Recent Strategies for Lithium-Ion Conductivity Improvement in Li7La3Zr2O12 Solid Electrolytes
Abstract
:1. Introduction
2. Results and Discussions
2.1. Structural Features of the Tetragonal and Cubic Modifications of Li7La3Zr2O12
2.2. Structural Substitutions in Different Sublattices of the Li7La3Zr2O12 Compound
2.2.1. Li Sublattice
2.2.2. La Sublattice
2.2.3. Zr Sublattice
A2+ Doping
A3+ Doping
A4+ Doping
A5+ Doping
A6+ Doping
Multi-Element Doping
2.3. Multi-Doping on Several Sublattices in Li7La3Zr2O12
- -
- Structuring of the better lithium-ion conduction framework. The presence of the second dopant element has an impact on the element distribution in Li sites (tetrahedral and octahedral), which leads to the formation of a unique Li local structure in the garnet electrolyte. For example, Al-doped LLZ was co-doped by Ta5+ (dual-doping) [96], which leads to providing more open space for Li-ion transport because of Al shifting from the 24d to 96h Li site. In Ref. [97], the conductivity growth was observed with the increased number of doped ions (from 0 to 3) in the Li7La3Zr2O12 structure, which is caused by sample densification and the increasing of the Li occupancy at the tetrahedral site (24d), while the Li occupancy at the octahedral site (96h) does not change [97];
- -
- Ceramic densification. Some doping elements act as sintering additives and not only modify bulk conductivity but also significantly reduce grain-boundary resistance. For example, in Ref. [98], the substitution of Zr4+ by Ta5+/Ba2+ was made to stabilize the cubic modification, while the substitution of Li+ by Ga3+ leads to Li content optimization and increases ceramic sinterability. In turn, high density and good contact between grains is a very important factor for the air stability improvement of solid electrolytes based on LLZ, since reactions of LLZ with air components initially occur at the grain boundaries.
2.3.1. Li and La Sublattice
2.3.2. Li and Zr Sublattice
2.3.3. La and Zr Sublattice
- -
- It can be concluded that solid electrolytes with the simultaneous substitution of La3+ and Zr4+ in the LLZ structure have lower conductivity values in comparison with Li/Zr and Li/La substituted garnets. Al and Ga are used as co-doping elements for the simultaneous substitution in Li/Zr and Li/La sublattices in the LLZ structure (Section 2.3.1 and Section 2.3.2) for lithium-ion conductivity improvement of solid electrolytes. As mentioned above (Section 2.2.1), these dopants act as sintering additives, which leads to ceramic densification and grain-boundary conductivity improvement.
2.3.4. Li, Zr, and La Sublattice
2.4. Mono- and Multi-Doping: Comparison and Trends
- -
- solid electrolytes with mono-, dual-, and multi-doping possess the highest Li-ion conductivity if Li+ was partially substituted by Ga3+;
- -
- the highest values were achieved for a solid electrolyte with the partial substitution of Li+ by Ga3+ synthesized using the sol–gel method. Hot-pressing and spark plasma sintering techniques are also effective methods for obtaining high-density ceramics.
3. Conclusions
- lower conductivity values of thin-film electrolytes based on LLZ compared to bulk ceramics (10−3 S/cm at room temperature);
- the problem of contact between the cathode and solid electrolyte (high resistance at the interface) is still the most acute problem for the successful application of solid electrolytes.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, S. Lithium-Air Batteries. Encycl. Energy Storage 2022, 4, 171–179. [Google Scholar] [CrossRef]
- Zhou, L.; Tian, S.; Du, X.; Liu, T.; Zhang, H.; Zhang, J.; Hu, S.; Chen, Z.; Zhang, J.; Cui, G. Suppressing Hydrogen Evolution in Aqueous Lithium-Ion Batteries with Double-Site Hydrogen Bonding. ACS Energy Lett. 2023, 8, 40–47. [Google Scholar] [CrossRef]
- Minakshi, M. Improved performance of Bi2O3-doped MnO2 cathode on rechargeability in LiOH aqueous cell. J. Solid State Electrochem. 2009, 13, 1209–1214. [Google Scholar] [CrossRef]
- Minakshi, M. Looking beyond lithium-ion technology—Aqueous NaOH battery. Mater. Sci. Eng. B 2012, 177, 1788–1792. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, S.; He, Y.-B.; Kang, F.; Chen, L.; Li, H.; Yang, Q.-H. Solid-state lithium batteries: Safety and prospects. eScience 2022, 2, 138–163. [Google Scholar] [CrossRef]
