Non-Invasive Intranasal Delivery of pApoE2: Effect of Multiple Dosing on the ApoE2 Expression in Mice Brain
Abstract
:1. Introduction
2. Results
2.1. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM)
2.2. Selected Area Electron Diffraction (SAED) and X-Rya Diffraction (X-RD)
2.3. Hemolysis
2.4. In Vitro ApoE2 Transfection
2.5. In Vivo pApoE2 Transfection
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Synthesis and Characterization of OA-g-CS-PEN-MAN Conjugate
4.2.2. Surface Electron Microscopy (SEM) and Selected Area Electron Diffraction (SAED)
4.2.3. X-ray Diffraction
4.2.4. Atomic Force Microscopy
4.2.5. Hemocompatibility
4.2.6. In Vitro pApoE2 Transfection
4.2.7. In Vivo pApoE2 Transfection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Layek, B.; Singh, J. Cell penetrating peptide conjugated polymeric micelles as a high performance versatile nonviral gene carrier. Biomacromolecules 2013, 14, 4071–4081. [Google Scholar] [CrossRef] [PubMed]
- Lamptey, R.N.L.; Gothwal, A.; Trivedi, R.; Arora, S.; Singh, J. Synthesis and Characterization of Fatty Acid Grafted Chitosan Polymeric Micelles for Improved Gene Delivery of VGF to the Brain through Intranasal Route. Biomedicines 2022, 10, 493. [Google Scholar] [CrossRef]
- Lennon, M.J.; Rigney, G.; Raymont, V.; Sachdev, P. Genetic therapies for Alzheimer’s disease: A scoping review. J. Alzheimer’s Dis. 2021, 84, 491–504. [Google Scholar] [CrossRef]
- Fernández-Calle, R.; Konings, S.C.; Frontiñán-Rubio, J.; García-Revilla, J.; Camprubí-Ferrer, L.; Svensson, M.; Martinson, I.; Boza-Serrano, A.; Venero, J.L.; Nielsen, H.M. APOE in the bullseye of neurodegenerative diseases: Impact of the APOE genotype in Alzheimer’s disease pathology and brain diseases. Mol. Neurodegener. 2022, 17, 62. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Zhao, N.; Caulfield, T.R.; Liu, C.-C.; Bu, G. Apolipoprotein E and Alzheimer disease: Pathobiology and targeting strategies. Nat. Rev. Neurol. 2019, 15, 501–518. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Shue, F.; Zhao, N.; Shinohara, M.; Bu, G. APOE2: Protective mechanism and therapeutic implications for Alzheimer’s disease. Mol. Neurodegener. 2020, 15, 63. [Google Scholar] [CrossRef]
- Croisier, F.; Jérôme, C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J. 2013, 49, 780–792. [Google Scholar] [CrossRef]
- Khatoon, R.; Alam, M.A.; Sharma, P.K. Current approaches and prospective drug targeting to brain. J. Drug Deliv. Sci. Technol. 2021, 61, 102098. [Google Scholar] [CrossRef]
- Veronesi, M.C.; Alhamami, M.; Miedema, S.B.; Yun, Y.; Ruiz-Cardozo, M.; Vannier, M.W. Imaging of intranasal drug delivery to the brain. Am. J. Nucl. Med. Mol. Imaging 2020, 10, 1–31. [Google Scholar]
- Crowe, T.P.; Greenlee, M.H.W.; Kanthasamy, A.G.; Hsu, W.H. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018, 195, 44–52. [Google Scholar] [CrossRef]
- Sharma, D.; Singh, J. Synthesis and characterization of fatty acid grafted chitosan polymer and their nanomicelles for nonviral gene delivery applications. Bioconjug. Chem. 2017, 28, 2772–2783. [Google Scholar] [CrossRef] [PubMed]
- Layek, B.; Singh, J. Caproic acid grafted chitosan cationic nanocomplexes for enhanced gene delivery: Effect of degree of substitution. Int. J. Pharm. 2013, 447, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed. 2012, 7, 5577–5591. [Google Scholar] [CrossRef] [PubMed]
