Characterization and Classification In Silico of Peptides with Dual Activity (Antimicrobial and Wound Healing)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Descriptive and ANOVA Analysis of the Peptide Database by Cluster
- -
- The predominant sequences in this cluster are from mammals, followed by those from plants and the amphibian category.
- -
- Among the peptides from mammals, we identify protegrin 1, cathelicidin 1, PDC213, and both beta and theta defensins, which primarily exhibit migration activities.
- -
- The plant-derived peptides include defensins from species such as Allium sativum, Jatropha curcas, and Lupinus luteus, which have wound-healing activities related to migration and immunomodulation.
- -
- Within the amphibian group, we notice peptides like odorranain B1, tigerinin, and taipehensin, which are specifically sourced from frogs of the Odorrana genus. It is a widely accepted fact that these frogs, especially in their dorsal skin, have glands producing a broad spectrum of peptides [12,13,52,53]. Applying these kinds of amphibian peptides directly to wounds has been shown to accelerate healing by promoting collagen production in fibroblasts, spurring keratinocyte proliferation, and increasing the levels of various growth factors beneficial for blood vessel formation [4,13].
2.2. Correlation Analysis between Physicochemical Properties and Peptide Activities
2.3. Principal Component Analysis of Physicochemical Properties and Peptide Activity
2.4. Analysis of the Frequency and Distribution of Residues in Peptides
2.5. Analysis of the Motifs and Family Domains in Peptides
- Cluster 1: The most frequent motifs are ‘CRC’, ‘RCI’, ‘CIC’, ‘CTR’, and ‘GFC’.
- Cluster 2: The most frequent motifs are ‘GTC’, ‘CCR’, ‘YCR’, ‘CRR’, and ‘CYC’.
- Cluster 3: The most frequent motifs are ‘SHR’, ‘CRC’, ‘KFH’, ‘FHE’, and ‘HEK’.
- Cluster 4: The most frequent motifs are ‘KKF’, ‘GGL’, ‘KKL’, ‘SLI’, and ‘FKK’.
2.6. Final Findings
3. Materials and Methods
3.1. Selection of Peptide Databases
3.2. Search and Estimation of Physicochemical Properties
3.3. Statistics and Classification of Wound-Healing Peptides
3.4. Functional Domain Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
ANOVA | |||||||
---|---|---|---|---|---|---|---|
Sum of Squares | df | Mean Square | F-Value | p-Value | |||
Length | Between Groups | 14,215.035 | 3 | 4738.345 | 179.771 | 0.000 | |
Within Groups | 5350.617 | 203 | 26.358 | ||||
Total | 19,565.652 | 206 | |||||
Hydrophobicity | Between Groups | 26,041.766 | 3 | 8680.589 | 245.432 | 0.000 | |
Within Groups | 7179.817 | 203 | 35.369 | ||||
Total | 33,221.583 | 206 | |||||
GRAVY | Between Groups | 54.779 | 3 | 18.260 | 31.028 | 0.000 | |
Within Groups | 119.464 | 203 | 0.588 | ||||
Total | 174.242 | 206 | |||||
Net Charge at pH 7 | Between Groups | 387.845 | 3 | 129.282 | 13.140 | 0.000 | |
Within Groups | 1997.239 | 203 | 9.839 | ||||
Total | 2385.083 | 206 | |||||
Boman Index | Between Groups | 1036.552 | 3 | 345.517 | 1.459 | 0.227 | |
Within Groups | 48,080.181 | 203 | 236.848 | ||||
Total | 49,116.733 | 206 | |||||
Multiple Comparisons | |||||||
HSD Tukey | |||||||
Dependent Variable | (I) Cluster | (J) Cluster | Mean Difference (I–J) | Std. Error | Sig. | 95% Confidence Interval | |
Lower Limit | Upper Limit | ||||||
Length | 1 | 2 | −17.628 * | 0.935 | 0.000 | −20.050 | −15.210 |
3 | 1.110 | 1.137 | 0.763 | −1.840 | 4.060 | ||
4 | −4.698 * | 1.104 | 0.000 | −7.560 | −1.840 | ||
2 | 1 | 17.628 * | 0.935 | 0.000 | 15.210 | 20.050 | |
3 | 18.738 * | 1.023 | 0.000 | 16.090 | 21.390 | ||
4 | 12.930 * | 0.986 | 0.000 | 10.370 | 15.480 | ||
3 | 1 | −1.110 | 1.137 | 0.763 | −4.060 | 1.840 | |
2 | −18.738 * | 1.023 | 0.000 | −21.390 | −16.090 | ||
4 | −5.808 * | 1.179 | 0.000 | −8.860 | −2.750 | ||
