Identification of Male Sex-Related Genes Regulated by SDHB in Macrobrachium nipponense Based on Transcriptome Analysis after an RNAi Knockdown
Abstract
:1. Introduction
2. Results
2.1. Overview of the RNA-Seq of M. nipponense
2.2. Identification and Functional Analysis of DEGs
2.3. GO and KEGG Enrichment Analysis of DEGs
2.4. Male Sexual Development-Related DEGs
2.5. Validation of DEGs by qRT-PCR
3. Discussion
4. Materials and Methods
4.1. Knockdown of the Expression of SDHB by RNAi in M. nipponense
4.2. RNA Isolation, Library Construction, and Sequencing
4.3. Differential Gene Expression Analysis
4.4. Quantitative Analysis
4.5. Ethics Statement
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, Y.; Shokita, S. Report on a collection of freshwater shrimps (Crustacea: Decapoda: Caridea) from the Philippines, with descriptions of four new species. Raffles Bull. Zool. 2006, 54, 245–270. [Google Scholar]
- Salman, S.D.; Page, T.J.; Naser, M.D.; Yasser, A.A.G. The invasion of Macrobrachium nipponense (De Haan, 1849)(Caridea: Palaemonidae) into the southern Iraqi marshes. Aquat. Invasions 2006, 1, 109–115. [Google Scholar] [CrossRef]
- Ma, K.; Feng, J.; Lin, J.; Li, J. The complete mitochondrial genome of Macrobrachium nipponense. Gene 2011, 487, 160–165. [Google Scholar] [CrossRef]
- Zhang, X.L.; Cui, L.F.; Li, S.M.; Liu, X.Z.; Han, X.; Jiang, K.Y. Bureau Of Fisheries, Ministry of Agriculture, Prc Fisheries Economic Statistics; China Fishery Yearbook; China Agricultural Press: Beijing, China, 2020; p. 24. [Google Scholar]
- Jin, S.B.; Zhang, Y.; Guan, H.H.; Fu, H.T.; Jiang, S.F.; Xiong, Y.W.; Qiao, H.; Zhang, W.; Gong, Y.; Wu, Y. Histological observation of gonadal development during post-larva in oriental river prawn, Macrobrachium nipponense. Chin. J. Fish 2016, 29, 11–16. [Google Scholar]
- Au, H.C.; Ream-Robinson, D.; Bellew, L.A.; Broomfield, P.L.E.; Saghbini, M.; Scheffler, I.E. Structural organization of the gene encoding the human iron-sulfur subunit of succinate dehydrogenase. Gene 1995, 159, 249–253. [Google Scholar] [CrossRef]
- Kita, K.; Oya, H.; Gennis, R.B.; Ackrell, B.A.C.; Kasahara, M. Human complex II (succinate-ubiquinone oxidoreductase): cDNA cloning of iron sulfur (Ip) subunit of liver mitochondria. Biochem. Biophys. Res. Commun. 1990, 166, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Gaździk, T.; Kamiński, M.; Plewka, D.; Plewka, A. Evaluation of localization and intensity of the reactions of succinic dehydrogenase, NADH tetrazole reductase and lactate dehydrogenase in developing rat testis: I. Physiological conditions. Acta Histochem. 1986, 78, 1–6. [Google Scholar] [CrossRef]
- Broomfield, P.L.E.; Hargreaves, J.A. A single amino-acid change in the iron-sulphur protein subunit of succinate dehydrogenase confers resistance to carboxin in Ustilago maydis. Curr. Genet. 1992, 22, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Lemire, B.D. Mutations in the C. elegans succinate dehydrogenase iron–sulfur subunit promote superoxide generation and premature aging. J. Mol. Biol. 2009, 387, 559–569. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, Y.; Wang, J.; Zhou, M. A new point mutation in the iron–sulfur subunit of succinate dehydrogenase confers resistance to boscalid in S clerotinia sclerotiorum. Mol. Plant Pathol. 2015, 16, 653–661. [Google Scholar]