- Layek, B.; Lipp, L.; Singh, J. Cell penetrating peptide conjugated chitosan for enhanced delivery of nucleic acid. Int. J. Mol. Sci. 2015, 16, 28912–28930. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, Z.-Y.; Zhang, J.; Zhang, Y.; Huo, H.; Wang, T.; Jiang, T.; Wang, S. RVG-peptide-linked trimethylated chitosan for delivery of siRNA to the brain. Biomacromolecules 2014, 15, 1010–1018. [Google Scholar] [CrossRef]
- Sharma, D.; Arora, S.; Banerjee, A.; Singh, J. Improved insulin sensitivity in obese-diabetic mice via chitosan Nanomicelles mediated silencing of pro-inflammatory Adipocytokines. Nanomed. Nanotechnol. Biol. Med. 2021, 33, 102357. [Google Scholar] [CrossRef]
- Yemisci, M.; Caban, S.; Fernandez-Megia, E.; Capan, Y.; Couvreur, P.; Dalkara, T. Preparation and characterization of biocompatible chitosan nanoparticles for targeted brain delivery of peptides. In Neurotrophic Factors: Methods in Molecular Biology; Humana Press: New York, NY, USA, 2018; pp. 443–454. [Google Scholar]
- Sharma, A.; Porterfield, J.E.; Smith, E.; Sharma, R.; Kannan, S.; Kannan, R.M. Effect of mannose targeting of hydroxyl PAMAM dendrimers on cellular and organ biodistribution in a neonatal brain injury model. J. Control Release 2018, 283, 175–189. [Google Scholar] [CrossRef]
- Byeon, H.J.; Lee, S.; Min, S.Y.; Lee, E.S.; Shin, B.S.; Choi, H.-G.; Youn, Y.S. Doxorubicin-loaded nanoparticles consisted of cationic-and mannose-modified-albumins for dual-targeting in brain tumors. J. Control Release 2016, 225, 301–313. [Google Scholar] [CrossRef]
- De Blasio, D.; Fumagalli, S.; Longhi, L.; Orsini, F.; Palmioli, A.; Stravalaci, M.; Vegliante, G.; Zanier, E.R.; Bernardi, A.; Gobbi, M. Pharmacological inhibition of mannose-binding lectin ameliorates neurobehavioral dysfunction following experimental traumatic brain injury. J. Cereb. Blood Flow Metab. 2017, 37, 938–950. [Google Scholar] [CrossRef]
- Peng, H.; Du, D.; Zhang, J. Liposomes modified with p-aminophenyl-α-D-mannopyranoside: A promising delivery system in targeting the brain. Ther. Deliv. 2013, 4, 1475–1477. [Google Scholar] [CrossRef]
- Umezawa, F.; Eto, Y. Liposome targeting to mouse brain: Mannose as a recognition marker. Biochem. Biophys. Res. Commun. 1988, 153, 1038–1044. [Google Scholar] [CrossRef]
- dos Santos Rodrigues, B.; Kanekiyo, T.; Singh, J. ApoE-2 brain-targeted gene therapy through transferrin and penetratin tagged liposomal nanoparticles. Pharm. Res. 2019, 36, 161. [Google Scholar] [CrossRef]
- Cao, Y.; Tan, Y.F.; Wong, Y.S.; Liew, M.W.J.; Venkatraman, S. Recent advances in chitosan-based carriers for gene delivery. Mar. Drugs 2019, 17, 381. [Google Scholar] [CrossRef]
- Richard, I.; Thibault, M.; De Crescenzo, G.; Buschmann, M.D.; Lavertu, M. Ionization behavior of chitosan and chitosan–DNA polyplexes indicate that chitosan has a similar capability to induce a proton-sponge effect as PEI. Biomacromolecules 2013, 14, 1732–1740. [Google Scholar] [CrossRef] [PubMed]
- Boussif, O.; Lezoualc’h, F.; Zanta, M.A.; Mergny, M.D.; Scherman, D.; Demeneix, B.; Behr, J.-P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA 1995, 92, 7297–7301. [Google Scholar] [CrossRef] [PubMed]
- Akinc, A.; Thomas, M.; Klibanov, A.M.; Langer, R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene Med. 2005, 7, 657–663. [Google Scholar] [CrossRef]