4 | 1 | 4.698 * | 1.104 | 0.000 | 1.840 | 7.560 | |
2 | −12.930 * | 0.986 | 0.000 | −15.480 | −10.370 | ||
3 | 5.808 * | 1.179 | 0.000 | 2.750 | 8.860 | ||
Hydrophobicity | 1 | 2 | −5.405 * | 1.083 | 0.000 | −8.211 | −2.599 |
3 | 18.307 * | 1.317 | 0.000 | 14.895 | 21.719 | ||
4 | −17.873 * | 1.279 | 0.000 | −21.187 | −14.559 | ||
2 | 1 | 5.405 * | 1.083 | 0.000 | 2.599 | 8.211 | |
3 | 23.712 * | 1.185 | 0.000 | 20.643 | 26.781 | ||
4 | −12.468 * | 1.142 | 0.000 | −15.428 | −9.509 | ||
3 | 1 | −18.307 * | 1.317 | 0.000 | −21.719 | −14.895 | |
2 | −23.712 * | 1.185 | 0.000 | −26.781 | −20.643 | ||
4 | −36.181 * | 1.366 | 0.000 | −39.720 | −32.641 | ||
4 | 1 | 17.873 * | 1.279 | 0.000 | 14.559 | 21.187 | |
2 | 12.468 * | 1.142 | 0.000 | 9.509 | 15.428 | ||
3 | 36.181 * | 1.366 | 0.000 | 32.641 | 39.720 | ||
GRAVY | 1 | 2 | 0.520 * | 0.140 | 0.001 | 0.158 | 0.882 |
3 | 1.165 * | 0.170 | 0.000 | 0.725 | 1.605 | ||
4 | −0.404 | 0.165 | 0.072 | −0.831 | 0.024 | ||
2 | 1 | −0.520 * | 0.140 | 0.001 | −0.882 | −0.158 | |
3 | 0.645 * | 0.153 | 0.000 | 0.249 | 1.041 | ||
4 | −0.924 * | 0.147 | 0.000 | −1.306 | −0.542 | ||
3 | 1 | −1.165 * | 0.170 | 0.000 | −1.605 | −0.725 | |
2 | −0.645 * | 0.153 | 0.000 | −1.041 | −0.249 | ||
4 | −1.569 * | 0.176 | 0.000 | −2.025 | −1.112 | ||
4 | 1 | 0.404 | 0.165 | 0.072 | −0.024 | 0.831 | |
2 | 0.924 * | 0.147 | 0.000 | 0.542 | 1.306 | ||
3 | 1.569 * | 0.176 | 0.000 | 1.112 | 2.025 | ||
Net Charge at pH 7 | 1 | 2 | −3.418 * | 0.571 | 0.000 | −4.898 | −1.938 |
3 | −1.863 * | 0.695 | 0.039 | −3.663 | −0.063 | ||
4 | −1.113 | 0.675 | 0.353 | −2.861 | 0.635 | ||
2 | 1 | 3.418 * | 0.571 | 0.000 | 1.938 | 4.898 | |
3 | 1.555 | 0.625 | 0.065 | −0.064 | 3.173 | ||
4 | 2.305 * | 0.603 | 0.001 | 0.744 | 3.865 | ||
3 | 1 | 1.863 * | 0.695 | 0.039 | 0.063 | 3.663 | |
2 | −1.555 | 0.625 | 0.065 | −3.173 | 0.064 | ||
4 | 0.750 | 0.721 | 0.726 | −1.117 | 2.616 | ||
4 | 1 | 1.113 | 0.675 | 0.353 | −0.635 | 2.861 | |
2 | −2.305 * | 0.603 | 0.001 | −3.865 | −0.744 | ||
3 | −0.750 | 0.721 | 0.726 | −2.616 | 1.117 | ||
Boman Index | 1 | 2 | 3.332 | 2.803 | 0.635 | −3.930 | 10.594 |
3 | −2.382 | 3.409 | 0.897 | −11.212 | 6.448 | ||
4 | 3.135 | 3.311 | 0.780 | −5.441 | 11.711 | ||
2 | 1 | −3.332 | 2.803 | 0.635 | −10.594 | 3.930 | |
3 | −5.714 | 3.066 | 0.247 | −13.655 | 2.228 | ||
4 | −0.197 | 2.956 | 10.000 | −7.856 | 7.462 | ||
3 | 1 | 2.382 | 3.409 | 0.897 | −6.448 | 11.212 | |
2 | 5.714 | 3.066 | 0.247 | −2.228 | 13.655 | ||
4 | 5.517 | 3.536 | 0.404 | −3.642 | 14.675 | ||
4 | 1 | −3.135 | 3.311 | 0.780 | −11.711 | 5.441 | |
2 | 0.197 | 2.956 | 10.000 | −7.462 | 7.856 | ||
3 | −5.517 | 3.536 | 0.404 | −14.675 | 3.642 |
References
- Gomes, A.; Teixeira, C.; Ferraz, R.; Prudêncio, C.; Gomes, P. Wound-Healing Peptides for Treatment of Chronic Diabetic Foot Ulcers and Other Infected Skin Injuries. Molecules 2017, 22, 1743. [Google Scholar] [CrossRef] [PubMed]
- Mangoni, M.L.; McDermott, A.M.; Zasloff, M. Antimicrobial Peptides and Wound Healing: Biological and Therapeutic Considerations. Exp. Dermatol. 2016, 25, 167–173. [Google Scholar] [CrossRef]
- Ventola, C.L. The Antibiotic Resistance Crisis. Pharm. Ther. 2015, 40, 7. [Google Scholar]
- Yin, S.; Wang, Y.; Yang, X. Amphibian-Derived Wound Healing Peptides: Chemical Molecular Treasure Trove for Skin Wound Treatment. Front. Pharmacol. 2023, 14, 1120228. [Google Scholar] [CrossRef] [PubMed]
- Liscano, Y.; Oñate-Garzón, J.; Delgado, J.P. Peptides with Dual Antimicrobial–Anticancer Activity: Strategies to Overcome Peptide Limitations and Rational Design of Anticancer Peptides. Molecules 2020, 25, 4245. [Google Scholar] [CrossRef]
- Thapa, R.K.; Diep, D.B.; Tønnesen, H.H. Topical Antimicrobial Peptide Formulations for Wound Healing: Current Developments and Future Prospects. Acta Biomater. 2020, 103, 52–67. [Google Scholar] [CrossRef]