- Xu, L.; Lu, Y.; Zhao, C.; Yuan, H.; Zhu, G.; Hou, L.; Zhang, Q.; Huang, J. Toward the Scale-Up of Solid-State Lithium Metal Batteries: The Gaps between Lab-Level Cells and Practical Large-Format Batteries. Adv. Energy Mater. 2021, 11, 2002360. [Google Scholar] [CrossRef]
- Kong, L.; Wang, L.; Zhu, J.; Bian, J.; Xia, W.; Zhao, R.; Lin, H.; Zhao, Y. Configuring solid-state batteries to power electric vehicles: A deliberation on technology, chemistry and energy. Chem. Commun. 2021, 57, 12587–12594. [Google Scholar] [CrossRef]
- Chen, L.; Huang, Y.-F.; Ma, J.; Ling, H.; Kang, F.; He, Y.-B. Progress and Perspective of All-Solid-State Lithium Batteries with High Performance at Room Temperature. Energy Fuels 2020, 34, 13456–13472. [Google Scholar] [CrossRef]
- Bubulinca, C.; Kazantseva, N.E.; Pechancova, V.; Joseph, N.; Fei, H.; Venher, M.; Ivanichenko, A.; Saha, P. Development of All-Solid-State Li-Ion Batteries: From Key Technical Areas to Commercial Use. Batteries 2023, 9, 157. [Google Scholar] [CrossRef]
- Campanella, D.; Belanger, D.; Paolella, A. Beyond garnets, phosphates and phosphosulfides solid electrolytes: New ceramic perspectives for all solid lithium metal batteries. J. Power Sources 2021, 482, 228949. [Google Scholar] [CrossRef]
- Xu, L.; Li, J.; Deng, W.; Shuai, H.; Li, S.; Xu, Z.; Li, J.; Hou, H.; Peng, H.; Zou, G.; et al. Garnet Solid Electrolyte for Advanced All-Solid-State Li Batteries. Adv. Energy Mater. 2021, 11, 2000648. [Google Scholar] [CrossRef]
- Yaroslavtsev, A.B. Solid electrolytes: Main prospects of research and development. Russ. Chem. Rev. 2016, 85, 1255–1276. [Google Scholar] [CrossRef]
- Kammampata, S.P.; Thangadurai, V. Cruising in ceramics—Discovering new structures for all-solid-state batteries—Fundamentals, materials, and performances. Ionics 2018, 24, 639–660. [Google Scholar] [CrossRef]
- Liu, Q.; Geng, Z.; Han, C.; Fu, Y.; Li, S.; He, Y.-B.; Kang, F.; Li, B. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. J. Power Sources 2018, 389, 120–134. [Google Scholar] [CrossRef]
- Zheng, F.; Kotobuki, M.; Song, S.; Lai, M.O.; Lu, L. Review on solid electrolytes for all-solid-state lithium-ion batteries. J. Power Sources 2018, 389, 198–213. [Google Scholar] [CrossRef]
- Takada, K. Progress in solid electrolytes toward realizing solid-state lithium batteries. J. Power Sources 2018, 394, 74–85. [Google Scholar] [CrossRef]
- Wu, Z.; Xie, Z.; Yoshida, A.; Wang, Z.; Hao, X.; Abudula, A.; Guan, G. Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review. Renew. Sustain. Energy Rev. 2019, 109, 367–385. [Google Scholar] [CrossRef]
- Samson, A.J.; Hofstetter, K.; Bag, S.; Thangadurai, V. A bird’s-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy Environ. Sci. 2019, 12, 2957–2975. [Google Scholar] [CrossRef]
- Ramakumar, S.; Deviannapoorani, C.; Dhivya, L.; Shankar, L.S.; Murugan, R. Lithium garnets: Synthesis, structure, Li+ conductivity, Li+ dynamics and applications. Prog. Mater. Sci. 2017, 88, 325–411. [Google Scholar] [CrossRef]
- Stenina, I.; Novikova, S.; Voropaeva, D.; Yaroslavtsev, A. Solid Electrolytes Based on NASICON-Structured Phosphates for Lithium Metal Batteries. Batteries 2023, 9, 407. [Google Scholar] [CrossRef]
- Qi, M.; Xie, L.; Han, Q.; Zhu, L.; Chen, L.; Cao, X. An overview of the key challenges and strategies for lithium metal anodes. J. Energy Storage 2022, 47, 103641. [Google Scholar] [CrossRef]
- Thangadurai, V.; Adams, S.; Weppner, W. Crystal Structure Revision and Identification of Li+-Ion Migration Pathways in the Garnet-like Li5La3M2O12 (M = Nb, Ta) Oxides. Chem. Mater. 2004, 16, 2998–3006. [Google Scholar] [CrossRef]
- Hayashi, K.; Noguchi, H.; Fujiwara, S. New phases in La2O3 Li2O Ta2O5 system. Mater. Res. Bull. 1986, 21, 289–293. [Google Scholar] [CrossRef]
- Hayashi, K.; Noguchi, H.; Sato, I. New phase in the La2O3-Li2O-Nb2O5 system. Mater. Res. Bull. 1986, 21, 523–527. [Google Scholar] [CrossRef]
- Mazza, D. Remarks on a ternary phase in the La2O3 Me2O5 Li2O system (Me = Nb, Ta). Mater. Lett. 1988, 7, 205–207. [Google Scholar] [CrossRef]
- Thangadurai, V.; Kaack, H.; Weppner, W.J.F. Novel Fast Lithium Ion Conduction in Garnet-Type Li5La3M2O12(M = Nb, Ta). J. Am. Ceram. Soc. 2003, 86, 437–440. [Google Scholar] [CrossRef]
- Murugan, R.; Thangadurai, V.; Weppner, W. Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12. Angew. Chem. Int. Ed. 2007, 46, 7778–7781. [Google Scholar] [CrossRef]
