2

−, Br−, H2PO4
−,

I−, F−, Cl−; Cys, Hcy, GSH

Cell exogenous and
endogenous

RAW264.7 cells
and zebrafish

[103] Cy1 560 324 <30 s 0–0.7 0.65 ClO−, 1O2, ·OH, ·O2
−, tBuOOH, H2O2;

HSO4
−, SO3

2−; Cys, Hcy, GSH
Cell exogenous and

endogenous RAW264.7 cells,

[104] Cy2 610 46 <20 min 0–30 280
HClO, 1O2, ·OH, ·O2

−, NO, H2O2; NO2
−,

HS−; Fe3+, Fe2+, Mg2+, Na+, K+, Ca2+, Zn2+;
Cys, Hcy, GSH

Cell endogenous HeLa cells

[105] Cy3 NR NR NR 0–3.3 26 ClO−, ·OH, ·O2
−, H2O2; NO3

−, NO2
− Cell exogenous and

endogenous RAW264.7 cells

[106] Cy4 950 NR <3 min 0–11 55.9
1O2, NO, ClO−, ·OH, ·O2

−, H2O2; HS−,
NO2

−; Na+; Cys
APAP-induced
hepatotoxicity Mouse

[107] Cy5 719 41 <5 min 0–35 25.4
NO, ClO−, H2O2; NO3

−, NO2
−; Fe3+, Fe2+,

Mg2+, Ca2+, Zn2+ Cu2+, Cd2+, Ag+;
Cys, Hcy, GSH

Stroke-induced
oxidative stress

PC12 cells and
BV-2 cells, and

mouse

[108] Cy6 630 NR <15 min 1–100 9.2

1O2, ·O2
−, NO, ·OH, ClO−, H2O2; HS−,

NO2
−; Na+; S-nitrosoglutathione, methyl

linoleate hydroperoxide
Hypoxic stress LO2 cells,

zebrafish, mice

[110] Cy7 460 1728 <60 s 0.1–15 33 tBuOO·, ·OH, 1O2, ClO−, H2O2, NO; SO4
2−,

HSO3
−, NO3

−, NO2
−; H2S, Hcy, Cys, GSH

Cell exogenous and
endogenous RAW264.7 cells

[111] Cy8 484 448 <10 min 0.5–15 77 tBuOOH, HClO, ·O2
−, H2O2; N3

−, NO3
−,

NO2
−, HSO3

−, SO3
2−; H2S, Hcy, Cys, GSH

Cell exogenous and
endogenous HepG2 cells
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[112] Cy9 456 NR <3 min 0–30 326

·OH, 1O2, ClO−, H2O2; F−, Cl−, Br−, I−,
AcO−, ClO4

−, HPO4
2−, SO4

2−, S2O3
2−,

NO2
−, NO3

−, HCO3
−, CO3

2−, H2PO4
−; Na+,

K+; Hcy, Cys, GSH

Cyclophosphamide-
induced oxidative

stress
HeLa cells

[113] Cy10 560 NR <15 min 0–100 210 NR Cell exogenous and
endogenous HepG2 cells

[114] Cy11 530 NR <4 min 0–12 84

·OH, ·O2
−, tBuOOH, tBuOO·, H2O2, ClO−;

S2−, HS−, S2O3
2−, HSO3

−, NO3
−, NO2

−;
Na+, K+, Zn2+, Fe3+, Fe2+, Mg2+, Ca2+; Cys,

Hcy, GSH

Cell exogenous and
endogenous HeLa cells

[115] Cy12 535 NR <2 min 5–50 85 NO, ·OH, 1O2, tBuOOH, HClO, ·O2
−, H2O2;

Cys, GSH
Idiopathic pulmonary

fibrosis

A549 and
RAW264.7 cells,

mouse

[116] Cy13 444 NR <20 s 0–20 40 NO, ·OH, ·O2
−, H2O2, ClO−, 1O2; S2−,

NO3
−, NO2

−; Cys, Hcy, GSH
Cell exogenous and

endogenous HepG2 cells

[117] Cy14 635 NR <250 s 0–18 78
NO, ·OH, ·O2

−, H2O2, ClO−, 1O2; S2O3
2−,

NO2
−; Na+, Zn2+, Fe3+, Ca2+; Cys,

GSH, citric acid

Tunicamycin
-induced endoplasmic

reticulum stress

HeLa cells and
zebrafish

[118] Cy15 493 25 <4 min 0–20 150 ClO−, 1O2, ·OH, ·O2
−, tBuOOH, H2O2, NO;

NO3
−, NO2

− Cell endogenous RAW264.7 cells

[119] Cy16 515 474 NR 0–20 49.7 NO, ·OH, ·O2
−, H2O2, ClO−, tBuOOH,

tBuOO·; Cys, Hcy, GSH
Cell exogenous and

endogenous
WI38 VA13 and
RAW264.7 cells

[120] Cy17 505 22 <2 s 0–40 67

NO, ·OH, ·O2
−, H2O2, ClO−, tBuOO·, HNO;

NO2
−, HSO3

−, SO3
2−, Cl−, S2O3

2−, HS−;
Na+, Fe2+, Mg2+, Ca2+, Zn2+ Cu2+;

