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Abstract: BCR::ABL1-negative myeloproliferative neoplasms (MPNs) are a group of hematopoietic
malignancies in which somatic mutations are acquired in hematopoietic stem/progenitor cells,
resulting in an abnormal increase in blood cells in peripheral blood and fibrosis in bone marrow.
Mutations in JAK2, MPL, and CALR are frequently found in BCR::ABL1-negative MPNs, and detecting
typical mutations in these three genes has become essential for the diagnosis of BCR::ABL1-negative
MPNs. Furthermore, comprehensive gene mutation and expression analyses performed using
massively parallel sequencing have identified gene mutations associated with the prognosis of
BCR::ABL1-negative MPNs such as ASXL1, EZH2, IDH1/2, SRSF2, and U2AF1. Furthermore, single-
cell analyses have partially elucidated the effect of the order of mutation acquisition on the phenotype
of BCR::ABL1-negative MPNs and the mechanism of the pathogenesis of BCR::ABL1-negative MPNs.
Recently, specific CREB3L1 overexpression has been identified in megakaryocytes and platelets in
BCR::ABL1-negative MPNs, which may be promising for the development of diagnostic applications.
In this review, we describe the genetic mutations found in BCR::ABL1-negative MPNs, including the
results of analyses conducted by our group.

Keywords: BCR::ABL1-negative myeloproliferative neoplasms; gene mutations; diagnostic marker;
prognosis; genetic background

1. Introduction

Myeloproliferative neoplasms (MPNs) are characterized as a clonal proliferation of
hematopoietic stem/progenitor cells, which cause an increase in one or more mature
myeloid lineage cells. MPNs consist of multiple subgroups: chronic myeloid leukemia
(CML); polycythemia vera (PV); essential thrombocythemia (ET); prefibrotic primary
myelofibrosis (PMF); overt PMF; chronic neutrophilic leukemia (CNL); chronic eosinophilic
leukemia (CEL); and unclassifiable MPN, not otherwise specified (Figure 1) [1,2]. In general,
CML involves a typical driver gene alteration, the BCR::ABL1 fusion gene, and more rare
diseases, namely CNL, CEL, and unclassifiable MPN, not otherwise specified, have been
treated as independent diseases. In contrast, patients with BCR::ABL1-negative MPNs
(PV, ET, prefibrotic PMF, and overt PMF) transform to other subgroups with a 10–15%
frequency and share common gene mutations, namely JAK2 mutations (V617F and exon
12), MPLW515L/K, and CALR exon 9 frameshift mutations, in a mutually exclusive man-
ner [3–9]. The frequencies of the three gene mutations in our cohort are shown in Figure 2A.
Since these mutations exhibit oncogenic properties, they are defined as driver mutations
of BCR::ABL1-negative MPNs (Figure 2B). Ahead of the MPL and CALR mutations, JAK2
mutations were listed as one of the major criteria in the 2008 WHO classification [10].
After identifying MPL and CALR mutations, the three driver genes are now available for
a revised 2022 WHO classification, which highlights the importance of genetic testing
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in BCR::ABL1-negative MPN, and have become essential for the definitive diagnosis of
BCR::ABL1-negative MPNs [1,2]. However, a portion of patients with ET and PMFs (ap-
proximately 10–15%) exhibit negativity for all these driver mutations, which are considered
to be triple-negative (TN). As for the diagnosis of TN, an exclusion of the possibility of
nonneoplastic blood cell mass elevation should be carefully conducted in addition to a
bone marrow (BM) biopsy which is mandatory to confirm that the histopathological charac-
teristics of the BM morphology match the diagnostic criteria of BCR::ABL1-negative MPNs
regardless of the presence of driver gene mutations, because no diagnostic markers have
been identified [11]. To find novel gene alterations, genome-wide approaches targeting TN
cases have been performed, and although several novel driver mutations in BCR::ABL1-
negative MPNs have been found, the functional role of these mutations in the pathogenesis
of BCR::ABL1-negative MPNs remains unclear [12]. Recently, CREB3L1 overexpression in
RNA from the platelets of MPN patients was identified, which may be a comprehensive
diagnostic marker for BCR::ABL1-negative MPNs [13]. In addition, several mutations on
the genes functioning as epigenetic modifiers and splicing factors were identified not only
in leukemias/myelodysplastic syndromes but also in BCR::ABL1-negative MPNs, and the
association of these mutations with the prognosis of BCR::ABL1-negative MPNs has been
analyzed (Figure 2C) [14–17]. Furthermore, the influence of genetic background on the
predisposition to BCR::ABL1-negative MPNs has been suggested in studies with large
cohorts and familial BCR::ABL1-negative MPN pedigrees [18,19]. This article describes
genetic abnormalities identified in BCR::ABL1-negative MPNs and their associations with
the development or prognosis of BCR::ABL1-negative MPNs.
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Figure 1. Schematical illustration describing the subtypes of myeloproliferative neoplasms (MPNs). 
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progenitor; GMP: granulocyte-monocyte progenitor; MEP: megakaryocyte–erythrocyte progenitor. 