- Huang, W.; Zhao, N.; Bi, Z.; Shi, C.; Guo, X.; Fan, L.-Z.; Nan, C.-W. Can we find solution to eliminate Li penetration through solid garnet electrolytes? Mater. Today Nano 2020, 10, 100075. [Google Scholar] [CrossRef]
- Awaka, J.; Takashima, A.; Kataoka, K.; Kijima, N.; Idemoto, Y.; Akimoto, J. Crystal Structure of Fast Lithium-ion-conducting Cubic Li7La3Zr2O12. Chem. Lett. 2011, 40, 60–62. [Google Scholar] [CrossRef]
- Geiger, C.A.; Alekseev, E.; Lazic, B.; Fisch, M.; Armbruster, T.; Langner, R.; Fechtelkord, M.; Kim, N.; Pettke, T.; Weppner, W. Crystal Chemistry and Stability of “Li7La3Zr2O12” Garnet: A Fast Lithium-Ion Conductor. Inorg. Chem. 2011, 50, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Awaka, J.; Kijima, N.; Hayakawa, H.; Akimoto, J. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. J. Solid State Chem. 2009, 182, 2046–2052. [Google Scholar] [CrossRef]
- Il’ina, E.A.; Lyalin, E.D.; Kabanov, A.A. Structure and lithium-ion conductivity investigation of the Li7−xLa3Zr2−xTaxO12 solid electrolytes. J. Phys. Conf. Ser. 2021, 1967, 012011. [Google Scholar] [CrossRef]
- Ilina, E.; Lyalin, E.; Vlasov, M.; Kabanov, A.; Okhotnikov, K.; Sherstobitova, E.; Zobel, M. Structural Features and the Li-Ion Diffusion Mechanism in Tantalum-Doped Li7La3Zr2O12 Solid Electrolytes. ACS Appl. Energy Mater. 2022, 5, 2959–2967. [Google Scholar] [CrossRef]
- Thompson, T.; Sharafi, A.; Johannes, M.D.; Huq, A.; Allen, J.L.; Wolfenstine, J.; Sakamoto, J. A Tale of Two Sites: On Defining the Carrier Concentration in Garnet-Based Ionic Conductors for Advanced Li Batteries. Adv. Energy Mater. 2015, 5, 1500096. [Google Scholar] [CrossRef]
- Rangasamy, E.; Wolfenstine, J.; Sakamoto, J. The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ion. 2012, 206, 28–32. [Google Scholar] [CrossRef]
- Matsuda, Y.; Sakamoto, K.; Matsui, M.; Yamamoto, O.; Takeda, Y.; Imanishi, N. Phase formation of a garnet-type lithium-ion conductor Li7−3Al La3Zr2O12. Solid State Ion. 2015, 277, 23–29. [Google Scholar] [CrossRef]
- Hubaud, A.A.; Schroeder, D.J.; Ingram, B.J.; Okasinski, J.S.; Vaughey, J.T. Thermal expansion in the garnet-type solid electrolyte (Li7−Al/3)La3Zr2O12 as a function of Al content. J. Alloys Compd. 2015, 644, 804–807. [Google Scholar] [CrossRef]
- Wachter-Welzl, A.; Kirowitz, J.; Wagner, R.; Smetaczek, S.; Brunauer, G.; Bonta, M.; Rettenwander, D.; Taibl, S.; Limbeck, A.; Amthauer, G.; et al. The origin of conductivity variations in Al-stabilized Li7La3Zr2O12 ceramics. Solid State Ion. 2018, 319, 203–208. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, H.; Ruan, H.; Hu, R.; Su, Y.; Zhang, L. High Li-ion conductivity of Al-doped Li7La3Zr2O12 synthesized by solid-state reaction. Ceram. Int. 2016, 42, 12156–12160. [Google Scholar] [CrossRef]
- Ashuri, M.; Golmohammad, M.; Mehranjani, A.S.; Sani, M.F. Al-doped Li7La3Zr2O12 garnet-type solid electrolytes for solid-state Li-Ion batteries. J. Mater. Sci. Mater. Electron. 2021, 32, 6369–6378. [Google Scholar] [CrossRef]
- Castillo, A.; Charpentier, T.; Rapaud, O.; Pradeilles, N.; Yagoubi, S.; Foy, E.; Moskura, M.; Khodja, H. Bulk Li mobility enhancement in Spark Plasma Sintered Li(7−3x)AlxLa3Zr2O12 garnet. Ceram. Int. 2018, 44, 18844–18850. [Google Scholar] [CrossRef]
- Zhao, P.; Cao, G.; Jin, Z.; Ming, H.; Wen, Y.; Xu, Y.; Zhu, X.; Xiang, Y.; Zhang, S. Self-consolidation mechanism and its application in the preparation of Al-doped cubic Li7La3Zr2O12. Mater. Des. 2018, 139, 65–71. [Google Scholar] [CrossRef]
- Zhuang, L.; Huang, X.; Lu, Y.; Tang, J.; Zhou, Y.; Ao, X.; Yang, Y.; Tian, B. Phase transformation and grain-boundary segregation in Al-Doped Li7La3Zr2O12 ceramics. Ceram. Int. 2021, 47, 22768–22775. [Google Scholar] [CrossRef]
- Bonilla, M.R.; Daza, F.A.G.; Carrasco, J.; Akhmatskaya, E. Exploring Li-ion conductivity in cubic, tetragonal and mixed-phase Al-substituted Li7La3Zr2O12 using atomistic simulations and effective medium theory. Acta Mater. 2019, 175, 426–435. [Google Scholar] [CrossRef]
- Düvel, A.; Kuhn, A.; Robben, L.; Wilkening, M.; Heitjans, P. Mechanosynthesis of Solid Electrolytes: Preparation, Characterization, and Li Ion Transport Properties of Garnet-Type Al-Doped Li7La3Zr2O12 Crystallizing with Cubic Symmetry. J. Phys. Chem. C 2012, 116, 15192–15202. [Google Scholar] [CrossRef]
