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Abstract: Disulfidptosis, a novel form of regulated cell death (RCD) associated with metabolism,
represents a promising intervention target in cancer therapy. While abnormal lncRNA expression
is associated with colon cancer development, the prognostic potential and biological characteristics
of disulfidptosis-related lncRNAs (DRLs) remain unclear. Consequently, the research aimed to
discover a novel indication of DRLs with significant prognostic implications, and to investigate
their possible molecular role in the advancement of colon cancer. Here, we acquired RNA-seq data,
pertinent clinical data, and genomic mutations of colon adenocarcinoma (COAD) from the TCGA
database, and then DRLs were determined through Pearson correlation analysis. A total of 434 COAD
patients were divided in to three subgroups through clustering analysis based on DRLs. By utilizing
univariate Cox regression, the least absolute shrinkage and selection operator (LASSO) algorithm,
and multivariate Cox regression analysis, we ultimately created a prognostic model consisting of
four DRLs (AC007728.3, AP003555.1, ATP2B1.AS1, and NSMCE1.DT), and an external database
was used to validate the prognostic features of the risk model. According to the Kaplan–Meier
curve analysis, patients in the low-risk group exhibited a considerably superior survival time in
comparison to those in the high-risk group. Enrichment analysis revealed a significant association
between metabolic processes and the genes that were differentially expressed in the high- and low-
risk groups. Additionally, significant differences in the tumor immune microenvironment landscape
were observed, specifically pertaining to immune cells, function, and checkpoints. High-risk patients
exhibited a low likelihood of immune evasion, as indicated by the Tumor Immune Dysfunction and
Exclusion (TIDE) analysis. Patients who exhibit both a high risk and high Tumor Mutational Burden
(TMB) experience the least amount of time for survival, whereas those belonging to the low-risk
and low-TMB category demonstrate the most favorable prognosis. In addition, the risk groups
determined by the 4-DRLs signature displayed distinct drug sensitivities. Finally, we confirmed the
levels of expression for four DRLs through rt-qPCR in both tissue samples from colon cancer patients
and cell lines. Taken together, the first 4-DRLs-based signature we proposed may serve for a hopeful
instrument for forecasting the prognosis, immune landscape, and therapeutic responses in colon
cancer patients, thereby facilitating optimal clinical decision-making.

Keywords: disulfidptosis; long noncoding RNA (lncRNA); colon cancer; molecular subtype; prog-
nostic signature; immune microenvironment; drug sensitivity

1. Introduction

Colon cancer is a significant global health concern, representing a substantial burden
on both patients and healthcare systems. According to the American Society of Clinical
Oncology (ASCO), approximately 104,270 people in the United States are expected to
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receive a colon cancer diagnosis in 2021 [1]. Early detection and accurate prognostication
play pivotal roles in improving patient outcomes. Traditional clinical factors, such as
tumor stage, nodal involvement, and distant metastasis, are extensively employed to
forecast prognosis and assist in making treatment choices [2]. However, advancements in
molecular biology and high-throughput technologies have unveiled additional layers of
complexity in CRC, highlighting the need for more refined predictive models. Hence, it is
crucial to develop dependable and efficient predictive biomarkers in order to recognize
unique subsets among individuals with colon cancer. These biomarkers would serve as
indispensable tools in guiding personalized and optimal treatment strategies. Given the
rapid advancements in bioinformatics, it becomes even more critical to leverage these
technologies for the identification and validation of such biomarkers.

Disulfidptosis, a newly characterized type of regulated cell death (RCD) associated
with metabolic alterations, plays a multifaceted function in the realm of anti-tumor im-
mune response [3]. Importantly, a recent investigation revealed that increased SLC7A11
expression can impede ferroptosis when there is a lack of glucose by aiding in the absorp-
tion of cystine. However, this process may trigger the occurrence of disulfidptosis [4,5].
Distinct from apoptosis and ferroptosis, disulfidptosis is not influenced by other cell death
inhibitors. Instead, it is specifically intensified by thiol oxidation reagents like diamide [5].
Consequently, the emergence of disulfidptosis may holds potential for novel avenues in tu-
mor treatment. Furthermore, studies have demonstrated that disulfidptosis also possesses
the capacity to impact immune infiltration [6]. However, there is a need for the identifica-
tion and establishment of more biomarkers related to disulfidptosis, and a comprehensive
understanding of its underlying mechanisms and therapeutic implications necessitates
further research and exploration.

As key participants in cancer biology, long non-coding RNAs (lncRNAs) provided
new understandings into tumorigenesis and possible therapeutic paths. Unlike protein-
coding genes, lncRNAs exert their impact through various mechanisms, such as chromatin
alteration, regulation of transcription, post-transcriptional modification, and protein in-
teraction [7]. Aberrant expression of specific lncRNAs has been linked to various aspects
of colorectal carcinogenesis, including cell proliferation, apoptosis resistance, epithelial-
mesenchymal transition (EMT), and immune evasion [8,9]. Moreover, dysregulation of
lncRNAs has also been linked to various clinical features, such as tumor stage, lymph
node involvement, occurrence of metastasis, and patient prognosis [10]. Expanding the
knowledge of lncRNA’s involvement in colon cancer has paved the way for their potential
clinical applications. The potential of these lncRNAs as biomarkers for early detection,
risk stratification indicators, and treatment response predictors in patients with colon
cancer is highly promising [11]. Additionally, targeting specific dysregulated lncRNAs may
offer a novel therapeutic strategy for combating colon cancer and overcoming drug resis-
tance [12]. However, there is still a lack of studies investigating the relationship between
disulfidptosis and lncRNA in colon cancer.

This research established a dependable disulfidptosis-related lncRNAs (DRLs) signa-
ture for forecasting prognosis and guide clinical treatment. Initially, a predictive pattern
was developed using 4 DRLs. Subsequently, we comprehensively investigated the predic-
tive ability, biological properties, immune infiltration, TMB, and drug responsiveness of
the 4-DRLs signature. The implications of our findings hold the potential to offer novel
perspectives and approaches for clinical immunotherapy strategizing and personalized
patient management.