- Kanazawa, T.; Akiyama, F.; Kakizaki, S.; Takashima, Y.; Seta, Y. Delivery of siRNA to the brain using a combination of nose-to-brain delivery and cell-penetrating peptide-modified nano-micelles. Biomaterials 2013, 34, 9220–9226. [Google Scholar] [CrossRef] [PubMed]
- Zabaleta, N.; Unzu, C.; Weber, N.D.; Gonzalez-Aseguinolaza, G. Gene therapy for liver diseases—Progress and challenges. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 288–305. [Google Scholar] [CrossRef]
- Camacho, M.; Kong, Q. Gene Therapy Strategies for Prophylactic and Therapeutic Treatments of Human Prion Diseases. In Prions and Diseases; Springer: Berlin/Heidelberg, Germany, 2023; pp. 745–755. [Google Scholar]
- Donnelley, M.; Parsons, D.; Prichard, I. Perceptions of airway gene therapy for cystic fibrosis. Expert Opin. Biol. Ther. 2023, 23, 103–113. [Google Scholar] [CrossRef]
- Liu, L.; Venkatraman, S.S.; Yang, Y.Y.; Guo, K.; Lu, J.; He, B.; Moochhala, S.; Kan, L. Polymeric micelles anchored with TAT for delivery of antibiotics across the blood–brain barrier. Pept. Sci. 2008, 90, 617–623. [Google Scholar] [CrossRef]
- Arora, S.; Sharma, D.; Singh, J. GLUT-1: An effective target to deliver brain-derived neurotrophic factor gene across the blood brain barrier. ACS Chem. Neurosci. 2020, 11, 1620–1633. [Google Scholar] [CrossRef]
- Gothwal, A.; Lamptey, R.N.L.; Singh, J. Multifunctionalized Cationic Chitosan Polymeric Micelles Polyplexed with pVGF for Noninvasive Delivery to the Mouse Brain through the Intranasal Route for Developing Therapeutics for Alzheimer’s Disease. Mol. Pharm. 2023, 20, 3009–3019. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tan, J.; Thomas, A.; Ou-Yang, D.; Muzykantov, V.R. The shape of things to come: Importance of design in nanotechnology for drug delivery. Ther. Deliv. 2012, 3, 181–194. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, C.; Li, C.; Wu, W.; Jiang, X. Shape effects of cylindrical versus spherical unimolecular polymer nanomaterials on in vitro and in vivo behaviors. Research 2019, 2019, 2391486. [Google Scholar] [CrossRef] [PubMed]
- Jampafuang, Y.; Tongta, A.; Waiprib, Y. Impact of crystalline structural differences between α-and β-chitosan on their nanoparticle formation via ionic gelation and superoxide radical scavenging activities. Polymers 2019, 11, 2010. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.L.; Lavertu, M.; Winnik, F.M.; Buschmann, M.D. New Insights into chitosan-DNA interactions using isothermal titration microcalorimetry. Biomacromolecules 2009, 10, 1490–1499. [Google Scholar] [CrossRef]
- Sharma, D.; Singh, J. Long-term glycemic control and prevention of diabetes complications in vivo using oleic acid-grafted-chitosan-zinc-insulin complexes incorporated in thermosensitive copolymer. J. Control Release 2020, 323, 161–178. [Google Scholar] [CrossRef]
- Niza, E.; Nieto-Jiménez, C.; Noblejas-López, M.d.M.; Bravo, I.; Castro-Osma, J.A.; de la Cruz-Martínez, F.; Martínez de Sarasa Buchaca, M.; Posadas, I.; Canales-Vázquez, J.; Lara-Sanchez, A. Poly (cyclohexene phthalate) nanoparticles for controlled dasatinib delivery in breast cancer therapy. Nanomaterials 2019, 9, 1208. [Google Scholar] [CrossRef]
- Wilhelmus, M.M.; Otte-Höller, I.; Davis, J.; Van Nostrand, W.E.; de Waal, R.M.; Verbeek, M.M. Apolipoprotein E genotype regulates amyloid-β cytotoxicity. J. Neurosci. 2005, 25, 3621–3627. [Google Scholar] [CrossRef]