- Matsuda, Y.; Sakaida, A.; Sugimoto, K.; Mori, D.; Takeda, Y.; Yamamoto, O.; Imanishi, N. Sintering behavior and electrochemical properties of garnet-like lithium conductor Li6.25M0.25La3Zr2O12 (M: Al3+ and Ga3+). Solid State Ion. 2017, 311, 69–74. [Google Scholar] [CrossRef]
- Li, C.; Liu, Y.; He, J.; Brinkman, K.S. Ga-substituted Li7La3Zr2O12: An investigation based on grain coarsening in garnet-type lithium ion conductors. J. Alloys Compd. 2017, 695, 3744–3752. [Google Scholar] [CrossRef]
- Qin, S.; Zhu, X.; Jiang, Y.; Ling, M.; Hu, Z.; Zhu, J. Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity. Appl. Phys. Lett. 2018, 112, 113901. [Google Scholar] [CrossRef]
- Jalem, R.; Rushton, M.; Manalastas, W.; Nakayama, M.; Kasuga, T.; Kilner, J.A.; Grimes, R.W. Effects of Gallium Doping in Garnet-Type Li7La3Zr2O12 Solid Electrolytes. Chem. Mater. 2015, 27, 2821–2831. [Google Scholar] [CrossRef]
- Wolfenstine, J.; Ratchford, J.; Rangasamy, E.; Sakamoto, J.; Allen, J.L. Synthesis and high Li-ion conductivity of Ga-stabilized cubic Li7La3Zr2O12. Mater. Chem. Phys. 2012, 134, 571–575. [Google Scholar] [CrossRef]
- Sharifi, O.; Golmohammad, M.; Soozandeh, M.; Mehranjani, A.S. Improved Ga-doped Li7La3Zr2O12 garnet-type solid electrolytes for solid-state Li-ion batteries. J. Solid State Electrochem. 2023, 27, 2433–2444. [Google Scholar] [CrossRef]
- Han, G.; Kinzer, B.; Garcia-Mendez, R.; Choe, H.; Wolfenstine, J.; Sakamoto, J. Correlating the effect of dopant type (Al, Ga, Ta) on the mechanical and electrical properties of hot-pressed Li-garnet electrolyte. J. Eur. Ceram. Soc. 2020, 40, 1999–2006. [Google Scholar] [CrossRef]
- Brugge, R.; Kilner, J.; Aguadero, A. Germanium as a donor dopant in garnet electrolytes. Solid State Ion. 2019, 337, 154–160. [Google Scholar] [CrossRef]
- Amardeep; Kobi, S.; Mukhopadhyay, A. Mg-doping towards enhancing the composition-phase-structural stability of Li-La-zirconate based cubic garnet upon exposure to air. Scr. Mater. 2019, 162, 214–218. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhu, X.; Qin, S.; Ling, M.; Zhu, J. Investigation of Mg2+, Sc3+ and Zn2+ doping effects on densification and ionic conductivity of low-temperature sintered Li7La3Zr2O12 garnets. Solid State Ion. 2017, 300, 73–77. [Google Scholar] [CrossRef]
- Xiang, X.; Liu, Y.; Chen, F.; Yang, W.; Yang, J.; Ma, X.; Chen, D.; Su, K.; Shen, Q.; Zhang, L. Crystal structure and lithium ionic transport behavior of Li site doped Li7La3Zr2O12. J. Eur. Ceram. Soc. 2020, 40, 3065–3071. [Google Scholar] [CrossRef]
- Rettenwander, D.; Geiger, C.A.; Amthauer, G. Synthesis and Crystal Chemistry of the Fast Li-Ion Conductor Li7La3Zr2O12 Doped with Fe. Inorg. Chem. 2013, 52, 8005–8009. [Google Scholar] [CrossRef]
- Rettenwander, D.; Geiger, C.; Tribus, M.; Tropper, P.; Wagner, R.; Tippelt, G.; Lottermoser, W.; Amthauer, G. The solubility and site preference of Fe3+ in Li7−3Fe La3Zr2O12 garnets. J. Solid State Chem. 2015, 230, 266–271. [Google Scholar] [CrossRef]
- Hanc, E.; Zając, W.; Molenda, J. Synthesis procedure and effect of Nd, Ca and Nb doping on structure and electrical conductivity of Li7La3Zr2O12 garnets. Solid State Ion. 2014, 262, 617–621. [Google Scholar] [CrossRef]
- Deviannapoorani, C.; Shankar, L.S.; Ramakumar, S.; Murugan, R. Investigation on lithium ion conductivity and structural stability of yttrium-substituted Li7La3Zr2O12. Ionics 2016, 22, 1281–1289. [Google Scholar] [CrossRef]
- Park, K.; Hakeem, D.; Kim, D.; Jung, G.; Kim, S. Synthesis and photoluminescence properties of new garnet-type red-emitting Li7La3-Zr2O12:xEu3+ phosphors. Scr. Mater. 2020, 179, 92–98. [Google Scholar] [CrossRef]
- Abdulai, M.; Dermenci, K.B.; Turan, S. Lanthanide doping of Li7La3−xMxZr2O12 (M = Sm, Dy, Er, Yb; x = 0.1–1.0) and do-pant size effect on the electrochemical properties. Ceram. Int. 2021, 47, 17034–17040. [Google Scholar] [CrossRef]
- Rangasamy, E.; Wolfenstine, J.; Allen, J.; Sakamoto, J. The effect of 24c-site (A) cation substitution on the tetragonal–cubic phase transition in Li7−La3−A Zr2O12 garnet-based ceramic electrolyte. J. Power Sources 2013, 230, 261–266. [Google Scholar] [CrossRef]
- Song, S.; Yan, B.; Zheng, F.; Duong, H.M.; Lu, L. Crystal structure, migration mechanism and electrochemical performance of Cr-stabilized garnet. Solid State Ion. 2014, 268, 135–139. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Yin, R.; Xu, Y.; Cui, Y.; Zhao, L.; Yu, X. High lithium ionic conductivity of garnet-type oxide Li7+xLa3Zr2−xSmxO12 (x = 0–0.1) ceramics. Mater. Lett. 2018, 231, 43–46. [Google Scholar] [CrossRef]