- Jin, S.; Hu, Y.; Fu, H.; Jiang, S.; Xiong, Y.; Qiao, H.; Zhang, W.; Gong, Y.; Wu, Y. Identification and characterization of the succinate dehydrogenase complex iron sulfur subunit B gene in the Oriental River Prawn, Macrobrachium nipponense. Front. Genet. 2021, 12, 698318. [Google Scholar] [CrossRef]
- Khalaila, I.; Manor, R.; Weil, S.; Granot, Y.; Keller, R.; Sagi, A. The eyestalk–androgenic gland–testis endocrine axis in the crayfish Cherax quadricarinatus. Gen. Comp. Endocrinol. 2002, 127, 147–156. [Google Scholar] [CrossRef]
- Song, C.; Liu, L.; Hui, M.; Liu, Y.; Liu, H.; Cui, Z. Primary molecular basis of androgenic gland endocrine sex regulation revealed by transcriptome analysis in Eriocheir sinensis. J. Oceanol. Limnol. 2019, 37, 223–234. [Google Scholar]
- Okuno, A.; Hasegawa, Y.; Nishiyama, M.; Ohira, T.; Ko, R.; Kurihara, M.; Matsumoto, S.; Nagasawa, H. Preparation of an active recombinant peptide of crustacean androgenic gland hormone. Peptides 2002, 23, 567–572. [Google Scholar] [PubMed]
- Sroyraya, M.; Chotwiwatthanakun, C.; Stewart, M.J.; Soonklang, N.; Kornthong, N.; Phoungpetchara, I.; Hanna, P.J.; Sobhon, P. Bilateral eyestalk ablation of the blue swimmer crab, Portunus pelagicus, produces hypertrophy of the androgenic gland and an increase of cells producing insulin-like androgenic gland hormone. Tissue Cell 2010, 42, 293–300. [Google Scholar] [CrossRef]
- Sagi, A.; Cohen, D.A.N.; Milner, Y. Effect of androgenic gland ablation on morphotypic differentiation and sexual characteristics of male freshwater prawns, Macrobrachium rosenbergii. Gen. Comp. Endocrinol. 1990, 77, 15–22. [Google Scholar] [CrossRef]
- Huang, X.; Ye, H.; Huang, H.; Yang, Y.; Gong, J. An insulin-like androgenic gland hormone gene in the mud crab, Scylla paramamosain, extensively expressed and involved in the processes of growth and female reproduction. Gen. Comp. Endocrinol. 2014, 204, 229–238. [Google Scholar] [PubMed]
- Li, S.; Li, F.; Sun, Z.; Xiang, J. Two spliced variants of insulin-like androgenic gland hormone gene in the Chinese shrimp, Fenneropenaeus chinensis. Gen. Comp. Endocrinol. 2012, 177, 246–255. [Google Scholar] [CrossRef]
- Liu, F.; Shi, W.; Ye, H.; Liu, A.; Zhu, Z. RNAi reveals role of insulin-like androgenic gland hormone 2 (IAG2) in sexual differentiation and growth in hermaphrodite shrimp. Front. Mar. Sci. 2021, 8, 666763. [Google Scholar] [CrossRef]
- Ma, K.-Y.; Li, J.-L.; Qiu, G.-F. Identification of putative regulatory region of insulin-like androgenic gland hormone gene (IAG) in the prawn Macrobrachium nipponense and proteins that interact with IAG by using yeast two-hybrid system. Gen. Comp. Endocrinol. 2016, 229, 112–118. [Google Scholar]
- Zhou, T.; Wang, W.; Wang, C.; Sun, C.; Shi, L.; Chan, S.F. Insulin-like androgenic gland hormone from the shrimp Fenneropenaeus merguiensis: Expression, gene organization and transcript variants. Gene 2021, 782, 145529. [Google Scholar]
- Farhadi, A.; Cui, W.; Zheng, H.; Li, S.; Zhang, Y.; Ikhwanuddin, M.; Ma, H. The regulatory mechanism of sexual development in decapod crustaceans. Front. Mar. Sci. 2021, 8, 679687. [Google Scholar]
- Farhadi, A.; Fang, S.; Zhang, Y.; Cui, W.; Fang, H.; Ikhwanuddin, M.; Ma, H. The significant sex-biased expression pattern of Sp-Wnt4 provides novel insights into the ovarian development of mud crab (Scylla Paramamosain). Int. J. Biol. Macromol. 2021, 183, 490–501. [Google Scholar]