- Felício, M.R.; Silva, O.N.; Gonçalves, S.; Santos, N.C.; Franco, O.L. Peptides with Dual Antimicrobial and Anticancer Activities. Front. Chem. 2017, 5, 5. [Google Scholar] [CrossRef]
- de Souza, G.S.; de Jesus Sonego, L.; Santos Mundim, A.C.; de Miranda Moraes, J.; Sales-Campos, H.; Lorenzón, E.N. Antimicrobial-Wound Healing Peptides: Dual-Function Molecules for the Treatment of Skin Injuries. Peptides 2022, 148, 170707. [Google Scholar] [CrossRef]
- Liscano, Y.; Oñate-Garzón, J.; Ocampo-Ibáñez, I.D. In Silico Discovery of Antimicrobial Peptides as an Alternative to Control SARS-CoV-2. Molecules 2020, 25, 5535. [Google Scholar] [CrossRef]
- Chang, L.; Mondal, A.; Perez, A. Towards Rational Computational Peptide Design. Front. Bioinform. 2022, 2, 1046493. [Google Scholar] [CrossRef]
- Hashemi, Z.S.; Zarei, M.; Fath, M.K.; Ganji, M.; Farahani, M.S.; Afsharnouri, F.; Pourzardosht, N.; Khalesi, B.; Jahangiri, A.; Rahbar, M.R.; et al. In Silico Approaches for the Design and Optimization of Interfering Peptides Against Protein–Protein Interactions. Front. Mol. Biosci. 2021, 8, 669431. [Google Scholar] [CrossRef] [PubMed]
- Liscano, Y.; Medina, L.; Oñate-Garzón, J.; Gúzman, F.; Pickholz, M.; Delgado, J.P. In Silico Selection and Evaluation of Pugnins with Antibacterial and Anticancer Activity Using Skin Transcriptome of Treefrog (Boana pugnax). Pharmaceutics 2021, 13, 578. [Google Scholar] [CrossRef] [PubMed]
- Demori, I.; Rashed, Z.E.; Corradino, V.; Catalano, A.; Rovegno, L.; Queirolo, L.; Salvidio, S.; Biggi, E.; Zanotti-Russo, M.; Canesi, L.; et al. Peptides for Skin Protection and Healing in Amphibians. Molecules 2019, 24, 347. [Google Scholar] [CrossRef] [PubMed]
- Larsson, D.G.J.; Flach, C.-F. Antibiotic Resistance in the Environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef]
- Moretta, A.; Scieuzo, C.; Petrone, A.M.; Salvia, R.; Manniello, M.D.; Franco, A.; Lucchetti, D.; Vassallo, A.; Vogel, H.; Sgambato, A.; et al. Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields. Front. Cell Infect. Microbiol. 2021, 11, 668632. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Song, Y.; Wu, C.; Zhang, X.; Bian, W.; Liu, N.; Yin, S.; Yang, M.; Luo, M.; Tang, J.; Yang, X. A Short Peptide Potentially Promotes the Healing of Skin Wound. Biosci. Rep. 2019, 39, BSR20181734. [Google Scholar] [CrossRef] [PubMed]
- Maximiano, M.R.; Rios, T.B.; Campos, M.L.; Prado, G.S.; Dias, S.C.; Franco, O.L. Nanoparticles in Association with Antimicrobial Peptides (NanoAMPs) as a Promising Combination for Agriculture Development. Front. Mol. Biosci. 2022, 9, 890654. [Google Scholar] [CrossRef]
- Chen, X.; Wu, X.; Wang, S. An Optimized Antimicrobial Peptide Analog Acts as an Antibiotic Adjuvant to Reverse Methicillin-Resistant Staphylococcus Aureus. npj Sci. Food 2022, 6, 57. [Google Scholar] [CrossRef]
- Shin, S.H.; Koh, Y.G.; Lee, W.G.; Seok, J.; Park, K.Y. The Use of Epidermal Growth Factor in Dermatological Practice. Int. Wound J. 2023, 20, 2414–2423. [Google Scholar] [CrossRef]
- Penn, J.W.; Grobbelaar, A.O.; Rolfe, K.J. The Role of the TGF-β Family in Wound Healing, Burns and Scarring: A Review. Int. J. Burn. Trauma 2012, 2, 18–28. [Google Scholar]
- Vander Ark, A.; Cao, J.; Li, X. TGF-β Receptors: In and beyond TGF-β Signaling. Cell. Signal. 2018, 52, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Nair, M.G. Macrophages in Wound Healing: Activation and Plasticity. Immunol. Cell Biol. 2019, 97, 258–267. [Google Scholar] [CrossRef]
- Willenborg, S.; Injarabian, L.; Eming, S.A. Role of Macrophages in Wound Healing. Cold Spring Harb. Perspect. Biol. 2022, 14, a041216. [Google Scholar] [CrossRef] [PubMed]