- Song, S.; Chen, B.; Ruan, Y.; Sun, J.; Yu, L.; Wang, Y.; Thokchom, J. Gd-doped Li7La3Zr2O12 garnet-type solid electrolytes for all-solid-state Li-Ion batteries. Electrochim. Acta 2018, 270, 501–508. [Google Scholar] [CrossRef]
- Murugan, R.; Ramakumar, S.; Janani, N. High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet. Electrochem. Commun. 2011, 13, 1373–1375. [Google Scholar] [CrossRef]
- Kotobuki, M.; Koishi, M. High conductive Al-free Y-doped Li7La3Zr2O12 prepared by spark plasma sintering. J. Alloys Compd. 2020, 826, 154213. [Google Scholar] [CrossRef]
- Hu, S.; Li, Y.-F.; Yang, R.; Yang, Z.; Wang, L. Structure and ionic conductivity of Li7La3Zr2−xGexO12 garnet-like solid electrolyte for all solid state lithium ion batteries. Ceram. Int. 2018, 44, 6614–6618. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, X.; Yao, Z.; Li, J.; Zhu, K.; Wang, J.; Yan, K. Processing and Enhanced Electrochemical Properties of Li7La3Zr2−xGexO12 Solid Electrolyte by Chemical Co-precipitation. J. Electron. Mater. 2020, 49, 4910–4915. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, J.; Hu, D.; Chen, F.; Shen, Q.; Zhang, L.; Dong, S. Synergistic regulation of garnet-type Ta-doped Li7La3Zr2O12 solid electrolyte by Li+ concentration and Li+ transport channel size. Electrochim. Acta 2019, 296, 823–829. [Google Scholar] [CrossRef]
- Ohta, S.; Kobayashi, T.; Asaoka, T. High lithium ionic conductivity in the garnet-type oxide Li7−X La3(Zr2−X, NbX)O12 (X = 0–2). J. Power Sources 2011, 196, 3342–3345. [Google Scholar] [CrossRef]
- Il’ina, E.A.; Lyalin, E.D.; Antonov, B.D.; Pankratov, A.A. Lithium-conducting Solid Electrolytes Synthesized by the Sol-Gel Method in the System Li7La3Zr2O12-Li5La3Nb2O12. Russ. J. Appl. Chem. 2019, 92, 1657–1663. [Google Scholar] [CrossRef]
- Zhao, P.; Xiang, Y.; Wen, Y.; Li, M.; Zhu, X.; Zhao, S.; Jin, Z.; Ming, H.; Cao, G. Garnet-like Li7−xLa3Zr2−xNbxO12 (x = 0−0.7) solid state electrolytes enhanced by self-consolidation strategy. J. Eur. Ceram. Soc. 2018, 38, 5454–5462. [Google Scholar] [CrossRef]
- Reis, S.; Grosso, R.; Kosctiuk, J.; Franchetti, M.; Oliveira, F.; Souza, A.; Gonin, C.; Freitas, H.; Monteiro, R.; Parreira, L.; et al. Effect of Zr4+ on Lithium-Ion Conductivity of Garnet-Type Li5+xLa3(Nb2−xZrx)O12 Solid Electrolytes. Batteries 2023, 9, 137. [Google Scholar] [CrossRef]
- Inada, R.; Kusakabe, K.; Tanaka, T.; Kudo, S.; Sakurai, Y. Synthesis and properties of Al-free Li7−xLa3Zr2−xTaxO12 garnet related oxides. Solid State Ion. 2014, 262, 568–572. [Google Scholar] [CrossRef]
- Zhang, T.; Christopher, T.D.; Huang, S.; Liu, Y.; Gao, W.; Söhnel, T.; Cao, P. Pressureless sintering of Al-free Ta-doped lithium garnets Li7−xLa3Zr2−xTaxO12 and the degradation mechanism in humid air. Ceram. Int. 2019, 45, 20954–20960. [Google Scholar] [CrossRef]
- Wang, Z.; Mo, J.; Wu, Y.; Ye, H.; Wu, X. Synthesis of lithium garnet oxides of the compositions series Li7−xLa3Zr2−xTaxO12. J. Wuhan Univ. Technol. Sci. Ed. 2017, 32, 1261–1264. [Google Scholar] [CrossRef]
- Gong, Y.; Liu, Z.-G.; Jin, Y.-J.; Ouyang, J.-H.; Chen, L.; Wang, Y.-J. Effect of sintering process on the microstructure and ionic conductivity of Li7–xLa3Zr2–xTaO12 ceramics. Ceram. Int. 2019, 45, 18439–18444. [Google Scholar] [CrossRef]
- Liu, K.; Ma, J.-T.; Wang, C.-A. Excess lithium salt functions more than compensating for lithium loss when synthesizing Li6.5La3Ta0.5Zr1.5O12 in alumina crucible. J. Power Sources 2014, 260, 109–114. [Google Scholar] [CrossRef]
- Schwanz, D.K.; Villa, A.; Balasubramanian, M.; Helfrecht, B.; Marinero, E.E. Bi aliovalent substitution in Li7La3Zr2O12 garnets: Structural and ionic conductivity effects. AIP Adv. 2020, 10, 035204. [Google Scholar] [CrossRef]
- Ramakumar, S.; Satyanarayana, L.; Manorama, S.V.; Murugan, R. Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors. Phys. Chem. Chem. Phys. 2013, 15, 11327–11338. [Google Scholar] [CrossRef]