Figure 1. Schematical illustration describing the subtypes of myeloproliferative neoplasms (MPNs).
Cell types are depicted as light gray squares. MPP: multipotent progenitor; CMP: common myeloid
progenitor; GMP: granulocyte-monocyte progenitor; MEP: megakaryocyte–erythrocyte progenitor.
Subtypes of MPNs are depicted as white rounded rectangles. Chronic myeloid leukemia (CML)
exhibits BCR::ABL1 gene (BCR::ABL1(+)). Other subtypes are stratified as BCR::ABL1-negative (−)
MPNs. CNL: chronic neutrophilic leukemia; CEL: chronic eosinophilic leukemia; PV: polycythemia
vera; ET: essential thrombocythemia; PMF: primary myelofibrosis.
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Figure 2. (A): Distribution of driver gene mutations for BCR::ABL1-negative MPNs in our Japanese co-
hort. Triple-negative: TN. (B): Driver gene mutations in BCR::ABL1-negative MPNs. Cell proliferation
signal is regulated through the binding of cytokines (erythropoietin: EPO or thrombopoietin: TPO) to
the receptors (erythropoietin receptor: EPOR or thrombopoietin receptor: MPL, left panel). However,
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in the driver gene-mutated BCR::ABL1-negative MPNs, downstream signal cascades constitutively
activate owing to the mutant proteins without the binding of cytokines. JAK2 exon 12 mutations
activate strong signals, especially for erythrocytosis, whereas JAK2V617F activates trilineage signals
(erythrocytosis, leukocytosis, and thrombocytosis). MPLW515L/K and mutant CALR activate MPL
signaling and trigger thrombocytosis (right panels). (C): Typical nondriver gene transcripts identified
in BCR::ABL1-negative MPNs. Mutations that occur in these genes disrupt the gene regulations and
my affect the prognosis of BCR::ABL1-negative MPNs. IDH1/2 generates a-ketoglutaric acids (a-KG)
from isocitrate. Mutant IDH1/2 generates 2-hydroxyglutaric acid (2HG) from a-KG, resulting in the
suppression of TET2. DNMT3A and TET2 act as DNA methylation and demethylation enzymes by
methylating cytosine to 5-methylcytosine (5mC) and oxidizing 5mC to 5-hydroxymethylcytosine
(5hmC), respectively. ASXL1 and EZH2 regulate the transcription through the trimethylation of
histone 3 lysine 27. SF3B1, SRSF2, and U2AF1 function as splicing factors. TP53 is a well-known
guardian gene of carcinogenesis.