- Fillería, S.G.; Nardo, A.E.; Paulino, M.; Tironi, V. Peptides Derived from the Gastrointestinal Digestion of Amaranth 11S Globulin: Structure and Antioxidant Functionality. Food Chem. 2021, 3, 100053. [Google Scholar] [CrossRef]
- Kornmueller, K.; Lehofer, B.; Meindl, C.; Fröhlich, E.; Leitinger, G.; Amenitsch, H.; Prassl, R. Peptides at the Interface: Self-Assembly of Amphiphilic Designer Peptides and Their Membrane Interaction Propensity. Biomacromolecules 2016, 17, 3591–3601. [Google Scholar] [CrossRef]
- Yang, Y.; Dias, C.L. Peptide-Membrane Binding: Effects of the Amino Acid Sequence. J. Phys. Chem. B 2023, 127, 912–920. [Google Scholar] [CrossRef]
- Svirina, A.; Terterov, I. Electrostatic Effects in Saturation of Membrane Binding of Cationic Cell-Penetrating Peptide. Eur. Biophys. J. 2021, 50, 15–23. [Google Scholar] [CrossRef]
- Keikha, M.; Rahdar, H.-A.; Karami-Zarandi, M.; Azadi, D.; Ghazvini, K. The New Insight for Novel Antimicrobial Peptides Designing by Computational Design and Improvement of an Antimicrobial Peptide Derivate of LL-37. Avicenna J. Clin. Microbiol. Infect. 2019, 6, 15–20. [Google Scholar] [CrossRef]
- Xiang, N.; Lyu, Y.; Zhu, X.; Bhunia, A.K.; Narsimhan, G. Effect of Physicochemical Properties of Peptides from Soy Protein on Their Antimicrobial Activity. Peptides 2017, 94, 10–18. [Google Scholar] [CrossRef]
- Hansen, I.K.Ø.; Lövdahl, T.; Simonovic, D.; Hansen, K.Ø.; Andersen, A.J.C.; Devold, H.; Richard, C.S.M.; Andersen, J.H.; Strøm, M.B.; Haug, T. Antimicrobial Activity of Small Synthetic Peptides Based on the Marine Peptide Turgencin A: Prediction of Antimicrobial Peptide Sequences in a Natural Peptide and Strategy for Optimization of Potency. Int. J. Mol. Sci. 2020, 21, 5460. [Google Scholar] [CrossRef] [PubMed]
- Serrano, L. Tango. Available online: http://tango.crg.es/about.jsp (accessed on 15 January 2023).
- Zapadka, K.L.; Becher, F.J.; Gomes Dos Santos, A.L.; Jackson, S.E. Factors Affecting the Physical Stability (Aggregation) of Peptide Therapeutics. Interface Focus 2017, 7, 20170030. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, M.; Jenssen, H.; Kindrachuk, J.; Scott, W.R.P.; Elliott, M.; Hilpert, K.; Cheng, J.T.J.; Hancock, R.E.W.; Straus, S.K. Structural Studies of a Peptide with Immune Modulating and Direct Antimicrobial Activity. Chem. Biol. 2010, 17, 970–980. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Mohanty, U.; Noehre, J.; Sawyer, T.K.; Sherman, W.; Krilov, G. Probing Theα-Helical Structural Stability of Stapled P53 Peptides: Molecular Dynamics Simulations and Analysis. Chem. Biol. Drug Des. 2010, 75, 348–359. [Google Scholar] [CrossRef]
- Liscano, Y.; Salamanca, C.H.; Vargas, L.; Cantor, S.; Laverde-Rojas, V.; Oñate-Garzón, J. Increases in Hydrophilicity and Charge on the Polar Face of Alyteserin 1c Helix Change Its Selectivity towards Gram-Positive Bacteria. Antibiotics 2019, 8, 238. [Google Scholar] [CrossRef]
- Reeb, J.; Rost, B. Secondary Structure Prediction. In Encyclopedia of Bioinformatics and Computational Biology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 488–496. ISBN 978-0-12-811432-2. [Google Scholar]
- Pagel, K.; Wagner, S.C.; Samedov, K.; Von Berlepsch, H.; Böttcher, C.; Koksch, B. Random Coils, β-Sheet Ribbons, and α-Helical Fibers: One Peptide Adopting Three Different Secondary Structures at Will. J. Am. Chem. Soc. 2006, 128, 2196–2197. [Google Scholar] [CrossRef]
- Smith, L.J.; Fiebig, K.M.; Schwalbe, H.; Dobson, C.M. The Concept of a Random Coil: Residual Structure in Peptides and Denatured Proteins. Fold. Des. 1996, 1, R95–R106. [Google Scholar] [CrossRef]
- Emberly, E.G.; Mukhopadhyay, R.; Wingreen, N.S.; Tang, C. Flexibility of α-Helices: Results of a Statistical Analysis of Database Protein Structures. J. Mol. Biol. 2003, 327, 229–237. [Google Scholar] [CrossRef]