- Liang, X.; Li, S.; Yang, G.; Wu, X.; Huang, D.; Ning, Y.; Luo, J.; Fang, Z. High lithium-ion conductivity in all-solid-state lithium batteries by Sb doping LLZO. Appl. Phys. A 2022, 128, 4. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, X.; Lu, H.; Zhang, L.; Ma, L.; Fang, Q. Mechanism of lithium ion diffusion in the hexad substituted Li7La3Zr2O12 solid electrolytes. Solid State Ion. 2016, 291, 1–7. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Cao, Y.; Du, F.; Chen, C.; Cui, Z.; Guo, X. W-Doped Li7La3Zr2O12 Ceramic Electrolytes for Solid State Li-ion Batteries. Electrochim. Acta 2015, 180, 37–42. [Google Scholar] [CrossRef]
- Rettenwander, D.; Welzl, A.; Cheng, L.; Fleig, J.; Musso, M.; Suard, E.; Doeff, M.M.; Redhammer, G.J.; Amthauer, G. Synthesis, Crystal Chemistry, and Electrochemical Properties of Li7–2xLa3Zr2–xMoxO12 (x = 0.1–0.4): Stabilization of the Cubic Garnet Polymorph via Substitution of Zr4+ by Mo6+. Inorg. Chem. 2015, 54, 10440–10449. [Google Scholar] [CrossRef]
- Deviannapoorani, C.; Dhivya, L.; Ramakumar, S.; Murugan, R. Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets. J. Power Sources 2013, 240, 18–25. [Google Scholar] [CrossRef]
- Xu, Z.; Hu, X.; Fu, B.; Khan, K.; Wu, J.; Li, T.; Zhou, H.; Fang, Z.; Wu, M. Co-doping strategy enhanced the ionic conductivity and excellent lithium stability of garnet-type Li7La3Zr2O12 electrolyte in all solid-state lithium batteries. J. Mater. 2023, 9, 651–660. [Google Scholar] [CrossRef]
- Zhang, Q.; Luo, Y.; Chen, S.; Jiao, J.; Shen, M.; Chen, H.; Guo, L. Effect of Nb–Sm co-doping on the ionic conductivity of Li7La3Zr2O12 electrolytes. J. Mater. Sci. Mater. Electron. 2020, 31, 2650–2656. [Google Scholar] [CrossRef]
- Gai, J.; Zhao, E.; Ma, F.; Sun, D.; Ma, X.; Jin, Y.; Wu, Q.; Cui, Y. Improving the Li-ion conductivity and air stability of cubic Li7La3Zr2O12 by the co-doping of Nb, Y on the Zr site. J. Eur. Ceram. Soc. 2018, 38, 1673–1678. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Y.; Zhang, Q.; Zheng, Y.; Chen, H.; Guo, L. Effect of dual doping on the structure and performance of garnet-type Li7La3Zr2O12 ceramic electrolytes for solid-state lithium-ion batteries. Ceram. Int. 2019, 45, 17874–17883. [Google Scholar] [CrossRef]
- Tong, X.; Thangadurai, V.; Wachsman, E.D. Highly Conductive Li Garnets by a Multielement Doping Strategy. Inorg. Chem. 2015, 54, 3600–3607. [Google Scholar] [CrossRef]
- Fu, Z.; Ferguson, J. Processing and characterization of an Li7La3Zr0.5Nb0.5Ta0.5Hf0.5O12 high-entropy Li–garnet electrolyte. J. Am. Ceram. Soc. 2022, 105, 6175–6183. [Google Scholar] [CrossRef]
- Kuo, C.-H.; Wang, A.-Y.; Liu, H.-Y.; Huang, S.-C.; Chen, X.-R.; Chi, C.-C.; Chang, Y.-C.; Lu, M.-Y.; Chen, H.-Y. A novel garnet-type high-entropy oxide as air-stable solid electrolyte for Li-ion batteries. APL Mater. 2022, 10, 121104. [Google Scholar] [CrossRef]
- Shin, D.O.; Oh, K.; Kim, K.M.; Park, K.-Y.; Lee, B.; Lee, Y.-G.; Kang, K. Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction. Sci. Rep. 2015, 5, 18053. [Google Scholar] [CrossRef]
- Meesala, Y.; Liao, Y.-K.; Jena, A.; Yang, N.-H.; Pang, W.K.; Hu, S.-F.; Chang, H.; Liu, C.-E.; Liao, S.-C.; Chen, J.-M.; et al. An efficient multi-doping strategy to enhance Li-ion conductivity in the garnet-type solid electrolyte Li7La3Zr2O12. J. Mater. Chem. A 2019, 7, 8589–8601. [Google Scholar] [CrossRef]
- Song, S.; Wu, Y.; Dong, Z.; Deng, F.; Tang, W.; Yao, J.; Wen, Z.; Lu, L.; Hu, N.; Molenda, J. Multi-substituted garnet-type electrolytes for solid-state lithium batteries. Ceram. Int. 2020, 46, 5489–5494. [Google Scholar] [CrossRef]
- Sodhiya, A.; Kumar, R.; Singh, A.K.; Soni, S. Effect of Ba2+ Doping on the Structure and Transport Properties of Li6.28Al0.24La3Zr2O12 Solid Electrolyte. Appl. Phys. A 2021, 127, 584. [Google Scholar] [CrossRef]
- Li, Y.; Cao, Z.; Jiang, Z.; Cao, Y.; Liu, J.; Wang, L.; Li, G. Synergistic effect of Ga and Yb co-doping on the structure and ionic conductivity of Li7La3Zr2O12 ceramics. Ionics 2022, 28, 5321–5331. [Google Scholar] [CrossRef]
- Shen, L.; Wang, L.; Wang, Z.; Jin, C.; Peng, L.; Pan, X.; Sun, J.; Yang, R. Preparation and characterization of Ga and Sr co-doped Li7La3Zr2O12 garnet-type solid electrolyte. Solid State Ion. 2019, 339, 114992. [Google Scholar] [CrossRef]
- Luo, Y.; Li, X.; Zhang, Y.; Ge, L.; Chen, H.; Guo, L. Electrochemical properties and structural stability of Ga- and Y- co-doping in Li7La3Zr2O12 ceramic electrolytes for lithium-ion batteries. Electrochim. Acta 2019, 294, 217–225. [Google Scholar] [CrossRef]
- Allen, J.L.; Wolfenstine, J.; Rangasamy, E.; Sakamoto, J. Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. J. Power Sources 2012, 206, 315–319. [Google Scholar] [CrossRef]