2. JAK2 Mutations

The JAK2 mutations considered as driver mutations of BCR::ABL1-negative MPNs
are V617F substitution and complex mutations, including missense and in-frame dele-
tions/insertions at exon 12 [3–6]. These mutations concentrate around the JH2 domain,
which suppresses the kinase activity of the JH1 domain in JAK2 under a static state. JAK2
mutations decrease the suppression of kinase activity by the JH2 domain, resulting in
the constitutive activation of JAK2. The JAK2V617F mutation is a single nucleotide al-
teration from guanine to thymine at nucleotide position 1849, which causes an amino
acid change from V (valine, GTC) to F (phenylalanine, TTC) at codon 617. In addition,
the JAK2V617F mutation was initially identified from the three driver gene mutations of
BCR::ABL1-negative MPNs [3–5] and has been most frequently identified among the pa-
tients with BCR::ABL1-negative MPNs, and the positivity is approximately 97% in PV and
approximately 50% in ET and PMF. In contrast, JAK2 exon 12 mutations are specific for PV,
with 3% positivity (Figure 1A), and a variety of mutations have been identified at JAK2 exon
12 (Supplementary Table S1, according to the Catalogue Of Somatic Mutations In Cancer
(COSMIC) database, as of June 2023) [20,21]. Clinically, patients with PV harboring the
JAK2V617F mutation exhibit pancytosis, including leukocytosis, thrombocytosis, and ery-
throcytosis, whereas those harboring the JAK2 exon 12 mutation show only an aggressive
increase in red cell mass. As for the relationship between the prognosis and JAK2 mutations,
no significant differences between JAK2V617F-mutated and JAK2 exon 12-mutated patients
with PV have been observed [22]; nevertheless, JAK2V617F is a well-known risk factor of
thrombosis [23,24]. Thrombosis promoted through the increased neutrophil extracellular
trap formation was observed in the JAK2V617F-mutated murine model [25]. JAK2V617F
is also useful for monitoring the efficacy of treatments or predicting the outcome of pa-
tients. Pegylated interferon-α, for example, is one of the recently developed drugs against
MPNs and decreases the JAK2V617F allele burden in patients [26–28]. To date, pegylated
interferon-α is the only agent that specifically affects the hematopoietic stem/progenitor
cells of BCR::ABL1-negative MPNs, indicating the need for methodologies that quantify
the mutant burden to monitor the efficacy of such agents. Therefore, a unique quantitative
technique for assessing the JAK2V617F allele burden, alternately named binding-probe
competitive PCR (ABC-PCR), has been developed [29]. The JAK2V617F mutant allele load
(allele burden) in Japanese patients with BCR::ABL1-negative MPNs quantified by utiliz-
ing ABC-PCR showed the tendency of distribution of JAK2V617F allele burden between
the subtypes of BCR::ABL1-negative MPNs (Figure 3A). Furthermore, ABC-PCR enables
precise quantification of the JAK2V617F allele burden by correlating it with fluorescence
intensity and may be as effective as massively parallel sequencing (MPS, Figure 3B). By
utilizing ABC-PCR, the relationship between the allele burden and clinical significance
was clarified; the increase in mutant burden during the follow-up is associated with the
transformation to secondary myelofibrosis [30]. Furthermore, more studies have shown
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that thrombotic risks increase in patients bearing high allele burden [31] and more frequent
cooccurrence of chronic kidney disease and tendency for disease progression [32], implicat-
ing the relationship between the clinical relevance and mutant allele burdens. The series of
results obtained by groups studying Western patients and our group studying Japanese
patients demonstrate that the quantification of the JAK2V617F allele burden may be used
as an indicator of drug efficacy or to predict the adverse prognosis of BCR::ABL1-negative
MPNs. Moreover, the highly sensitive detection of JAK2V617F is desired for the early
diagnosis of MPNs. Melting curve analysis after T allele enrichment (MelCaTle) detects the
JAK2V617F allele at a single-copy level by eliminating the JAK2 wild-type allele using a
peptide nucleic acid probe and BstXI restriction enzyme [33]. The combination of ABC-PCR
and MelCaTle enables precise detection of the JAK2V617F mutation at a single-molecule
level and accurately quantify the JAK2V617F burden in patients with MPNs.
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Figure 3. (A): Scatter plot showing the relationship between JAK2V617F allele burden measured
using massively parallel sequencing (MiSeq, x-axis) and those measured using ABC-PCR (y-axis).
The correlation coefficient of R2 was calculated as 0.991; (B): box plot showing the JAK2V617F
allele burden among patients with PV (red), ET (green), prefibrotic PMF (blue), and overt PMF
(purple) harboring the JAK2V617F mutation (>1.0%). The median/mean JAK2V617F allele burden is
72.3/66.8% in PV, 27.3/30.2% in ET, 46.3/50.2% in prefibrotic PMF, and 43.7/49.3% in overt PMF.