- Emberly, E.G.; Wingreen, N.S.; Tang, C. Designability of α-Helical Proteins. Proc. Natl. Acad. Sci. USA 2002, 99, 11163–11168. [Google Scholar] [CrossRef]
- Rivera-Sanchez, S.P.; Ocampo-Ibáñez, I.D.; Liscano, Y.; Martínez, N.; Muñoz, I.; Manrique-Moreno, M.; Martinez-Martinez, L.; Oñate-Garzon, J. Integrating In Vitro and In Silico Analysis of a Cationic Antimicrobial Peptide Interaction with Model Membranes of Colistin-Resistant Pseudomonas Aeruginosa Strains. Pharmaceutics 2022, 14, 1248. [Google Scholar] [CrossRef]
- Hollmann, A.; Martinez, M.; Maturana, P.; Semorile, L.C.; Maffia, P.C. Antimicrobial Peptides: Interaction with Model and Biological Membranes and Synergism With Chemical Antibiotics. Front. Chem. 2018, 6, 204. [Google Scholar] [CrossRef]
- Lee, M.-T. Biophysical Characterization of Peptide–Membrane Interactions. Adv. Phys. X 2018, 3, 1408428. [Google Scholar] [CrossRef]
- Li, K.; Tokareva, O.S.; Thomson, T.M.; Wahl, S.C.T.; Travaline, T.L.; Ramirez, J.D.; Choudary, S.K.; Agarwal, S.; Walkup, W.G.; Olsen, T.J.; et al. De Novo Mapping of α-Helix Recognition Sites on Protein Surfaces Using Unbiased Libraries. Proc. Natl. Acad. Sci. USA 2022, 119, e2210435119. [Google Scholar] [CrossRef]
- Roy, S.; Ghosh, P.; Ahmed, I.; Chakraborty, M.; Naiya, G.; Ghosh, B. Constrained α-Helical Peptides as Inhibitors of Protein-Protein and Protein-DNA Interactions. Biomedicines 2018, 6, 118. [Google Scholar] [CrossRef] [PubMed]
- Mathew-Steiner, S.S.; Roy, S.; Sen, C.K. Collagen in Wound Healing. Bioengineering 2021, 8, 63. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Kiick, K.L. Collagen-like Peptides and Peptide-Polymer Conjugates in the Design of Assembled Materials. Eur. Polym. J. 2013, 49, 2998–3009. [Google Scholar] [CrossRef]
- Petkovic, M.; Mouritzen, M.V.; Mojsoska, B.; Jenssen, H. Immunomodulatory Properties of Host Defence Peptides in Skin Wound Healing. Biomolecules 2021, 11, 952. [Google Scholar] [CrossRef]
- Barrientos, S.; Brem, H.; Stojadinovic, O.; Tomic-Canic, M. Clinical Application of Growth Factors and Cytokines in Wound Healing. Wound Repair Regen 2014, 22, 569–578. [Google Scholar] [CrossRef]
- Shoulders, M.D.; Raines, R.T. Collagen Structure and Stability. Annu. Rev. Biochem. 2009, 78, 929–958. [Google Scholar] [CrossRef]
- He, X.; Yang, Y.; Mu, L.; Zhou, Y.; Chen, Y.; Wu, J.; Wang, Y.; Yang, H.; Li, M.; Xu, W.; et al. A Frog-Derived Immunomodulatory Peptide Promotes Cutaneous Wound Healing by Regulating Cellular Response. Front. Immunol. 2019, 10, 2421. [Google Scholar] [CrossRef]
- Liscano Martinez, Y.; Arenas Gómez, C.M.; Smith, J.; Delgado, J.P. A Tree Frog (Boana pugnax) Dataset of Skin Transcriptome for the Identification of Biomolecules with Potential Antimicrobial Activities. Data Brief 2020, 32, 106084. [Google Scholar] [CrossRef] [PubMed]
- Ocampo-Ibáñez, I.D.; Liscano, Y.; Rivera-Sánchez, S.P.; Oñate-Garzón, J.; Lugo-Guevara, A.D.; Flórez-Elvira, L.J.; Lesmes, M.C. A Novel Cecropin D-Derived Short Cationic Antimicrobial Peptide Exhibits Antibacterial Activity Against Wild-Type and Multidrug-Resistant Strains of Klebsiella Pneumoniae and Pseudomonas Aeruginosa. Evol. Bioinform. Online 2020, 16, 117693432093626. [Google Scholar] [CrossRef]
- Peng, C.; Liu, Y.; Shui, L.; Zhao, Z.; Mao, X.; Liu, Z. Mechanisms of Action of the Antimicrobial Peptide Cecropin in the Killing of Candida albicans. Life 2022, 12, 1581. [Google Scholar] [CrossRef]
- Wang, J.; Ma, K.; Ruan, M.; Wang, Y.; Li, Y.; Fu, Y.V.; Song, Y.; Sun, H.; Wang, J. A Novel Cecropin B-Derived Peptide with Antibacterial and Potential Anti-Inflammatory Properties. PeerJ 2018, 6, e5369. [Google Scholar] [CrossRef] [PubMed]
- Torres, P.; Castro, M.; Reyes, M.; Torres, V.A. Histatins, Wound Healing, and Cell Migration. Oral Dis. 2018, 24, 1150–1160. [Google Scholar] [CrossRef] [PubMed]