- Il’ina, E.A.; Lyalin, E.D.; Antonov, B.D.; Pankratov, A.A. Li7La3Zr2O12-Based Solid Electrolytes Codoped with Ta5+ and Al3+ Ions for Lithium Power Sources. Russ. J. Appl. Chem. 2022, 95, 689–697. [Google Scholar] [CrossRef]
- Xue, M.; Lu, W.; Xue, S.; Zhang, C. Enhanced Al/Ta co-doped Li7La3Zr2O12 ceramic electrolytes with the reduced Ta doping level for solid-state lithium batteries. J. Mater. Sci. 2021, 56, 19614–19622. [Google Scholar] [CrossRef]
- Matsuda, Y.; Itami, Y.; Hayamizu, K.; Ishigaki, T.; Matsui, M.; Takeda, Y.; Yamamoto, O.; Imanishi, N. Phase relation, structure and ionic conductivity of Li7−x−3yAlyLa3Zr2−xTaxO12. RSC Adv. 2016, 6, 78210–78218. [Google Scholar] [CrossRef]
- Yan, S.; Cui, Q.; Sun, C.; Hao, J.; Chu, X.; Xie, H.; Lin, S.; Zhang, X. Enhancing the ionic conductivity and stabilizing cubic structure of garnet-type Li6.25−xAl0.25La3Zr2−xTaxO12 by Al/Ta co-doping. J. Solid State Chem. 2021, 295, 121949. [Google Scholar] [CrossRef]
- Il’ina, E.A.; Lyalin, E.D.; Antonov, B.D.; Pankratov, A.A.; Vovkotrub, E.G. Sol-gel synthesis of Al- and Nb-co-doped Li7La3Zr2O12 solid electrolytes. Ionics 2020, 26, 3239–3247. [Google Scholar] [CrossRef]
- Li, Y.; Yang, T.; Wu, W.; Cao, Z.; He, W.; Gao, Y.; Liu, J.; Li, G. Effect of Al-Mo codoping on the structure and ionic conductivity of sol-gel derived Li7La3Zr2O12 ceramics. Ionics 2018, 24, 3305–3315. [Google Scholar] [CrossRef]
- Wu, J.; Lu, Y.; Wu, H.; Luo, Q.; Bai, Z.; Li, J. Preparation and electrochemical properties of LLZO co-doping with Al and Ti for all solid-state battery. J. Solid State Electrochem. 2023, 27, 2499–2507. [Google Scholar] [CrossRef]
- Yang, T.; Li, Y.; Wu, W.; Cao, Z.; He, W.; Gao, Y.; Liu, J.; Li, G. The synergistic effect of dual substitution of Al and Sb on structure and ionic conductivity of Li7La3Zr2O12 ceramic. Ceram. Int. 2018, 44, 1538–1544. [Google Scholar] [CrossRef]
- Alizadeh, S.M.; Moghim, I.; Golmohammad, M. Synthesis and characterization of highly conductive Ga/Y co-doped LLZO by facile combustion sol-gel method. Solid State Ion. 2023, 397, 116260. [Google Scholar] [CrossRef]
- Buannic, L.; Orayech, B.; Del Amo, J.-M.L.; Carrasco, J.; Katcho, N.A.; Aguesse, F.; Manalastas, W.; Zhang, W.; Kilner, J.; Llordés, A. Dual Substitution Strategy to Enhance Li+ Ionic Conductivity in Li7La3Zr2O12 Solid Electrolyte. Chem. Mater. 2017, 29, 1769–1778. [Google Scholar] [CrossRef]
- Wang, C.; Lin, P.-P.; Gong, Y.; Liu, Z.-G.; Lin, T.-S.; He, P. Co-doping effects of Ba2+ and Ta5+ on the microstructure and ionic conductivity of garnet-type solid state electrolytes. J. Alloys Compd. 2021, 854, 157143. [Google Scholar] [CrossRef]
- Dhivya, L.; Murugan, R. Effect of Simultaneous Substitution of Y and Ta on the Stabilization of Cubic Phase, Microstructure, and Li+ Conductivity of Li7La3Zr2O12 Lithium Garnet. ACS Appl. Mater. Interfaces 2014, 6, 17606–17615. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, D.; Deng, J.; Chen, F.; Shen, Q.; Li, A.; Zhang, L.; Dong, S. Li+ transport channel size governing Li+ migration in garnet-based all-solid-state lithium batteries. J. Alloys Compd. 2018, 767, 899–904. [Google Scholar] [CrossRef]
- Chen, X.; Cao, T.; Xue, M.; Lv, H.; Li, B.; Zhang, C. Improved room temperature ionic conductivity of Ta and Ca doped Li7La3Zr2O12 via a modified solution method. Solid State Ion. 2018, 314, 92–97. [Google Scholar] [CrossRef]
- Cao, Z.; Li, Y.; Su, J.; Zhao, J.; Li, Y.; Yan, S.; Liu, Q.; He, T.; Zhang, H.; Li, G.-R. Y and Sb co-doped Li7La3Zr2O12 electrolyte for all solid-state lithium batteries. Ionics 2021, 27, 1861–1870. [Google Scholar] [CrossRef]
- Cao, Z.; Cao, X.; Liu, X.; He, W.; Gao, Y.; Liu, J.; Zeng, J. Effect of Sb-Ba codoping on the ionic conductivity of Li7La3Zr2O12 ceramic. Ceram. Int. 2015, 41, 6232–6236. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, Q.; Ning, T.; Liu, J.; Liu, T.; Luo, Z.; He, Y.; Qin, C.; Lu, A. Effects of a dual doping strategy on the structure and ionic conductivity of garnet-type electrolyte. Solid State Ion. 2020, 356, 115427. [Google Scholar] [CrossRef]
- Liu, X.; Gao, M.; Liu, Y.; Xiong, L.; Chen, J. Improving the room temperature ionic conductivity of Al-Li7La3Zr2O12 ceramics by Ba and Y or Ba and W co-doping. Ceram. Int. 2019, 45, 13488–13495. [Google Scholar] [CrossRef]