2. Results
2.1. Characterization of Disulfidptosis-Related Lncrna (DRLs) Based Molecular Subgroups in COAD

Figure 1 illustrated the procedure of assessing the prognostic relevance of DRL ex-
pression in colon cancer. Initially, 434 COAD patients with comprehensive clinical data
from the TCGA database were randomly allocated into two groups: a training set (N = 217)
and a validation set (N = 217). Table 1 presents the clinical characteristics of both sets and
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reveals no notable variations in clinical traits between the two sets. A total of 20 DRGs
identified based on the literature review and previous studies were used to determine DRLs
(Figure 2A). A total of 2230 DRLs were identified based on Pearson analysis (|r| > 0.4,
p < 0.001), and the relation between DRGs and DRLs is presented in Figure 2A. Among the
20 DRGs in this study, CD2AP and MYL6 have the highest number of connections with
DRLs according to the Sankey diagram (Figure 2A). To explore the molecular subtypes of
COAD based on DRLs, an unsupervised consensus clustering algorithm was performed on
the cohort of 434 COAD patients. The resulting heatmap indicated an optimal classification
with k = 3, wherein gene cluster 1 comprised 275 samples, gene cluster 2 had 52 samples,
and gene cluster 3 included 107 samples (Figure 2B,C). Subsequently, Kaplan–Meier sur-
vival analysis revealed distinct clinical prognostic outcomes among the different subgroups.
Notably, patients in COAD cluster 3 exhibited significantly lower OS rates compared to
those in clusters 1 and 2 (Figure 2D, p < 0.01).
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Figure 1. Flow chart of this study.

Table 1. The clinical characteristics of colon cancer patients in training and testing set.

Characteristics Total (n = 434) Training Set (n = 217) Testing Set (n = 217) p Value

Age
≤65 183 (42.17%) 98 (45.16%) 85 (39.17%) 0.2434
>65 251 (57.83%) 119 (54.84%) 132 (60.83%)

Gender
Male 233 (53.69%) 118 (54.38%) 115 (53%) 0.8473

Female 201 (46.31%) 99 (45.62%) 102 (47%)
Stage

Stage I 73 (16.82%) 39 (17.97%) 34 (15.67%) 0.1961
Stage II 166 (38.25%) 77 (35.48%) 89 (41.01%)
Stage III 123 (28.34%) 68 (31.34%) 55 (25.35%)
Stage IV 61 (14.06%) 28 (12.9%) 33 (15.21%)
Unknow 11 (2.53%) 5 (2.3%) 6 (2.76%)
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Table 1. Cont.

Characteristics Total (n = 434) Training Set (n = 217) Testing Set (n = 217) p Value

T Stage
T1 11 (2.53%) 6 (2.76%) 5 (2.3%) 0.6901
T2 75 (17.28%) 38 (17.51%) 37 (17.05%)
T3 298 (68.66%) 152 (70.05%) 146 (67.28%)
T4 50 (11.52%) 21 (9.68%) 29 (13.36%)

N Stage
N0 255 (58.76%) 127 (58.53%) 128 (58.99%) 0.8436
N1 102 (23.5%) 53 (24.42%) 49 (22.58%)
N2 77 (17.74%) 37 (17.05%) 40 (18.43%)

M Stage
M0 321 (73.96%) 160 (73.73%) 161 (74.19%) 0.1552
M1 61 (14.06%) 28 (12.90%) 33 (15.21%)

Unknow 52 (11.98%) 29 (13.36%) 23 (10.6%)
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Figure 2. Characterization of disulfidptosis-related Lncrna (DRLs)-based molecular subgroups in
COAD. (A) The Sankey relation between disulfidptosis-related genes (DRGs) and DRLs; (B) the
relative change in area under the CDF curve for k = 2 to k = 5. (C) Unsupervised consensus
clustering analysis for COAD. (D) Kaplan–Meier curve for three clusters of COAD.

2.2. Recognition of a Prognostic Disulfidptosis-Related Lncrna Signature

In total, 34 DRLs significantly related to patient OS were obtained through univariate
Cox regression analyses (p < 0.05, Figure 3A, Supplementary Table S2) in the training
set. A total of 23 of the 34 DRLs had a hazard ratio (HR) > 1, which indicated that they
were bad prognostic predictors, while the remaining 11 DRLs were protective factors with
HR < 1. Furthermore, four candidate lncRNAs were ultimately identified through Lasso
and the multivariate Cox regression method (Figure 3B–D), which included AC007728.3,
AP003555.1, ATP2B1.AS1, and NSMCE1. DT. Consistent with the trend of the univariate
Cox regression analysis, AC007728.3 served as a protective indicator, whereas AP003555.1,
ATP2B1.AS1, and NSMCE1.DT were classified as risk factors with HR > 1 (Figure 3D). Sub-
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sequently, the predictive risk assessment model was developed using multivariate Cox re-
gression relying on the 4 DRLs. The model assigned a risk score to each patient by the given
equation: Risk Score = ExpressionAC007728.3 × (−2.2208778) + ExpressionAP003555.1 ×
0.3728466 + ExpressionATP2B1.AS1 × 2.942407 + ExpressionNSMCE1.DT × 2.8856887).
The relationships between the four DRLs and DRGs are shown in Figure 3E.
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Figure 3. Identification of the prognostic features of colon adenocarcinoma (COAD) linked to
disulfidptosis-related lncRNA (DRLs). (A) Univariate cox forest map showing the top 20 prognostic
DRLs. (B) Least absolute shrinkage and selection operator (LASSO) coefficients of DRLs. (C) Cross-
validation of DRLs in the LASSO regression. (D) Multivariate Cox forest map showing the four
prognostic DRLs. (E) The relationships between the four DRLs and DRGs. *, p < 0.05; **, p < 0.01;
***, p < 0.001.
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2.3. The Risk Score Could Be an Independent Prognostic Factor and Assist in Predicting Clinical
Outcomes for COAD Patients

The patients were categorized into high- or low-risk groups for further survival
analysis based on the median risk scores in each dataset. Figure 4 displayed the risk score
and survival status of patients in the training, testing, and combined sets. The results
showed a significant correlation between the risk score and the survival of patients in all
datasets. Patients in the high-risk group exhibited significantly poorer overall survival
in comparison to those with lower risk scores (p < 0.001, Figure 4G–I). Moreover, higher
mortality was observed as their risk scores increased (Figure 4A–I). Both univariate and
multivariate Cox regression analyses indicated that the risk groups, categorized according
to the signature based on the four DRLs, were identified as an autonomous prognostic factor
for COAD patients in comparison to other clinicopathological characteristics (Figure 4J,K).
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Figure 4. Evaluation and validation of the independent prognostic ability of 4-DRLs signature model
in training, testing, and entire sets. (A–C) The distribution of patient with increasing risk scores.
(D–F) The survival time of patients and risk scores. (G–I) The Kaplan–Meier (K-M) survival analysis
of survival status and overall survival (OS) of COAD patients between high- and low-risk groups.
(J) A univariate Cox regression analysis of clinical variables and risk score. (K) A multivariate Cox
regression analysis of clinical variables and risk score.
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2.4. Validation of the 4-DRLs Predictive Signature and Construction of A Nomogram Combining
Clinical Characteristics