- Sun, R.; Li, Y. A sex-reversing factor: Insulin-like androgenic gland hormone in decapods. Rev. Aquac. 2021, 13, 1352–1366. [Google Scholar]
- Farhadi, A. Sex determination and developmental mechanism of crustaceans and shellfish, volume II. Front. Endocrinol. 2023, 14, 1155209. [Google Scholar] [CrossRef] [PubMed]
- Ventura, T.; Manor, R.; Aflalo, E.D.; Weil, S.; Rosen, O.; Sagi, A. Timing sexual differentiation: Full functional sex reversal achieved through silencing of a single insulin-like gene in the prawn, Macrobrachium rosenbergii. Biol. Reprod. 2012, 86, 90–91. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Hu, Y.; Fu, H.; Sun, S.; Jiang, S.; Xiong, Y.; Qiao, H.; Zhang, W.; Gong, Y.; Wu, Y. Analysis of testis metabolome and transcriptome from the oriental river prawn (Macrobrachium nipponense) in response to different temperatures and illumination times. Comp. Biochem. Physiol. Part D Genom. Proteom. 2020, 34, 100662. [Google Scholar]
- Qiao, H.; Fu, H.; Jin, S.; Wu, Y.; Jiang, S.; Gong, Y.; Xiong, Y. Constructing and random sequencing analysis of normalized cDNA library of testis tissue from oriental river prawn (Macrobrachium nipponense). Comp. Biochem. Physiol. Part D Genom. Proteom. 2012, 7, 268–276. [Google Scholar]
- Zhang, Y.P.; Qiao, H.; Zhang, W.Y.; Sun, S.M.; Jiang, S.F.; Gong, Y.S.; Xiong, Y.W.; Jin, S.B.; Fu, H.T. Molecular cloning and expression analysis of two sex-lethal homolog genes during development in the oriental river prawn, Macrobrachium nipponense. Genet. Mol. Res 2013, 12, 4698–4711. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, S.; Xiong, Y.; Shengming, S.U.N.; Hui, Q.; Shubo, J.; Yongsheng, G.; Hongtuo, F.U. Molecular cloning and expression analysis of extra sex combs gene during development in Macrobrachium nipponense. Turk. J. Fish. Aquat. Sci. 2013, 13, 2. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Fu, H.T.; Qiao, H.; Jin, S.B.; Gong, Y.S.; Jiang, S.F.; Xiong, Y.W. cDNA cloning, characterization and expression analysis of a transformer-2 gene in the oriental river prawn, Macrobrachium nipponense. J. World Aquacult. Soc 2013, 44, 338–349. [Google Scholar]
- Kusaba, M. RNA interference in crop plants. Curr. Opin. Biotechnol. 2004, 15, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Zhang, W.; Xiong, Y.; Jiang, S.; Qiao, H.; Gong, Y.; Wu, Y.; Fu, H. Identification of Important Genes Involved in the Sex-Differentiation Mechanism of Oriental River Prawn, Macrobrachium nipponense, During the Gonad Differentiation and Development Period. Front. Genet. 2022, 13, 797796. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Fu, Y.; Hu, Y.; Fu, H.; Jiang, S.; Xiong, Y.; Qiao, H.; Zhang, W.; Gong, Y.; Wu, Y. Transcriptome profiling analysis of the testis after eyestalk ablation for selection of the candidate genes involved in the male sexual development in Macrobrachium nipponense. Front. Genet. 2021, 12, 675928. [Google Scholar] [PubMed]
- Ahn, S.W.; Gang, G.-T.; Tadi, S.; Nedumaran, B.; Kim, Y.D.; Park, J.H.; Kweon, G.R.; Koo, S.-H.; Lee, K.; Ahn, R.-S. Phosphoenolpyruvate carboxykinase and glucose-6-phosphatase are required for steroidogenesis in testicular Leydig cells. J. Biol. Chem. 2012, 287, 41875–41887. [Google Scholar]
- Oláh, J.; Orosz, F.; Puskás, L.G.; Hackler Jr, L.; Horányi, M.; Polgár, L.; Hollán, S.; Ovádi, J. Triosephosphate isomerase deficiency: Consequences of an inherited mutation at mRNA, protein and metabolic levels. Biochem. J. 2005, 392, 675–683. [Google Scholar] [CrossRef]