3. MPL Mutations

The majority of MPL mutations involve the substitution of W (tryptophane, c.1542-
1544TGG) at codon 515 with other nucleic acids, causing W515L/K/A/R (leucine/lysine/
alanine/arginine) mutations [7,34]. In addition to these W515 mutations, the substitution of
S (serine) at codon 505 with N/C (asparagine/cysteine) has been identified [35,36]. These
mutations are located at the membrane-spanning segment of MPL and are considered
to involve conformation changes that trigger constitutive activation of the downstream
molecules. Although the frequency of MPL mutations in BCR::ABL1-negative MPNs is
low (5% at most in ET, <10% in PMF), considering that mutant CALR binds to MPL and
activates downstream signals [37], signal activation through MPL may play a key role in
the pathogenesis of BCR::ABL1-negative MPNs [38]. Patients harboring MPL mutations are
also relatively rare, but a meta-analysis unifying seven studies clarified that patients with
ET harboring an MPL mutation showed higher risks for thrombosis than those harboring
a JAK2V617F mutation [39]. In line with this study, Japanese patients with ET harboring
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MPL mutations demonstrated a higher risk for thrombosis [40]. Therefore, MPL mutations
may be one of the adverse factors of thrombosis.

4. CALR Exon 9 Frameshift Mutations

The CALR mutation is the most recently discovered among the driver gene mutations
in BCR::ABL1-negative MPNs and is found in approximately 20–30% of patients with ET
and PMF [8,9]. This mutation is characterized by the presence of a deletion or insertion at
the end of exon 9, the final exon of the CALR gene. Over 100 variations have been found
(Supplementary Tables S2 and S3, according to the COSMIC database, as of January 2023),
all of which cause the same frameshift and produce a common amino acid sequence at
the C-terminus when translated into protein. Among them, deletions of 52 bases (type
1, p.L367fs*46) and insertions of 5 bases (type 2, p.K385fs*47) are the major mutations,
accounting for approximately 85% of the observed variations (Figure 4). Mutant CALR
activates downstream signaling by forming homomultimeric complexes through a new
amino acid sequence generated by the mutation, changing the structure of the CALR
protein and allowing it to bind with MPL [37,41,42]. Patients with overt PMF harboring a
CALR mutation have a better prognosis than those with other driver gene mutations [43].
Regarding the CALR mutations in overt PMF, CALR type 1 mutations are dominant, and
patients harboring the type 2 mutation exhibit a poorer prognosis than those with the type
1 mutation [44,45].
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Figure 4. Distribution of CALR frameshift mutations analyzed in our data. ET (left, n = 179),
prefibrotic PMF (middle, n = 13), and overt PMF (right, n = 31).

5. Triple-Negative BCR::ABL1-Negative MPNs

A portion of patients with BCR::ABL1-negative MPNs (none or rare in PV, 10–15% in ET,
and ~10% in PMF) have none of the driver mutations, referred to as TN cases. Noncanonical
somatic mutations at driver genes of BCR::ABL1-negative MPNs (e.g., JAK2G571S and
MPLS204F/P) have been identified in TN cases; however, it should be considered that these
mutations do not account for all the remaining cases (Supplementary Table S4) [12,46] and
no evidence of cytokine-independent cell growth has been reported for these mutations.
Whole exome sequencing and analysis of TN-ET have shown that approximately half of
the patients exhibited polyclonal cell differentiation, which implies that some cases of
thrombocytosis in TN-ET may be caused by nonneoplastic diseases [12,47]. In addition,
several cases of nonneoplastic erythrocytosis (NNE) showing low EPO levels (<4.2 IU/mL,
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low EPO NNE) were identified in our analysis. BM biopsy samples derived from low
EPO NNE patients were diagnosed by histopathologists, resulting in the denial of PV in
all cases [48]. Careful histopathological diagnosis of promising diagnostic markers for
BCR::ABL1-negative MPNs is mandatory for such puzzling cases.