For the 1-, 3-, and 5-year follow-up periods, the ROC curves demonstrated area under
the curve (AUC) values of 0.65, 0.73, and 0.66, respectively (Figure 5A). Additionally,
an ROC curve was generated to validate the superior prognostic accuracy of the risk
score in comparison to alternative clinical variables such as age, gender, stage, tumor (T)
size, lymph node (N), and metastasis (M) (Figure 5B). AUC for the risk score was 0.73,
indicating stronger predictive capability than other clinical features except T (Figure 5B).
The model’s accuracy was verified by calculating the C-index through cross-validation
and non-cross-validation, yielding a score of 0.819. Furthermore, the new model was
developed incorporating the clinical factors and risk score, and its overall improvement
over the old model (excluding the risk score) was assessed using the IDI index, resulting
in a value of 0.039 (p < 0.01). This indicated that the risk score positively contributed to
the constructed model. Consistent with the former results, DCA was utilized to further
evaluate the model’s performance, revealing a higher net benefit rate for risks core in both
median survival time, and 3-year survival time (Figure 5C,D).
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Figure 5. Validation of the predictive model and construction of a nomogram combining clinical
characteristics. (A) The receiver operating characteristic (ROC) curves show the predictive accuracy
in 1-, 3-, and 5-year of the predictive risk model. (B) The ROC curves show the predictive accuracy of
the predictive risk model and clinicopathological characteristics. (C) Decision curve analysis (DCA)
shows the overall improvement of the predictive risk model in median survival time. (D) DCA shows
the overall improvement of the predictive risk model in 3-year survival time. (E) The nomogram to
predict the 1-, 3-, and 5-year overall survival (OS) rate of colon cancer patients. (F) The calibration
curve for evaluating the accuracy of the nomogram model in 1-, 3-, and 5-year categories. *, p < 0.05;
**, p < 0.01.

In order to improve the practicality of the signature, we created a predictive nomogram
by adding up the assigned scores of relevant clinical factors and risk scores on a points scale
(Figure 5E). This allowed for accurate prediction of the probability of survival. As illustrated
in Figure 4F, the selected patient’s probability of 1-, 3-, and 5-years OS was determined
to be 0.985, 0.961, and 0.924, respectively. Additionally, the consistency of the nomogram
predictions and the actual measured outcome were validated by the calibration curves. The
findings indicated a strong concordance between clinical outcomes and predictive values,
as depicted in Figure 5F. To summarize, these results indicate that the nomogram combined
the 4-DRLs predictive signature and clinical features could accurately forecast the clinical
prognosis of patients with COAD.

2.5. Predicting the Prognosis of High- and Low-Risk-Group Patients with the Clinical Characteristics

Based on the 4-DRLs predictive signature, we compared the survival probabilities of
high- and low-risk groups among COAD patients according to the age, gender, stage, and
TNM stage. The findings indicated that, in relation to all clinical variables, except T1/T2,
the OS in high-risk group was significantly shorter compared to that of the low-risk group
(Figure 6A–L). A possible explanation is that poor prognosis in advanced-stage COAD
led to a relatively smaller number of T1/T2 patients, which might cause some degree
of error in the results. Overall, these results suggest that the 4-DRLs predictive model
has immense potential for predicting COAD prognosis and can be applied across various
clinical variables.
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Figure 6. The Kaplan–Meier (KM) survival analysis of low- and high-risk patients with different
clinical variables. (A,B) Age (>65, ≤65); (C,D) Gender (Male, Female); (E,F) Stage (Stage I/II,
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2.6. Biological Functional Analysis by GO, KEGG, and GSEA Analysis

PCA was employed to visually display variations in distribution between groups at
high and low risk (Figure 7A–D). The results showed that there were no notable disparities
in the expression patterns of total genes, DRGs, or DRLs among the two risk groups
(Figure 7A–C). However, the four-DRLs used in the predictive model exhibited the highest
discriminatory power in distinguishing between high- and low-risk patients (Figure 7D).
Subsequently, we identified 1466 differentially expressed genes (DEGs) by comparing the
mean expression values of two group (Padjust < 0.05, |log2 (FC)| > 0.7), as indicated by
the MA plot (Figure 7E).
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Figure 7. Biological functional and pathway enrichment analysis of the disulfidptosis-related lncRNA
prognostic signature. (A) PCA about total genes of patients in high- and low-risk groups. (B) PCA
about disulfidptosis-related genes (DRGs) of patients in high- and low-risk groups. (C) PCA about
disulfidptosis-related lncRNAs (DRLs) of patients in high- and low-risk groups. (D) PCA about the
four DRLs used in the predictive model of patients in high- and low-risk groups. (E) The MAplot
about differentially expressed genes (DEGs) based on the average expression values of high- and
low-risk groups. (F) GO analysis reveals the diversity of molecular biological processes (BPs), cellular
components (CCs), and molecular functions (MFs). (G,H) KEGG analysis shows the significantly
enriched pathways. (I,J) GSEA demonstrate the enriched pathways in high- and low-risk sets.
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To examine the biological characteristics of DEGs, we conducted GO and KEGG
enrichment. According to the biological process (BP), the DEGs played a significant role in
the “regulation of membrane potential”, “modulation of chemical synaptic transmission”,
“regulation of trans-synaptic signaling”, and “muscle contraction”. Within the realm
of cellular components (CC), “neuronal cell body”, “perikaryon” and “transmembrane
transporter complex” were significantly abundant. Furthermore, molecular functions (MFs)
analysis revealed a significant enrichment of DEGs in “signaling receptor activator activity”,
“receptor ligand activity”, and “channel activity”. (Figure 7F). These findings indicated
that DEGs were involved in metabolism-related biological functions. The KEGG results
were consistent with those of GO analysis, revealing significant pathway enrichments in
“neuroactive ligand-receptor interaction”, “calcium signaling pathway”, “bile secretion”,
“insulin secretion”, and “tyrosine metabolism” (Figure 7G,H). These pathways are also
related to cellular signaling and metabolism. Furthermore, a significant enrichment of
pathways associated with poor tumor prognosis was observed in the high-risk group
through the GSEA analysis, such as “E2F targets pathway”, “G2M checkpoint pathway”,
“MTORC1 signaling pathway”, “MYC targets pathway”, and “RIBOSOME” (Figure 7I,J).