- Benner, S.A.; Sismour, A.M. Synthetic Biology. Nat. Rev. Genet 2005, 6, 533–543. [Google Scholar] [CrossRef]
- Chen, C.H.; Bepler, T.; Pepper, K.; Fu, D.; Lu, T.K. Synthetic Molecular Evolution of Antimicrobial Peptides. Curr. Opin. Biotechnol. 2022, 75, 102718. [Google Scholar] [CrossRef]
- Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Synthetic Therapeutic Peptides: Science and Market. Drug Discov. Today 2010, 15, 40–56. [Google Scholar] [CrossRef]
- Do, H.T.; Chua, Y.Z.; Habicht, J.; Klinksiek, M.; Volpert, S.; Hallermann, M.; Thome, M.; Pabsch, D.; Zaitsau, D.; Schick, C.; et al. Melting Properties of Peptides and Their Solubility in Water. Part 2: Di- and Tripeptides Based on Glycine, Alanine, Leucine, Proline, and Serine. Ind. Eng. Chem. Res. 2021, 60, 4693–4704. [Google Scholar] [CrossRef]
- Kilara, A.; Panyam, D. Peptides from Milk Proteins and Their Properties. Crit. Rev. Food Sci. Nutr. 2003, 43, 607–633. [Google Scholar] [CrossRef]
- Ucak, I.; Afreen, M.; Montesano, D.; Carrillo, C.; Tomasevic, I.; Simal-Gandara, J.; Barba, F.J. Functional and Bioactive Properties of Peptides Derived from Marine Side Streams. Mar. Drugs 2021, 19, 71. [Google Scholar] [CrossRef] [PubMed]
- Siemion, I.Z.; Strug, I.; Wieczorek, Z. Length of the Peptide Chain Influences the Immunomodulatory Activity of Peptides Related to P53 Protein. Peptides 1999, 20, 995–998. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.K.; Lee, H.H.; Seo, C.H.; Park, Y. Antimicrobial and Immunomodulatory Properties and Applications of Marine-Derived Proteins and Peptides. Mar. Drugs 2019, 17, 350. [Google Scholar] [CrossRef]
- Cutrona, K.J.; Kaufman, B.A.; Figueroa, D.M.; Elmore, D.E. Role of Arginine and Lysine in the Antimicrobial Mechanism of Histone-Derived Antimicrobial Peptides. FEBS Lett. 2015, 589, 3915–3920. [Google Scholar] [CrossRef] [PubMed]
- Necula, G.; Bacalum, M.; Radu, M. Interaction of Tryptophan- and Arginine-Rich Antimicrobial Peptide with E. Coli Outer Membrane—A Molecular Simulation Approach. Int. J. Mol. Sci. 2023, 24, 2005. [Google Scholar] [CrossRef] [PubMed]
- Högel, P.; Götz, A.; Kuhne, F.; Ebert, M.; Stelzer, W.; Rand, K.D.; Scharnagl, C.; Langosch, D. Glycine Perturbs Local and Global Conformational Flexibility of a Transmembrane Helix. Biochemistry 2018, 57, 1326–1337. [Google Scholar] [CrossRef]
- Nagy, K.; Mikuláss, K.R.; Végh, A.G.; Kereszt, A.; Kondorosi, É.; Váró, G.; Szegletes, Z. Interaction of Cysteine-Rich Cationic Antimicrobial Peptides with Intact Bacteria and Model Membranes. Gen. Physiol. Biophys. 2015, 34, 135–144. [Google Scholar] [CrossRef]
- Sarma, R.; Wong, K.-Y.; Lynch, G.C.; Pettitt, B.M. Peptide Solubility Limits: Backbone and Side-Chain Interactions. J. Phys. Chem. B 2018, 122, 3528–3539. [Google Scholar] [CrossRef]
- Trevino, S.R.; Scholtz, J.M.; Pace, C.N. Amino Acid Contribution to Protein Solubility: Asp, Glu, and Ser Contribute More Favorably than the Other Hydrophilic Amino Acids in RNase Sa. J. Mol. Biol. 2007, 366, 449–460. [Google Scholar] [CrossRef]
- Friedrich, C.L.; Moyles, D.; Beveridge, T.J.; Hancock, R.E.W. Antibacterial Action of Structurally Diverse Cationic Peptides on Gram-Positive Bacteria. Antimicrob. Agents Chemother. 2000, 44, 2086–2092. [Google Scholar] [CrossRef]
- Mackenzie, C.O.; Grigoryan, G. Protein Structural Motifs in Prediction and Design. Curr. Opin. Struct. Biol. 2017, 44, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Tam, J.P.; Lu, Y.-A.; Yang, J.-L.; Chiu, K.-W. An Unusual Structural Motif of Antimicrobial Peptides Containing End-to-End Macrocycle and Cystine-Knot Disulfides. Proc. Natl. Acad. Sci. USA 1999, 96, 8913–8918. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Umehara, Y.; Yue, H.; Trujillo-Paez, J.V.; Peng, G.; Nguyen, H.L.T.; Ikutama, R.; Okumura, K.; Ogawa, H.; Ikeda, S.; et al. The Antimicrobial Peptide Human β-Defensin-3 Accelerates Wound Healing by Promoting Angiogenesis, Cell Migration, and Proliferation Through the FGFR/JAK2/STAT3 Signaling Pathway. Front. Immunol. 2021, 12, 712781. [Google Scholar] [CrossRef] [PubMed]