- Liu, X.-Z.; Ding, L.; Liu, Y.-Z.; Xiong, L.-P.; Chen, J.; Luo, X.-L. Room-temperature ionic conductivity of Ba, Y, Al co-doped Li7La3Zr2O12 solid electrolyte after sintering. Rare Met. 2021, 40, 2301–2306. [Google Scholar] [CrossRef]
- Limpert, M.A.; Atwater, T.B.; Hamann, T.; Godbey, G.L.; Hitz, G.T.; McOwen, D.W.; Wachsman, E.D. Achieving Desired Lithium Concentration in Garnet Solid Electrolytes; Processing Impacts on Physical and Electrochemical Properties. Chem. Mater. 2022, 34, 9468–9478. [Google Scholar] [CrossRef]
- Wang, C.; Fu, K.; Kammampata, S.P.; McOwen, D.W.; Samson, A.J.; Zhang, L.; Hitz, G.T.; Nolan, A.M.; Wachsman, E.D.; Mo, Y.; et al. Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries. Chem. Rev. 2020, 120, 4257–4300. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, K.; He, H.; Hanc, E.; Kotobuki, M.; Lu, L. Processing and Properties of Garnet-Type Li7La3Zr2O12 Ceramic Electrolytes. Small 2023, 19, 2205550. [Google Scholar] [CrossRef]
Solid Electrolyte | Room-Temperature Total Conductivity, S/cm | Synthesis Method | Reference |
---|---|---|---|
Li and La sublattice | |||
Li6.38Al0.24La2.9Ba0.1Zr2O12 | 4.6 × 10−5 | solid-state reaction | [99] |
Li6.4Ga0.2La2.95Yb0.05Zr2O12 | 8.96 × 10−4 | solid-state reaction | [100] |
Li6.5Ga0.2La2.9Sr0.1Zr2O12 | 5.5 × 10−4 | solid-state reaction | [101] |
Li6.4Ga0.2La2.75Y0.25Zr2O12 | 1.61 × 10−3 | solid-state reaction | [102] |
Li and Zr sublattice | |||
Li6.15La3Zr1.75Ta0.25Ga0.2O12 | 4.1 × 10−4 | co-precipitated method | [103] |
Li6.15La3Zr1.75Ta0.25Al0.2O12 | 3.7 × 10−4 | co-precipitated method | [103] |
Li6.3Al0.05La3Zr1.6Ta0.6O12 | 2.0 × 10−4 | sol–gel method | [104] |
Li6.25La3Zr1.55Al0.1Ta0.45O12 | 6.7 × 10−4 | sol–gel method | [105] |
Li6.4625Al0.1375La3Zr1.875Ta0.125O12 | 1.03 × 10−3 | solid-state reaction | [106] |
Li5.85Al0.25La3Zr1.6Ta0.4O12 | 4.59 × 10−4 | solid-state reaction | [107] |
Li6.4Ga0.1La3Zr1.55Ba0.05Ta0.4O12 | 1.02 × 10−3 | solid-state reaction | [98] |
Li6.6Al0.05La3Zr1.75Nb0.25O12 | 6.3 × 10−4 | sol–gel method | [108] |
Li6.375Al0.075La3Zr1.8Mo0.2O12 | 4.41 × 10−4 | sol–gel method | [109] |
Li6.25Al0.25La3Zr1.75Ti0.25O12 | 1.51 × 10−4 | sol–gel method | [110] |
Li6.775Al0.05La3Zr1.925Sb0.075O12 | 4.1 × 10−4 | solid-state reaction | [111] |
Li6.4Ga0.2La3Zr21.7Y0.3O12 | 1.04 × 10−3 | sol–gel method | [112] |
Li6.65Ga0.15La3Zr1.90Sc0.10O12 | 1.8 × 10−3 | sol–gel method | [113] |
La and Zr sublattice | |||
Li6.8La2.95Ba0.05Zr1.75Ta0.25O12 | 6.5 × 10−4 | solid-state reaction | [97] |
Li6.46La2.94Ba0.06Zr1.4Ta0.6O12 | 6.04 × 10−4 | solid-state reaction | [114] |
Li6.6La2.75Y0.25Zr1.6Ta0.4O12 | 4.36 × 10−4 | solid-state reaction | [115] |
Li7La2.75Ca0.25Zr1.75Ta0.25O12 | 7.65 × 10−4 | solid-state reaction | [116] |
Li6.4La2.95Ca0.05Ta0.6Zr1.4O12 | 2.84 × 10−4 | solution method | [117] |
Li6.925La2.95Y0.05Zr1.925Sb0.075O12 | 3.2 × 10−4 | solid-state reaction | [118] |
Li6.945La2.98Ba0.02Zr1.925Sb0.075O12 | 1.53 × 10−4 | solid-state reaction | [119] |
Li6.425La2.875Sr0.125Zr1.65Te0.35O12 | 4.27 × 10−4 | solid-state reaction | [120] |
Li, Zr and La sublattice | |||
Li6.65Ga0.05La2.95Ba0.05Zr1.75Ta0.25O12 | 7.2 × 10−4 | solid-state reaction | [97] |
Li6.52Al0.2La2.98Ba0.02Zr1.9Y0.1O12 | 2.02 × 10−4 | solid-state reaction | [121] |
Li5.72Al0.2La2.98Ba0.02Zr1.65W0.35O12 | 5.35 × 10−4 | solid-state reaction | [121] |
Li6.52Al0.2La2.98Ba0.02Zr1.9Y0.1O12 | 2.96 × 10−4 | solid-state reaction | [122] |
Li6.75±xLa2.75Ca0.25Zr1.75Nb0.5O12 | 1.68 × 10−4 | solid-state reaction | [123] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Il’ina, E. Recent Strategies for Lithium-Ion Conductivity Improvement in Li7La3Zr2O12 Solid Electrolytes. Int. J. Mol. Sci. 2023, 24, 12905. https://doi.org/10.3390/ijms241612905
Il’ina E. Recent Strategies for Lithium-Ion Conductivity Improvement in Li7La3Zr2O12 Solid Electrolytes. International Journal of Molecular Sciences. 2023; 24(16):12905. https://doi.org/10.3390/ijms241612905
Chicago/Turabian StyleIl’ina, Evgeniya. 2023. "Recent Strategies for Lithium-Ion Conductivity Improvement in Li7La3Zr2O12 Solid Electrolytes" International Journal of Molecular Sciences 24, no. 16: 12905. https://doi.org/10.3390/ijms241612905
APA StyleIl’ina, E. (2023). Recent Strategies for Lithium-Ion Conductivity Improvement in Li7La3Zr2O12 Solid Electrolytes. International Journal of Molecular Sciences, 24(16), 12905. https://doi.org/10.3390/ijms241612905