2.7. Tumor Immune Microenvironment Landscape of COAD Patients Based on Prognostic Signature

To explore the correlation between the predictive signature of 4-DRLs and the im-
mune process in patients with COAD, we characterized the landscape of tumor immune
cell infiltration for all patients in the TCGA database using different algorithms, such as
TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC
(Figure 8A). Several major algorithms determined that there were notable variations in
immune cells between the two groups, as depicted in Figure 8B–F. In TIMER (Figure 8B),
the high-risk group exhibited elevated expression levels of anti-tumor immune cells, en-
compassing CD8+ T cells, CD4+ T cells, B cells, macrophages, and dendritic cells. The
CIBERSORT analysis showed notable rises in activated mast cells and activated NK cells,
while resting mast cells and mast cell NK cells decreased (Figure 8C). Additionally, XCELL
results demonstrated a notable decrease in CD4+ Th1 cells, a key cell for generating long-
lasting anti-tumor immune responses, in the high-risk group, which may be a possible
factor for the poorer prognosis (Figure 8D). Finally, the results from both MCPCOUNTER
(Figure 8E) and EPIC (Figure 8F) collectively demonstrated that cancer-associated fibrob-
lasts, crucial constituents of the tumor mesenchyme, exhibited significantly higher levels in
the high-risk group. Altogether, these findings demonstrated a robust correlation between
risk score and the infiltration of immune cells, as observed in all of these algorithms.

Based on the TIDE analysis, patients at high risk showed a significantly lower score
in comparison to those at low risk (p < 0.001, Figure 9A). This suggested that high-risk
patients may benefit more from immunotherapy due to a reduced likelihood of immune
evasion. Furthermore, we assessed the discrepancies in immune-related functions between
the high-risk and low-risk cohorts. The high-risk sets showed a significant enrichment of
“type_II_IFN_Reponse” as illustrated in Figure 9B. Finally, we performed a comparison
between the two groups to assess the levels of immune checkpoint genes expression.
According to Figure 9C, there were notable variations in 14 checkpoint genes between
the two groups. Significantly, out of these genes, 12 exhibited increased expression in
the high-risk category, including CD28, TIGHT, and PD-L2. In contrast, the risk score
showed a negative correlation only with PVR and CEACAM1. These immune checkpoints
collectively regulate T cell activation and function, some of which are critical for immune
tolerance and autoimmunity. These findings provided a potential explanation for the
poorer OS observed in patients with higher risk scores. On the other hand, it also implied
that these patients might have increased immune responsiveness and could potentially
experience enhanced benefits from immune checkpoint inhibitor (ICI) therapies.
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Figure 8. Analysis of immune cell infiltration landscape in COAD patients. (A) The heat map
depicting an analysis of the immune cell infiltration differences between the groups at low and high
risk via seven algorithms. The boxplots for the analysis of the difference for immune cell infiltration
between low- and high-risk patients by TIMER (B), CIBERSORT (C), XCELL (D), MCPCOUNTER (E),
and EPIC (F). *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.
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Figure 9. Analysis of tumor immune dysfunction and exclusion (TIDE), immune-related functions
and immune checkpoints genes in COAD patients. (A) The violin plot of TIDE analysis for low- and
high-risk group. (B) The heat map of the immune-related functions for low- and high-risk groups.
(C) The boxplot of the expression levels of immune checkpoints genes for low- and high-risk groups.
*, p < 0.05; **, p < 0.01; ***, p < 0.001.

2.8. Tumor Mutation Burden (TMB) Characteristic and Drug Sensitivity in the 4-Drls
Predictive Signature

To investigate the disparities in cancer-associated gene mutations between the high-
and low-risk groups, we acquired somatic mutation data from the TCGA database. The
examination uncovered the 15 genes that were mutated most frequently, comprising APC,
TP53, TTN, KRAS, SYNE1, MUC16, PIK3CA, FAT4, RYR2, CSMD3, ZFHX4, DNAH5,
OBSCN, LRP1B, and PCLO (Figure 10A). Although the TMB did not differ significantly
in an overall view between the two groups (Figure 10B), incorporating TMB and risk
score for grouping analysis could have effectively predicted patient prognosis, as shown
in Figure 10C,D. The high TMB and high-risk group exhibited the poorest prognosis
compared to other groups, whereas the low TMB and low-risk group demonstrated the
longest survival time (Figure 10C,D).
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Figure 10. Tumor Mutational Burden (TMB) of the high- and low-risk groups. (A) The waterfall
plot showed the TMB of top 15 genes in the combined set. (B) Analysis of the difference for TMB
between low- and high-risk patients. (C) The Kaplan–Meier (K-M) survival analysis of COAD patients
between high- and low-TMB groups. (D) The K–M survival analysis of COAD patients regarding
TMB combined with risk score.