- Małaczewska, J.; Kaczorek-Łukowska, E. Nisin—A Lantibiotic with Immunomodulatory Properties: A Review. Peptides 2021, 137, 170479. [Google Scholar] [CrossRef] [PubMed]
- Kurbanova, M.; Voroshilin, R.; Kozlova, O.; Atuchin, V. Effect of Lactobacteria on Bioactive Peptides and Their Sequence Identification in Mature Cheese. Microorganisms 2022, 10, 2068. [Google Scholar] [CrossRef]
- Bucekova, M.; Sojka, M.; Valachova, I.; Martinotti, S.; Ranzato, E.; Szep, Z.; Majtan, V.; Klaudiny, J.; Majtan, J. Bee-Derived Antibacterial Peptide, Defensin-1, Promotes Wound Re-Epithelialisation In Vitro and In Vivo. Sci. Rep. 2017, 7, 7340. [Google Scholar] [CrossRef]
- Cañedo-Dorantes, L.; Cañedo-Ayala, M. Skin Acute Wound Healing: A Comprehensive Review. Int. J. Inflamm. 2019, 2019, 3706315. [Google Scholar] [CrossRef]
- Hernández-González, J.C.; Martínez-Tapia, A.; Lazcano-Hernández, G.; García-Pérez, B.E.; Castrejón-Jiménez, N.S. Bacteriocins from Lactic Acid Bacteria. A Powerful Alternative as Antimicrobials, Probiotics, and Immunomodulators in Veterinary Medicine. Animals 2021, 11, 979. [Google Scholar] [CrossRef]
- Lin, S.; Chen, X.; Chen, H.; Cai, X.; Chen, X.; Wang, S. The Bioprospecting of Microbial-Derived Antimicrobial Peptides for Sustainable Agriculture. Engineering 2022, 26, S2095809922006749. [Google Scholar] [CrossRef]
- Tagliazucchi, D.; Martini, S.; Solieri, L. Bioprospecting for Bioactive Peptide Production by Lactic Acid Bacteria Isolated from Fermented Dairy Food. Fermentation 2019, 5, 96. [Google Scholar] [CrossRef]
- Wang, G.; Li, X.; Wang, Z. APD3: The Antimicrobial Peptide Database as a Tool for Research and Education. Nucleic Acids Res. 2016, 44, D1087–D1093. [Google Scholar] [CrossRef] [PubMed]
- Shankar, P.R. Book Review: Tackling Drug-Resistant Infections Globally. Arch. Pharm. Pract. 2016, 7, 110. [Google Scholar] [CrossRef]
- Soft Matter Group Yet Another Database of Antimicrobial Peptides. Available online: http://yadamp.unisa.it/about.aspx (accessed on 12 April 2023).
- Shi, G.; Kang, X.; Dong, F.; Liu, Y.; Zhu, N.; Hu, Y.; Xu, H.; Lao, X.Z. DRAMP 3.0: An Enhanced Comprehensive Data Repository of Antimicrobial Peptides. Available online: http://dramp.cpu-bioinfor.org/ (accessed on 12 April 2023).
- Guermeur, Y.; Geourjon, C.; Gallinari, P.; Deléage, G. Improved Performance in Protein Secondary Structure Prediction by Inhomogeneous Score Combination. Bioinformatics 1999, 15, 413–421. [Google Scholar] [CrossRef]
- Li, C.; Sutherland, D.; Hammond, S.A.; Yang, C.; Taho, F.; Bergman, L.; Houston, S.; Warren, R.L.; Wong, T.; Hoang, L.M.N.; et al. AMPlify: Attentive Deep Learning Model for Discovery of Novel Antimicrobial Peptides Effective against WHO Priority Pathogens. BMC Genom. 2022, 23, 77. [Google Scholar] [CrossRef]
- Innovagen AB Peptide Property Calculator. Available online: https://pepcalc.com/ (accessed on 12 April 2023).
- Thermo Fisher Scientific Inc. Peptide Synthesis and Proteotypic Peptide Analyzing Tool. Available online: https://www.thermofisher.com/co/en/home/life-science/protein-biology/peptides-proteins/custom-peptide-synthesis-services/peptide-analyzing-tool.html (accessed on 12 April 2023).
- Bachem Feinchemikalien AG Bachem—Peptide Calculator. Available online: https://www.bachem.com/knowledge-center/peptide-calculator/ (accessed on 15 January 2023).
- Max Planck Institute for Biology, T. MPI Bioinformatics Toolkit. Available online: https://toolkit.tuebingen.mpg.de/tools/quick- (accessed on 12 April 2023).