6. CREB3L1 as a Novel Diagnostic Marker of BCR::ABL1-Negative MPNs

To diagnose TN cases in practice, a histopathological diagnosis of the BM biopsy is
required. However, the discrimination of TN from reactive cases is challenging because
the pathological diagnosis of BCR::ABL1-negative MPNs is not always reproducible, even
for expert hematopathologists. By focusing on the fact that typical clinical presentations
(i.e., thrombocytosis) of ET are similar regardless of the presence and type of driver gene
mutations, and that the downstream RNA expression may be common and different from
that in reactive cases, differential expression analysis utilizing RNA from platelet-rich
plasma (PRP) obtained from ET and reactive thrombocytosis patients was conducted. As
a result, CREB3L1 was found to be specifically overexpressed among ET patients [13].
CREB3L1 is a transcription factor that localizes in the endoplasmic reticulum (ER), migrates
into the nucleus in response to ER stress, and induces the expression of various genes [49].
Although the role of CREB3L1 in the pathogenesis of BCR::ABL1-negative MPNs remains
unclear, the IRE1a/XBP1 pathway, which is an ER stress-responsible pathway other than
CREB3L1, is activated by the CALR type 1 mutation and drives BCR::ABL1-negative
MPNs [50]. In breast and bladder cancer, CREB3L1 is highly methylated, and CREB3L1
expression is inversely correlated with tumor grade, indicating that it acts in a tumor-
suppressive manner [51,52].

Expansion of the testing of CREB3L1 overexpression for other subtypes of BCR::ABL1-
negative MPNs harboring one of the driver gene mutations in the validation analysis by
employing quantitative PCR revealed that CREB3L1 was overexpressed widely among
BCR::ABL1-negative MPNs compared with those of reactive cases and healthy volunteers
(Figure 5). The area under the ROC curve showed that the sensitivity and specificity were
both 1.0000, indicating that the CREB3L1 overexpression in PRP discriminates driver gene-
mutated BCR::ABL1-negative MPNs from reactive cases [13]. Further investigations are
required to determine whether CREB3L1 expression is a diagnostic marker for BCR::ABL1-
negative MPNs, including TN cases. In our cohort, 20 cases without any driver mutations
were definitively diagnosed with TN-ET according to the pathological characteristics.
Among them, eight cases did not express CREB3L1 mRNA. Based on these findings, TN-ET
cases were stratified into two groups (CREB3L1-positive TN-ET and CREB3L1-negative TN-
ET) and the clinical parameters of the two groups were monitored. As a result, the platelet
counts of two patients with CREB3L1-negative TN-ET decreased to normal levels during
observation. In both cases, the BM biopsies at the time of initial diagnosis were consistent
with ET, but the BM examinations performed at the time of spontaneous regression were
negative for ET [13]. Therefore, aggressive treatments, such as anticancer drugs, should
be avoided, and careful follow-up observation is recommended in cases with CREB3L1-
negative TN-ET.
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7. Nondriver Mutations and Their Association with the Prognosis of
BCR::ABL1-Negative MPNs

Comprehensive genome analyses, such as MPS, have identified some mutations relat-
ing to epigenetic modification and RNA-splicing among patients with BCR::ABL1-negative
MPNs at low frequency [14,15]. MPS-based comprehensive target resequencing method-
ology focusing on these nondriver mutations also revealed that the mutations highly
accumulated in patients with BCR::ABL1-negative MPNs were correlated with a poor prog-
nosis. Based on these findings, mutation-enhanced prognostic scoring systems based on the
positivity of nondriver mutations have been proposed and are widely used to estimate the
prognostic risks of patients with BCR::ABL1-negative MPNs. For example, the mutation-
enhanced international prognostic scoring system (MIPSS) 70+ v2.0, which was originally
designed for patients with PMF aged 70 years or younger and eligible for transplantation,
uses the CALR, ASXL1, EZH2, IDH1/2, SRSF2, and U2AF1Q157 mutations [53]. MIPSS-ET
and -PV are available for classifying the prognostic risks of patients with ET and PV, using
the SF3B1, SRSF2, TP53, and U2AF1 mutations for ET and the SRSF2 mutation for PV [54].