To evaluate the clinical utility of the 4-DRLs predictive signature and search the
potentially effective drugs, we analyzed the chemotherapeutic drug by using “oncoPredict”
packages. Following the prediction of sensitivity for 743 compounds across all patients,
we performed a Wilcoxon test to compare differences between the two risk groups (adjust
p < 0.01). A total of 224 of the 545 drugs in CTRP and 31 of the 198 drugs in GDSC were
identified with a significantly difference between high- and low- risk groups (Figure 11A).
Lapatinib, Gemcitabine, and MK-2206 were identified as promising compounds at the
intersection of the two databases (Figure 11B–D). The compounds exhibited a greater
IC50 in the high-risk category, which could potentially be more suitable for patients in
the low-risk category (Figure 11C,D). Figure 11E–H display several chemotherapy drugs
widely used in clinical for colorectal cancer, with 5-fluorouracil and oxaliplatin exhibiting
lower IC50 values in the low-risk group, rendering them more suitable for patients in
this category (Figure 11E,F). Conversely, dabrafenib and temozolomide showed lower
IC50 in the high-risk category, indicating their sensitivity to patients classified as high-risk
(Figure 11G,H).
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Figure 11. The drug sensitive prediction in COAD patients in low- and high-groups. (A) A total of
743 compounds from Genomics of Drug Sensitivity in Cancer (GDSC) and the Cancer Therapeutics
Response Portal (CTRP) database were screened to investigate promising drugs for clinical treatment.
(B) Venn diagram showing the three candidate compounds between GDSC and CTRP. Lapatinib,
Gemcitabine, and MK-2206 all displayed a higher half-maximal inhibitory concentration (IC50) in
the high-risk group both in GDSC (C) and CTRP (D). (E,F) 5-fluorouracil and oxaliplatin are the
two compounds predicted with significantly lower IC50 in the low-risk group. (G,H) Dabrafenib and
temozolomide are the two compounds predicted with significantly lower IC50 in the high-risk group.

2.9. External Datasets Validation of the Prognostic Ability of the 4-Drls Predictive Signature

To further confirm the accuracy of the signature in predicting patient prognosis,
we used the Kaplan–Meier plotter database to examine the predictive significance of
ATP2B1.AS1 and NSMCE1.DT in colon cancer, while AP003555.1 and AC007728.3 were
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absent in the database. Patients who exhibited elevated levels of ATP2B1.AS1 experienced
significantly reduced PPS and RFS (HR > 1, p < 0.01, Figure 12A–C). Conversely, patients
with increased expression of NSMCE1.DT demonstrated noticeably shorter OS and RFS
(HR > 1, p < 0.05, Figure 12D–F). The results align with prior studies that recognized
ATP2B1.AS1 and NSMCE1.DT as elements that contribute to patient prognosis. In summary,
external database analysis provided clear validation for the ability of the 4-DRLs signature
to evaluate the prognosis of COAD patients.
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Figure 12. External datasets’ validation of DRLs as possible biomarkers. Overall survival (OS),
progression-free survival (PPS), and recurrence-free survival (RFS) analysis of ATP2B1.AS1 (A–C)
and NSMCE1.DT (D–F) from the Kaplan–Meier plotter database.

2.10. Validation of 4-DRLs Expression In Vitro Experiments

To further evaluate the expression of these four DRLs, RT-qPCR was performed both in
the cell lines and samples from colon cancer patients. We conducted cell line screening in the
CCLE database and chose LoVo and HCT116 cells based on their comprehensive expression
levels of the four DRLs (Supplementary Figure S1). As shown in Figure 13A, compared to
normal human colonic cells (NCM460), the expression of ATP2B1.AS1 and NSMCE1.DT
were higher in colonic cancer cells (including HCT116 and LoVo), while AC007728.3
exhibited a contrasting trend. AP003555.1 did not exhibit significant differences between
cell types. We also investigated the expression levels of these four lncRNAs in carcinoma
and adjacent tissues obtained from colon cancer patients. Consistent expression trends were
observed, with ATP2B1.AS1, AP003555.1, and NSMCE1.DT significantly overexpressed in
tumor tissues (Figure 13B–E). In contrast, AC007728.3 displayed reduced expression levels
in tumor tissues as compared to paracancerous tissues (Figure 13C). These results serve to
corroborate the accuracy of the above bioinformatics analysis, while also providing further
validation for the clinical significance of the predictive model.
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Figure 13. Validation of 4-DRLs expression in cell lines and tissues. (A) Comparison of the expression
levels of ATP2B1.AS1, AC007728.3, AP003555.1, and NSMCE1.DT between NCM460 cells, HCT116
cells, and LoVo cells. (B–E) Expression analysis of ATP2B1.AS1, AC007728.3, AP003555.1, and
NSMCE1.DT in tumor tissue samples and normal samples. *, p < 0.05; **, p < 0.01; ***, p < 0.001;
ns, no significance.

3. Discussion

In 2020, colon cancer ranked as the third most widespread cancer worldwide in terms
of occurrence and the second primary reason for cancer-related fatalities [1], highlighting
the urgency for early and accurate identification of high-risk patient subgroups to enable
tailored treatment. The mainstream classification methods for colon cancer mainly relied
on TNM staging system. Although this method was helpful in selecting appropriate treat-
ments, patients within the same subtype could still present with varying clinical outcomes.
Therefore, more precise classification strategies were needed to facilitate personalized
therapeutic determination.

Up to now, there are several types of RCD pathways with unique characteristics and
underlying mechanisms that have been extensively studied, such as apoptosis, necroptosis,
pyroptosis, ferroptosis, and cuproptosis. While each of these RCD pathways has distinct
features, they can also be interconnected through various signaling pathways. For instance,
studies have shown cross-talk between autophagy and apoptosis, as well as between
necroptosis and ferroptosis [13,14]. A recent study demonstrated that high expression of
SLC7A11 can expedite the depletion of NADPH within the cytoplasm, particularly under
conditions of glucose starvation, which may inhibit ferroptosis and induce a new form
of cell death, disulfidptosis [5]. The recognition of this mechanism holds the potential to
foster the advancement of efficacious cancer treatments. However, there is currently limited
research on the application of disulfidptosis in colon cancer. Therefore, further studies on
disulfidptosis are urgently needed to deepen our understanding of its potential application
in cancer therapy.
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Several research studies have documented the crucial function of long non-coding
RNAs (lncRNAs) in the advancement of colon cancer, and multiple lncRNA signatures
associated with RCD have been discovered for prognostic prediction [11,15,16]. How-
ever, no investigation has been conducted on the association between DRLs and colon
cancer. Here, according to the expression level of DRLs in COAD samples, we identified
three robustly distinct disulfidptosis-related molecular subtypes, Cluster 1, Cluster 2, and
Cluster 3. These LYAG subtypes had significant differences in prognosis. However, due
to the existence of many other factors that also influence tumor infiltration and staging,
such as colon location and microsatellite instability (MSI), it is essential to consider them
in subsequent research studies in order to obtain more reliable results. Then, we estab-
lished a risk model for colon cancer prognosis by DRLs. Firstly, 34 DRLs associated with
prognosis were identified by univariate regression analysis. Subsequently, LASSO and
multivariate Cox regression analyses were employed to screen and identify four lncRNAs
(AC007728.3, AP003555.1, ATP2B1.AS1, and NSMCE1.DT) that were introduced into the
model. Among them, AP003555.1, ATP2B1.AS1, and NSMCE1.DT have been shown in
previous studies to be closely related to colon cancer prognosis. In particular, AP003555.1
was reported to be an effective prognostic element in signatures based on ferroptosis-related
lncRNAs, which also indirectly suggests the strong relationship between ferroptosis and
disulfidptosis [14,15]. ATP2B1.AS1 is strongly associated with cell inflammation and can
regulate the miR-23a-3p/TLR4 axis, exacerbating sepsis-induced cell apoptosis and inflam-
mation [17]. Furthermore, it has been found to promote cerebral ischemia/reperfusion
injury and worsen myocardial infarction by activating the NF-κB signaling pathway [18,19].
As a lncRNA related to pyroptosis, it also served as a risk factor and predictor of progno-
sis in gastric cancer and colon cancer patients [20,21]. In further research, NSMCE1.DT
was found to be highly expressed in colon cancer patients as a lipid metabolism-related
lncRNA [22]. These results are consistent with our findings, indicating that AP003555.1,
ATP2B1.AS1, and NSMCE1.DT may be risk indicators for colon cancer patients with HR > 1.
ATP2B1.AS1 and NSMCE1.DT were also validated in external datasets and exhibited a cor-
relation between their high expression and poorer prognosis (Figure 12). AC007728.3 has
not been characterized in any studies.