- Folin, M.; Baiguera, S.; Guidolin, D.; Di Liddo, R.; Grandi, C.; De Carlo, E.; Nussdorfer, G.G.; Parnigotto, P.P. Apolipoprotein-E modulates the cytotoxic effect of β-amyloid on rat brain endothelium in an isoform-dependent specific manner. Int. J. Mol. Med. 2006, 17, 821–826. [Google Scholar] [CrossRef]
- Li, L.; Li, R.; Zacharek, A.; Wang, F.; Landschoot-Ward, J.; Chopp, M.; Chen, J.; Cui, X. ABCA1/ApoE/HDL signaling pathway facilitates myelination and oligodendrogenesis after stroke. Int. J. Mol. Sci. 2020, 21, 4369. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Rodrigues, B.; Oue, H.; Banerjee, A.; Kanekiyo, T.; Singh, J. Dual functionalized liposome-mediated gene delivery across triple co-culture blood brain barrier model and specific in vivo neuronal transfection. J. Control Release 2018, 286, 264–278. [Google Scholar] [CrossRef] [PubMed]
- Oak, M.; Mandke, R.; Lakkadwala, S.; Lipp, L.; Singh, J. Effect of Molar Mass and Water Solubility of Incorporated Molecules on the Degradation Profile of the Triblock Copolymer Delivery System. Polymers 2015, 7, 1510–1521. [Google Scholar] [CrossRef]
- Mahanta, A.K.; Patel, D.K.; Maiti, P. Nanohybrid scaffold of chitosan and functionalized graphene oxide for controlled drug delivery and bone regeneration. ACS Biomater. Sci. Eng. 2019, 5, 5139–5149. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Layek, B.; Singh, J. Design and Validation of Liposomal ApoE2 Gene Delivery System to Evade Blood–Brain Barrier for Effective Treatment of Alzheimer’s Disease. Mol. Pharm. 2021, 18, 714–725. [Google Scholar] [CrossRef]
Treatment | ApoE Protein Expression (Mean ± SEM) | ||
---|---|---|---|
Astrocytes (ng/μg Protein) | Neurons (ng/μg Protein) | C57BL6/J Mice (ng/mg of Protein) | |
Saline | 4.73 ± 1.03 | 0.94 ± 0.33 | 42.89 ± 5.76 |
pApoE2 | 5.64 ± 0.80 | 1.17 ± 0.35 | 49.86 ± 4.75 |
CS/pApoE2 | 7.11 ± 1.15 | 1.18 ± 0.20 | - |
OA-g-CS/pApoE2 | 6.93 ± 1.96 | 1.42 ± 0.29 | 61.76 ± 6.78 |
OA-g-CS-PEN/pApoE2 | 7.34 ± 1.47 | 2.20 ± 0.33 | - |
OA-g-CS-MAN/pApoE2 | 7.69 ± 0.93 | 2.25 ± 0.75 | - |
OA-g-CS-PEN-MAN/pApoE2 | 11.5 ± 1.64 | 3.66 ± 0.08 | 81.28 ± 6.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gothwal, A.; Lamptey, R.N.L.; Trivedi, R.; Chaulagain, B.; Singh, J. Non-Invasive Intranasal Delivery of pApoE2: Effect of Multiple Dosing on the ApoE2 Expression in Mice Brain. Int. J. Mol. Sci. 2023, 24, 13019. https://doi.org/10.3390/ijms241613019
Gothwal A, Lamptey RNL, Trivedi R, Chaulagain B, Singh J. Non-Invasive Intranasal Delivery of pApoE2: Effect of Multiple Dosing on the ApoE2 Expression in Mice Brain. International Journal of Molecular Sciences. 2023; 24(16):13019. https://doi.org/10.3390/ijms241613019
Chicago/Turabian StyleGothwal, Avinash, Richard Nii Lante Lamptey, Riddhi Trivedi, Bivek Chaulagain, and Jagdish Singh. 2023. "Non-Invasive Intranasal Delivery of pApoE2: Effect of Multiple Dosing on the ApoE2 Expression in Mice Brain" International Journal of Molecular Sciences 24, no. 16: 13019. https://doi.org/10.3390/ijms241613019
APA StyleGothwal, A., Lamptey, R. N. L., Trivedi, R., Chaulagain, B., & Singh, J. (2023). Non-Invasive Intranasal Delivery of pApoE2: Effect of Multiple Dosing on the ApoE2 Expression in Mice Brain. International Journal of Molecular Sciences, 24(16), 13019. https://doi.org/10.3390/ijms241613019