Similar to the results obtained by other groups, patients with PMF harboring ASXL1,
EZH2, and/or SRSF2 mutations exhibited significantly shorter 5-year overall survival, and
these gene mutations are also the poor prognostic factors of PMF that were demonstrated
in the Japanese cohort [16]. Furthermore, regarding ET and PV, the frequencies of ASXL1
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and EZH2 mutations increase as the diseases progresses from ET or PV to prefibrotic PMF
and overt PMF, whereas the frequencies of DNMT3A and TET2 mutations are unrelated
to disease type. This implies that ASXL1 and EZH2 mutations are related to disease
progression, whereas DNMT3A and TET2 mutations may trigger the disease. Logistic
regression analysis showed that ASXL1 mutation-positive ET/PV patients had a high
rate of progression to leukemia and myelofibrosis [17]. Nonetheless, the prognosis of
BCR::ABL1-negative MPNs may be affected by the timing and order of the acquisition of
these mutations. Although the effect of timing remains unclarified, the effect of acquisition
order on the phenotype of BCR::ABL1-negative MPNs has been studied. Ortmann and
colleagues cultured mononuclear cells isolated from the peripheral blood of BCR::ABL1-
negative MPN patients who were positive for both JAK2V617F and TET2 mutations in
methylcellulose medium and examined the positivity of JAK2 and TET2 mutations in the
BFU-E colonies. As a result, patients with JAK2V617F-first colonies had stronger clinical
symptoms and were at higher risk of developing thrombosis and PV than those with
the TET2-first colonies. The authors proposed a model in which the respective clinical
symptoms differ according to the acquisition order of JAK2 and TET2 mutations [55].
Moreover, a colony assay targeting a patient with myelodysplastic syndrome (MDS)/MPN-
RS-T harboring both JAK2 exon 12 (p.H538_K539delinsL) and SF3B1E622D mutations
demonstrated that SF3B1-mutated clones existed in isolation but all clones with JAK2
exon 12 mutations had accompanying SF3B1 mutations. This indicates that the SF3B1
mutation triggers pancytopenia in the cells and then the JAK2 mutation is acquired as a
second-hit mutation, causing thrombocytosis in the patient to rescue the pancytopenia to
some extent [56]. The above two studies show that the first-hit gene mutations characterize
the basal phenotype of the disease, and the second-hit mutations contribute additional
clinical presentations of the disease; therefore, the order in which the gene mutations are
acquired may explain the development and progression of the disease. More recently,
comprehensive RNA expression analysis with single-cell resolution has been employed to
estimate cell profiling in patients. Tong and colleagues found prominent megakaryocyte
lineage priming and elevated interferon signaling in hematopoietic stem cells (HSCs) in
JAK2V617F-mutated ET patients, and the pathogenesis and therapeutic responses were
dependent on the JAK2V617F heterogeneity of HSCs [57]. A more precise association
between the disease development and traits, including single nucleotide polymorphisms
(SNPs) or the differentiation and proliferation of neoplastic cells in BCR::ABL1-negative
MPNs, may be revealed by novel approaches such as the network genome-wide association
studies (networkGWAS) and RNA velocity-based algorithms (e.g., CellRank) [58–60].