Based on these four lncRNAs, we established a new clinical prognosis model that is
more suitable for clinical application than some signatures that have been identified. This
signature includes only four lncRNAs, making it convenient and less time consuming to
detect. In our study, we employed a random division of the TCGA-COAD cohort into train-
ing and testing subsets. Subsequently, patients were categorized into high- and low-risk
groups based on their respective risk scores calculated using the developed model. The
high-risk group showed poorer prognosis in terms of survival curves (Figure 4), which
was consistent with clinical subgroup analyses (except for T1/2 stages) (Figure 6). One
plausible explanation for this observation could be that fewer patients were diagnosed at
the T1-2 stages due to the typically poorer prognosis associated with advanced COAD.
Compared with traditional TNM stage and other clinical pathological features, the risk
score demonstrated more outstanding predictive ability for the prognosis of colon cancer
patients. ROC curves, C-index, IDI index, and DCA all confirmed this fact, in addition to
Kaplan–Meier survival curves. The IDI and DCA provided a comprehensive evaluation
of the model performance, both indicating that the new model with the addition of risk
score has better overall predictive ability than the old one. Additionally, a nomogram
incorporated clinical variables along with the risk score, which demonstrated superior
predictive ability compared to the existing clinical staging system. The risk score exhibited
independence from significant prognostic factors in colon cancer, and we used the median
value to categorize patients into different groups. Utilizing the median value for classifi-
cation purposes is regarded as a more practical and objective approach, especially when
compared to optimal cutoff values, which may only perform well in specific cohorts and
lack universality.
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The PCA results showed that the 4 DRLs had excellent discriminatory ability between
low- and high-risk patients. To further understand their biological properties, we carried
out GO and KEGG analyses. The GO analysis revealed that DEGs were mainly related
to cellular signaling and muscle contraction, indicating a close association with cellular
metabolism. This is consistent with the fact that disulfidptosis is triggered by disulfide
bond formation in protein molecules due to NADPH depletion and disulfide stress, both
of which are closely linked to energy supply and cellular metabolism [5]. KEGG analy-
sis indicated that the “neuroactive ligand-receptor interaction” and “calcium signaling
pathway” were significantly enriched. Although neuroactive ligand–receptor interaction
is primarily associated with neurological conditions, there is increasing evidence to sug-
gest its involvement in cancer progression and metabolism. Research has revealed that
dysregulated expression of genes involved in neurotransmitter signaling within colorectal
cancer contributes to the facilitation of tumor growth and metastasis. This phenomenon
occurs through the stimulation of cell proliferation, migration, invasion, and angiogenesis
processes by neurotransmitters [23]. The mechanism of Ca2+ channels acting on tumor is
complex and can affect tumor progression from multiple aspects. It has been reported that
Ca2+ could activate NF-κB, NFAT, and CREB pathways, thereby playing an important role
in tumor immunity cells and progression [24,25]. Moreover, the high-risk group exhibited
a significant enrichment of pathways associated with poor tumor prognosis, including
“E2F targets pathway”, “G2M checkpoint pathway”, “MTORC1 signaling pathway”, “MYC
targets pathway”, and “RIBOSOME” based on GSEA analysis (Figure 7I,J) [26–30]. In
the field of precision oncology, the strategy of targeting cancer metabolism to selectively
eradicate tumor cells has gained significant traction and widespread adoption [31]. How-
ever, it is worth noting that disulfidptosis was also closely associated with immune cells
and functions according to our immune analysis results, while the metabolic treatment
of cancer cells may have an impact on non-cancerous cells in the meantime, particularly
immune cells. This effect could potentially limit the therapeutic efficacy of cancer metabolic
therapy, which emphasizes the need for a comprehensive evaluation of its effectiveness
and potential side effects before implementing such therapies [31].

Recent studies have suggested a close association between disulfidptosis and immune
infiltration, with high disulfidptosis subtypes exhibiting higher immune scores [6]. Our
findings are consistent with these results, as the estimated immune cell infiltration via
seven different algorithms revealed that high-risk patients exhibited a propensity for
elevated antitumor immune activity. Specifically, we observed higher expression levels
of major anti-tumor immune cells such as CD8+ T cells, CD4+ T cells, and macrophages
in the high-risk group by TIMER analysis (Figure 8B). Our findings challenge previous
perceptions that the high degree of CD8+ T cell infiltration generally indicates a better
survival prognosis [32]. There are several studies also reported that elevated levels of
CD8+ T cells were sometimes linked to shorter survival time [33,34]. Moreover, XCELL
analysis revealed a significant reduction in Th1 cells—crucial cells for generating long-
lasting anti-tumor immune responses—in the high-risk group [35], which is likely to
contribute to the group’s poorer prognosis (Figure 8D). The tumor immune environment is
a complex setting in which not only immune cells, but also various factors such as immune
checkpoints, regulatory cells, inflammatory cytokines, and the tumor microenvironment
can all affect immune function. According to TIDE analysis, high-risk patients exhibited
a low probability of immune escape (Figure 9A). This suggests that those patients may
benefit more from immunotherapy and potentially experience less resistance to ICI. In
addition, in the high-risk group, there was a notable elevation in the expression levels
of various immune checkpoints, including CD28, TIGHT, and PD-L2. Therefore, it can
be inferred that these patients may exhibit heightened immunoreactivity and potentially
derive greater benefit from ICI therapies [36]. However, further research is needed to
explore whether inhibitors targeting these checkpoints represent promising antitumor
agents for colon cancer. At present, the only ICI approved for the treatment of colon
cancer are PD-1/PD-L1 inhibitors and CTLA-4 inhibitors. CD28, TIGHT, and CTLA-4
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belong to a family of immunoglobulin-related receptors that regulate different aspects of
T-cell immunity [37]. As a negative costimulatory molecule, PD-L2 can suppress T-cell
activation and function by binding with PD-1, contributing to immune tolerance and
immune evasion [38]. Therefore, all of these immune checkpoints represent promising
targets for the treatment of colon cancer.