Cys, Hcy, GSH

Nonalcoholic fatty
liver

Hela and
RAW264.7 cells,

mouse

[121] Cy18 500 11 <3 min 0–10 16

ClO−, 1O2, ·OH, ·O2
−, tBuOOH, H2O2, NO;

S2−, NO3
−, NO2

−, AcO−, HSO4
−, Cl−,

SO4
2−, HSO3

−; Na+, K+, Zn2+, Fe3+, Fe2+,
Mg2+, Ca2+, Cu2+; Cys, Hcy, GSH

Hepatotoxicity
induced by

acetaminophen

HepG2 cells and
zebrafish
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[122] Cy19 477 125 <10 s 0–2 13

tBuOO·, HNO, ·OH, NO, KO2, H2O2; HSO4
−,

F−, Cl−, Br−, I−, AcO−, S2O3
2−, HCO3

−,
CO3

2−, C2O4
2−, HS−, HSO3

−, S2O7
−;Na+,

K+, Ca2+; Ser, Val, Lys, Trp, Gly, Ala, GSH,
Hcy, Cys

Golgi oxidative stress
and drug-induced

liver injury

Hela cells and
mouse

[123] Cy20 484 52 <5 min 0–3 41.88
tBuOOH, HClO, H2O2, 1O2, NO−; HSO3

−,
HPO4

2−, SO4
2−, S2O3

2−, NO3
−; Fe2+, Na+;

Cys, Hcy, GSH
Cell endogenous HepG2 cells

[124] Cy21 680 NR <90 min 0–40 56 ClO−, 1O2, ·OH, ·O2
−, tBuOOH, H2O2;

NO2
−, CN−, HSO3

−, NO3
−

Cell exogenous and
endogenous

RAW264.7 cells,
zebrafish, live
mouse tissues

[125] Cy22 505 120 <40 min 0–80 13 ClO−, 1O2, ·OH, ·O2
−, tBuOO·, H2O2 Rheumatoid arthritis RAW264.7 cells

and mouse

[126] Cy23 576 32 <120 s 0–16 60.5
ClO−, NO·, ·O2

−, ·OH, H2O2, tBuOO·,
tBuOOH; K+, Na+, Ca2+, Mg2+, Pb2+, Mn2+,

Zn2+, Cu2+, Fe2+, Fe3+, Mn2+, Cd2+, Li+
Inflammatory RAW264.7 cells

and zebrafish

[127] Cy24 605 NR <10 min 8–48 250

ClO−, 1O2, ·OH, H2O2; NO3
−, NO2

−, ClO4
−,

AcO−, SO3
2−, HCO3

−, CO3
2−, HSO3

−, S2−;
Na+, K+, Zn2+, Fe3+, Mg2+, Ca2+, Cu2+; Cys,

Hcy, GSH

Cell exogenous and
endogenous

RAW264.7 cells
and zebrafish

[128] Cy25 557 NR <10 min 0–15 32 ClO−, OH, ·O2
−, H2O2; Na+, K+, Al3+, Zn2+,

Fe3+, Ca2+, Cu2+; SO4
2−, Cl−, NO2

−, CO3
2−

Drug-induced liver
injury

RAW264.7 cells
and zebrafish

[129] Cy26 569 NR <1 min 0–10 16

tBuOO, ·tBuOOH, ClO−, OH, 1O2, H2O2;
NO3

−, NO2
−, HSO4

−, Cl−, Br−, I−, S2−,
HCO3

−, CO3
2−, HSO3

−; Na+, K+, Fe2+, Fe3+,
Ca2+, Cu2+; GSH, Cys, Ascorbic acid

Cell exogenous and
endogenous Hela cells

[130] Cy27 712 59 <2 min 0–10 53 ClO−, OH, ·O2
−, H2O2, 1O2 Tumor RAW264.7 cells

and mouse

Note: Cys = cysteine, Met = methionine, GSH = glutathione, Hcy = homocysteine, Gly = glycine, Leu = leucine, Lys = lysine, Val = valine, Glu = glutamine, Tyr = tyrosine, Asp = aspartic
acid, Phe = phenylalanine, Asn = asparagine, Ser = serine, Ile = isoleucine, Arg = arginine, His = histidine, Trp = tryptophan, Thr = threonine, Pro = proline, NOC-9 = mahma-nonoate,
FA = folic acid, IAA = indole-3-acetic acid, BSA = bovine albumin, HAS = human serum albumin, NR = not reported.
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3. Summary and Outlook

In conclusion, we systemically reviewed over 100 peroxynitrite-responsive fluorescent
probes based on their fluorophore core. The response pathways, in vivo peroxynitrite
response data, bio-system peroxynitrite produce mode, and fluorescent bioimaging objects
of the probes were summarized in detail. Based on the overall experimental results, specific
and sensitive detection of peroxynitrite could be achieved for most of the reported probes.
Many of the probes have been applied to reveal the important role of peroxynitrite in a
great diversity of disease processes.

Although the number of articles concerning peroxynitrite responsive fluorescent
probes has appeared to have had an explosive increase in the last 6 years and remarkable
progress has been achieved, the design and application of a new class of fluorophore core,
new responsive moiety, new application mode, and probes with higher potential in clinical
translation are still challenging and greatly required.
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