8. Genetic Background Enhancing the Risk of Developing BCR::ABL1-Negative MPNs

The accumulation of mutations is highly dependent on age, and elderly individuals
sometimes develop clonal hematopoiesis because of acquired mutations [61,62]. Such indi-
viduals are diagnosed with clonal hematopoiesis of intermediate potential (CHIP) or age-
related clonal hematopoiesis (ARCH) [63,64]. Regarding the development of CHIP/ARCH,
it has been experimentally demonstrated using the zebrafish model that mutant clones in-
crease by developing clonal fitness, which is driven by enhanced resistance to inflammatory
signals [65]. Notably, JAK2V617F has been identified with a frequency of approximately
0.1% in an analysis of 49,488 individuals, and 7 patients harboring JAK2V617F (48 individu-
als were removed for originally having MPNs) were then considered as CHIP/ARCH in
the final cohort. Furthermore, the JAK2V617F mutant burden in CHIP/ARCH increases
by 0.55% per year in the study, implying that the JAK2V617F-mutated cells acquire a mild
growth advantage, and therefore the development of BCR::ABL1-negative MPNs may
progress over time [66]. This implication is supported by another investigation, which
clarified that JAK2V617F mutations occur decades before BCR::ABL1-negative MPN diag-
nosis, increase the fitness of HSCs, and induce a megakaryocyte–erythroid differentiation
bias [67]. CHIP/ARCH individuals also have an increased risk of developing hematologic
malignancies or cardiovascular diseases in patients with additional mutations [68].
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Some studies have investigated the impact of genetic background on the risk of
developing BCR::ABL1-negative MPNs. For example, the JAK2 46/1 haplotype concomitant
with JAK2V617F, RBBP6, SH2B3, and TERT mutations was shown to increase the risk of
developing BCR::ABL1-negative MPNs [69–74]. A GWAS analysis of 888,503 individuals,
including 2949 patients with BCR::ABL1-negative MPNs, identified 17 loci, including JAK2
and TERT [18]. SNPs located at the identified loci, such as rs17879961 (located at CHEK2
exon 5) and rs534137 (located at the promoter region of GFI1B), were considered to induce
the instability of HSCs homeostasis and may predispose patients to BCR::ABL1-negative
MPNs. In addition, a germline frameshift mutation at Carbohydrate Sulfotransferase 15
(CHST15) has been identified among some familial BCR::ABL1-negative MPN pedigrees
with the same geographical origin [19]. Mutant CHST15 reduces expression levels of
CHST15 and its target genes, which induces a chronic inflammatory response, and this may
also predispose patients to BCR::ABL1-negative MPNs. The above mutations may trigger
genetic instability in the cells, induce chronic inflammation, and impose cell fitness toward
a predisposition to BCR::ABL1-negative MPNs.

In addition to SNPs that confer higher susceptibility to develop BCR::ABL1-negative
MPNs, SNPs that affect the phenotype, prognosis, and response to therapies of BCR::ABL1-
negative MPNs have been reported and summarized [75]. Although allelic frequencies are
not rare (0.114822 for rs6198, 0.279039 for rs1024611, and 0.444187 for rs2431697 by gnomAD,
respectively), a poorer prognosis was observed among patients with PMF harboring both
JAK2V617F and homozygous mutations of rs6198 locating at NR3C1 than those bearing
wild-type NR3C1 [76], rs1024611 at CCL2 strongly correlated to the CCL2 expression and
the myelofibrosis grade [77], and homozygous rs2431697 at miR-146a was associated with
myelofibrosis progression [78]. Furthermore, IL28B rs12979860 homozygous phenotype
showed hematologic response in patients with PV treated with interferon-α [79]. These
SNPs would be useful to consider as a therapeutic strategy for BCR::ABL1-negative MPNs.

9. Conclusions

This review focused on the gene alterations involved in the pathogenesis or develop-
ment of BCR::ABL1-negative MPNs. Notably, the number of mutations associated with
BCR::ABL1-negative MPNs is smaller than those of acute leukemias and solid tumors, and
the genetic mutation analyses play a significant role in confirming diagnosis and prognosis.
On top of this, quantitation of mutant burden in the patients can provide important clinical
information such as transformation to myelofibrosis and drug responses in the patients
with BCR::ABL1-negative MPNs.

10. Future Perspective

The function of each mutation found in BCR::ABL1-negative MPNs is relatively easy to
analyze; therefore, clarifying the pathogenesis of BCR::ABL1-negative MPNs may provide
a model for other hematopoietic malignancies and solid cancers. The latest comprehensive
gene expression technologies and subsequent statistical analyses help to elucidate the
cell behavior with single-cell resolution. Moreover, deep machine learning approaches
using artificial intelligence may assist in developing novel diagnostic/prognosis markers
and help elucidate the pathogenesis of BCR::ABL1-negative MPNs, potentially leading to
personalized therapies [80].
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