TMB demonstrates a strong correlation with tumor immune response and prognosis.
Previous studies have reported that TMB can predict the response to ICI in metastatic
colorectal cancer patients with high microsatellite instability (MSI-high) [39]. Despite the
lack of a substantial statistical disparity in TMB between the high- and low-risk cohorts
within our investigation, patients presenting both elevated TMB and high-risk factors
demonstrated the most unfavorable prognosis when contrasted with the remaining patient
populations. The findings additionally confirmed the specific association between TMB and
the prognosis and survival of tumors. Furthermore, the risk groups determined by the 4-
DRLs signature also displayed distinct drug sensitivities. Lapatinib, Gemcitabine, and MK-
2206 were identified as promising compounds at the intersection of the GDSC and CTRP
databases and were more appropriate for patients in the low-risk group (Figure 11C,D).
Lapatinib is an approved targeted therapy acting as a dual inhibitor of HER2/EGFR for
metastatic breast cancer [40]. Interestingly, HER2 activating mutation has emerged as
a significant target for the treatment of colon cancer [41]. Gemcitabine and MK-2206 have
also been extensively investigated as potential chemotherapy agents for the treatment of
colon cancer [42,43]. In addition, colon cancer has long been treated with a combination of
5-fluorouracil and oxaliplatin, which have been approved as primary treatment options [44].
The low-risk group demonstrated lower IC50 values for the aforementioned drugs, indi-
cating their potential suitability for patients in this category. Conversely, dabrafenib and
temozolomide are better options for patients in the high-risk category due to their notably
lower IC50 values. These agents were also recognized as highly promising chemotherapy
regimens and widely utilized in clinical practice [45,46]. The findings from our study may
provide guidance in selecting appropriate drugs for patients with varying risk scores in
the future.

Finally, we conducted in vitro experiments to confirm the expression level of these
four lncRNAs. The expression patterns closely aligned with the predictions derived from
our earlier bioinformatic analysis. Specifically, ATP2B1.AS1 and NSMCE1.DT exhibited
higher expression in colon cancer tissues compared to noncancerous tissue, as well as
higher expression in colonic cancer cell lines than in human normal cell lines. On the other
hand, AC007728.3 displayed an inverse pattern, aligning with our findings. The expression
difference of AP003555.1 in cells did not reach statistical significance, possibly attributable
to variations among different cell lines.

There are several limitations that need to be addressed in our study. Firstly, due to
the novelty of disulfidptosis as a newly discovered form of regulated cell death (RCD),
there is limited research and databases available on this topic. Therefore, we only included
20 DRGs based on a limited number of research findings, which may have affected the
comprehensiveness of the results presented in the paper. In future studies, we will com-
prehensively summarize and analyze all the published literature and relevant databases
to provide a more comprehensive and accurate analysis. Secondly, due to the limited
research on the four selected lncRNAs, we were unable to obtain comprehensive lncRNA
annotations and clinical information from databases such as GEO, ICGC, and others. This
limitation highlights the ongoing importance of lncRNAs, which remain partially obscured
by the constraints of current technology. Although two of the lncRNAs were confirmed
through the external Kaplan–Meier plotter database, which includes GEO, EGA, and TCGA
data, further validation of the risk signature necessitates independent colon cancer cohorts
to strengthen its credibility and robustness. Thirdly, although we performed qRT–PCR to
examine the expression levels of the four DRLs in several clinical samples and two colon
cancer cell lines, the limited sample sizes used in our study posed a constraint. Conducting
larger-scale studies with sufficient sample sizes would provide stronger evidence and
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validate the prognostic significance of the model. Lastly, the mechanisms through which
these lncRNAs affect the immune landscape and drug sensitivity are still unknown. Addi-
tional extensive investigation is required to examine the complex association between these
lncRNAs and DRGs, aiming to reveal possible targets for successful therapeutic approaches.

For future research, it is crucial to validate our risk prediction model using external
independent patient cohorts to establish its generalizability and clinical utility. Mechanistic
investigations also should be conducted to uncover the biological pathways through which
disulfidptosis lncRNA influences colon cancer. Moreover, integrating multiple predictive
factors, such as clinical indicators and genetic variations, into our risk prediction model
is essential. This comprehensive approach has the potential to improve the accuracy and
applicability of the model in real-world clinical settings.

4. Materials and Methods
4.1. Data Acquisition

The RNA-Seq data and corresponding clinical information of COAD were downloaded
from TCGA database (https://portal.gdc.cancer.gov/repository (accessed on 15 May 2023)),
which included 434 COAD tumors and 41 normal samples. “limma” script [47,48] was
used to convert the transcriptome matrix of TCGA-COAD fragments per kilobase million
(FPKM) to transcripts per million (TPM), to facilitate further analysis.

4.2. Identification the Expression Matrix of DRLs and Molecular Subtype Characterization

The list of 18 disulfidptosis-related genes (DRGs) were obtained from previously
published studies [5]. The DRGs and DRLs expression matrix was retrieved by “limma”
packages [47,48]. The criteria for DRLs were |Pearson R| > 0.5 and p < 0.001. Then, the
“ggplot2” and “ggalluvial” scripts were utilized to draw the Sankey diagram [49]. The
“ConsensusClusterPlus” script was used to categorize COAD samples into distinct molecu-
lar subtypes by analyzing the expression levels of DRLs, employing 1000 iterations and an
optimal classification range of K = 2–5 [50]. Subsequently, we assessed the clinical survival
outcomes of COAD in relation to these molecular subtypes based on the “survival” script.