- Kume, A.; Kawai, S.; Kato, R.; Iwata, S.; Shimizu, K.; Honda, H. Exploring High-Affinity Binding Properties of Octamer Peptides by Principal Component Analysis of Tetramer Peptides. J. Biosci. Bioeng. 2017, 123, 230–238. [Google Scholar] [CrossRef]
- Janairo, J.I.B. A Machine Learning Classification Model for Gold-Binding Peptides. ACS Omega 2022, 7, 14069–14073. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows, version 27.0; IBM Corp.: Armonk, NY, USA, 2020. [Google Scholar]
- Kim, T.K. Understanding One-Way ANOVA Using Conceptual Figures. Korean J. Anesth. 2017, 70, 22. [Google Scholar] [CrossRef]
- Chowdhury, M.H.; Ghosh, S.; Kabir, M.R.; Mamun, M.A.A.; Islam, M.S. Effect of Supplementary Omega-3 Fatty Acids on Pregnant Women with Complications and Pregnancy Outcomes: Review from Literature. J. Matern. Fetal Neonatal Med. 2020, 35, 2564–2580. [Google Scholar] [CrossRef]
- Sajeevan, K.A.; Roy, D. Principal Component Analysis of a Conotoxin Delineates the Link among Peptide Sequence, Dynamics, and Disulfide Bond Isoforms. J. Phys. Chem. B 2019, 123, 5483–5493. [Google Scholar] [CrossRef]
Cluster | N-Terminal Region | Central Region | C-Terminal Region |
---|---|---|---|
Cluster 1 | Ala, Leu, Gly | Ala, Leu, Gly | Lys, Ala, Arg |
Cluster 2 | Gly, Ala, Pro | Leu, Gly, Ser | Leu, Pro, Ser |
Cluster 3 | Gly, Ser, Ala | Gly, Ser, Ala | Gly, Ser, Ala |
Cluster 4 | Gly, Ala, Leu | Leu, Gly, Ser | Gly, Ser, Ala |
GO Terms | Family Domain | Frequency |
---|---|---|
Antibacterial humoral response (GO:0019731) | IPR000875 Cecropin 3–32 | 6 |
Extracellular region (GO:0005576) | ||
Defense response (GO:0006952) | IPR001855 | 2 |
Defensin_beta-typ | ||
ene-31 | ||
Defense response (GO:0006952) | IPR001855 | 2 |
Defensin_beta-typ | ||
mar-30 | ||
Defense response (GO:0006952) | IPR001855 | 2 |
Defensin_beta-typ | ||
abr-39 | ||
Defense response (GO:0006952) | IPR017982: Defensin_insect | 2 |
nov-20 | ||
IPR017982: Defensin_insect | ||
29–38 |
Name | Sequences | Cluster | Lenta | Hydrophobicity | GRAVY | Net Charge | 2ary Structure | Species |
---|---|---|---|---|---|---|---|---|
Nisin A | ITSISLCTPGCKTGALMGCNMKTATCHCSIHVSK | 2 | 34 | 32.38 | 0.41 | 3 | Random coil | Lactococcus lactis |
HBD-3 | GIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKCSTRGRKCCRRKK | 2 | 45 | 32.69 | −0.70 | 11 | α-helix, β-strand | Homo sapiens |
Database Names | URL/Citation |
---|---|
APD3 | https://aps.unmc.edu/ (accessed on 12 April 2023) [83] |
DBAASP | https://dbaasp.org/home (accessed on 12 April 2023) |
CAMPR4 | http://www.camp.bicnirrh.res.in/index.php/ (accessed on 12 April 2023) [84] |
YADAMP | http://yadamp.unisa.it/default.aspx/ (accessed on 12 April 2023) [85] |
DRAMP | http://dramp.cpu-bioinfor.org/ (accessed on 12 April 2023) [86] |
Tool Name | Description | URL | Citation |
---|---|---|---|
PepCalc | Peptide properties calculator | https://pepcalc.com/ (accessed on 12 April 2023) | [89] |
Peptide Analyzing Tool Thermo Scientific | Peptide synthesis and proteotypic peptide analysis tool | https://www.thermofisher.com/co/en/home.html (accessed on 12 April 2023) | [90] |
Tango | A computational algorithm for the prediction of aggregated regions in unfolded polypeptide chain | http://tango.crg.es/about.jsp (accessed on 12 April 2023) | [32] |
BACHEM | Peptide properties calculator | https://www.bachem.com/knowledge-center/peptide-calculator/ (accessed on 12 April 2023) | [91] |
Quick2D | Bioinformatics toolkit | https://toolkit.tuebingen.mpg.de/tools/quick- (accessed on 12 April 2023) | [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trejos, M.; Aristizabal, Y.; Aragón-Muriel, A.; Oñate-Garzón, J.; Liscano, Y. Characterization and Classification In Silico of Peptides with Dual Activity (Antimicrobial and Wound Healing). Int. J. Mol. Sci. 2023, 24, 13091. https://doi.org/10.3390/ijms241713091
Trejos M, Aristizabal Y, Aragón-Muriel A, Oñate-Garzón J, Liscano Y. Characterization and Classification In Silico of Peptides with Dual Activity (Antimicrobial and Wound Healing). International Journal of Molecular Sciences. 2023; 24(17):13091. https://doi.org/10.3390/ijms241713091
Chicago/Turabian StyleTrejos, María, Yesid Aristizabal, Alberto Aragón-Muriel, José Oñate-Garzón, and Yamil Liscano. 2023. "Characterization and Classification In Silico of Peptides with Dual Activity (Antimicrobial and Wound Healing)" International Journal of Molecular Sciences 24, no. 17: 13091. https://doi.org/10.3390/ijms241713091
APA StyleTrejos, M., Aristizabal, Y., Aragón-Muriel, A., Oñate-Garzón, J., & Liscano, Y. (2023). Characterization and Classification In Silico of Peptides with Dual Activity (Antimicrobial and Wound Healing). International Journal of Molecular Sciences, 24(17), 13091. https://doi.org/10.3390/ijms241713091