4.3. Construction and Validation of Prognostic Signature

By “caret” script, patients with COAD were randomly divided into training and
testing groups in a 1:1 ratio [51]. The prognostic model was constructed using the training
set, and validation was performed using the test set and entire set. DLRs with p < 0.05
that resulted from univariate Cox regression were kept for the subsequent stage. Further,
a total of 4 prognostic CDRLs were obtained by the least absolute shrinkage and selection
operator (LASSO) and multivariate Cox regression analysis. Afterwards, we developed the
prognostic model utilizing the four DRLs, and computed a risk score for each patient using
the provided equation:

Risk score =
i

∑
n=1

(Coef(lncRNA i) ∗ Expr(lncRNA i)) (1)

The calculation of Coef (lncRNAi) is performed using multivariate Cox regression
analysis. Patients in the training set, test set, and entire set were divided into low- and
high-risk groups separately, based on the median risk score. In three sets, the K–M analysis
was performed to forecast the overall survival (OS) among the high/low-risk group. Fur-
thermore, the model’s accuracy was assessed using various methods including the receiver
operating characteristic curve (ROC), C-index, Integrated Discrimination Improvement
(IDI) index, decision curve analysis (DCA), nomograms, and calibration curves. These
above series of processes were performed using R packages in software R 4.2.1 mainly
including “survival”, “glmnet”, “survminer”, “timeROC”, “ggDCA”, “rms”, and “forest-
plot” [52,53].

https://portal.gdc.cancer.gov/repository
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4.4. Functional Enrichment Analysis

PCA was employed to visually display the distinctive function of the signature with
packages of “scatterplot3d” and “limma”. The genes differentially expressed between the
two groups were identified (Padjust < 0.05, |log2 (fold change)| > 0.7), and visualized by
MAplot under the “limma”, “egdeR”, “ggplot2”, and “ggrepel” packages [47,54,55]. Gene
Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set
Enrichment Analysis (GSEA) analysis were performed with packages “clusterProfiler” [56].

4.5. Assessment of Immune-Infiltration Characteristics

The extent of immune cell infiltration in the two groups was assessed using seven
different algorithms, including TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ,
MCPCOUNTER, XCELL, and EPIC [57–61]. Tumor Immune Dysfunction and Exclusion
(TIDE: http://tide.dfci.harvard.edu/ (accessed on 15 May 2023)) algorithms were used to
assess the potential efficacy of tumor immunotherapy [62]. Heat map, boxplot, or violin
plot were plotted to exhibit the difference expression of immune cell infiltration, TIDE,
immune function, and immune checkpoints by packages “limma”, “GSVA”, “GSEABase”,
“ggplot2”, “ggpubr” and “ggExtra” [63].

4.6. TMB and Drug Sensitivity Analysis

The TMB of COAD patients in various groups were identified by package “maftools” [64].
The drug sensitivity data were download from the Genomics of Drug Sensitivity in Cancer
(GDSC) [65] and the Cancer Therapeutics Response Portal (CTRP) database [66]. “Oncopre-
dict” package was used to determine the half-maximal inhibitory concentration (IC50) of
drugs in two sets [67].

4.7. External Dataset Validation

Kaplan–Meier plotter database was consumed to predict the OS, progression-free
survival (PPS) and recurrence-free survival (RFS) of patients in different expression levels
of DLRs [68].

4.8. Cell Culture

The cell line LncRNA expression matrix of COAD was obtained from the CCLE
dataset (https://portals.broadinstitute.org/ccle (accessed on 15 May 2023)) [69]. Normal
colon mucosal epithelial cell (NCM460) was purchased from BNCC Company (Beijing,
China) and human colonic cancer cells, including LoVo and HCT116 were purchases from
American Type Culture Collection (ATCC, Manassas, VA, USA). These cells were cultured
in complete DMEM, F-12 or McCoy’s 5A medium with 10% fetal bovine serum (Gibco,
Waltham, MA, USA), and passaged in a humidified atmosphere containing 5% CO2 at
37 ◦C.

4.9. Tissue Sample Collection

All samples were obtained from the Department of Gastroenterology and Hepatology
of Tianjin Medical University General Hospital, which was approved by the Medical
Ethics Committee of the hospital (Ethical No. IRB2023-W7-107). Prior to data collection,
we obtained informed consent from every patient involved in the study. Seven samples
from colon cancer patients containing tumor samples and pericarcinous samples between
October 2022 and April 2023 were cryopreserved at −80 ◦C.

4.10. RNA Extraction and RT-qPCR

The total RNA in cells and tissues were extracted with Trizol reagent (Vazyme, Nanjing,
China, R411-01) and reverse-transcribed using the HiScript III RT SuperMix (Vazyme, China,
R323). Quantitative PCR analysis was performed using Universal SYBR Green Fast qPCR
Mix (ABclonal, Hong Kong, China, RK21203), and the results were calculated with 2(−∆∆Ct)

http://tide.dfci.harvard.edu/
https://portals.broadinstitute.org/ccle
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method with the GADPH serving as the internal control reference. The primer sequences
are listed in Supplementary Table S1.

4.11. Statistical Analysis

Data processing and visualization were performed using R software (version 4.3) and
GraphPad Prism 9.0. The correlation between DRGs and DRLs was assessed using Pearson
and Spearman correlation analysis. The Wilcox test was used to compare the differences
between two groups. Classified variables were analyzed for differences in proportions
using the chi-squared test (χ2) or Fisher’s exact test. Statistical significance was defined as
p < 0.05, with all p-values considered two-tailed.

5. Conclusions

In conclusion, our study pioneers the exploration of DRLs in colon cancer and their
clinical significance. Through the development and validation of a novel signature com-
prising four DRLs, we demonstrated its accurate predictive role in assessing prognosis,
immunotherapy response, and chemotherapy sensitivity in colon cancer patients. This
research endeavor holds promise in providing innovative insights for predicting clinical
outcomes in colon cancer patients. Moreover, it contributed to the advancement of the
theoretical foundation necessary for enhancing immunotherapy and personalized anti-
tumor treatments.
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