- Moon, J.-S.; Jin, W.-J.; Kwak, J.-H.; Kim, H.-J.; Yun, M.-J.; Kim, J.-W.; Park, S.W.; Kim, K.-S. Androgen stimulates glycolysis for de novo lipid synthesis by increasing the activities of hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 2 in prostate cancer cells. Biochem. J. 2011, 433, 225–233. [Google Scholar]
- Brooks, D.E. Activity and androgenic control of glycolytic enzymes in the epididymis and epididymal spermatozoa of the rat. Biochem. J. 1976, 156, 527–537. [Google Scholar] [CrossRef]
- Singhal, R.L.; Ling, G.M. Metabolic control mechanisms in mammalian systems. IV. Androgenic induction of hexokinase and glucose-6-phosphate dehydrogenase in rat seminal vesicles. Can. J. Physiol. Pharmacol. 1969, 47, 233–239. [Google Scholar] [CrossRef]
- du Plessis, S.S.; Agarwal, A.; Mohanty, G.; Van der Linde, M. Oxidative phosphorylation versus glycolysis: What fuel do spermatozoa use? Asian J. Androl. 2015, 17, 230. [Google Scholar]
- Rato, L.; Alves, M.G.; Socorro, S.; Duarte, A.I.; Cavaco, J.E.; Oliveira, P.F. Metabolic regulation is important for spermatogenesis. Nat. Rev. Urol. 2012, 9, 330–338. [Google Scholar] [CrossRef]
- Li, F.; Qiao, H.; Fu, H.; Sun, S.; Zhang, W.; Jin, S.; Jiang, S.; Gong, Y.; Xiong, Y.; Wu, Y. Identification and characterization of opsin gene and its role in ovarian maturation in the oriental river prawn Macrobrachium nipponense. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2018, 218, 1–12. [Google Scholar]
- Grinshpan, N.; Abayed, F.A.A.; Wahl, M.; Ner-Gaon, H.; Manor, R.; Sagi, A.; Shay, T. The transcriptional landscape of the giant freshwater prawn: Embryonic development and early sexual differentiation mechanisms. Front. Endocrinol. 2022, 13, 1059936. [Google Scholar]
- Ventura, T.; Manor, R.; Aflalo, E.D.; Weil, S.; Khalaila, I.; Rosen, O.; Sagi, A. Expression of an androgenic gland-specific insulin-like peptide during the course of prawn sexual and morphotypic differentiation. Int. Sch. Res. Not. 2011, 2011, 476283. [Google Scholar]
- Ventura, T.; Manor, R.; Aflalo, E.D.; Weil, S.; Raviv, S.; Glazer, L.; Sagi, A. Temporal silencing of an androgenic gland-specific insulin-like gene affecting phenotypical gender differences and spermatogenesis. Endocrinology 2009, 150, 1278–1286. [Google Scholar] [PubMed]
- Rosen, O.; Manor, R.; Weil, S.; Gafni, O.; Linial, A.; Aflalo, E.D.; Ventura, T.; Sagi, A. A sexual shift induced by silencing of a single insulin-like gene in crayfish: Ovarian upregulation and testicular degeneration. PLoS ONE 2010, 5, e15281. [Google Scholar]
- Choi, Y.J.; Kim, S.; Choi, Y.; Nielsen, T.B.; Yan, J.; Lu, A.; Ruan, J.; Lee, H.-R.; Wu, H.; Spellberg, B. SERPINB1-mediated checkpoint of inflammatory caspase activation. Nat. Immunol. 2019, 20, 276–287. [Google Scholar]
- Denolet, E.; De Gendt, K.; Allemeersch, J.; Engelen, K.; Marchal, K.; Van Hummelen, P.; Tan, K.A.L.; Sharpe, R.M.; Saunders, P.T.K.; Swinnen, J.V. The effect of a Sertoli cell-selective knockout of the androgen receptor on testicular gene expression in prepubertal mice. Mol. Endocrinol. 2006, 20, 321–334. [Google Scholar] [CrossRef]
- Guo, T.; Zuo, Y.; Qian, L.; Liu, J.; Yuan, Y.; Xu, K.; Miao, Y.; Feng, Q.; Chen, X.; Jin, L. ADP-ribosyltransferase PARP11 modulates the interferon antiviral response by mono-ADP-ribosylating the ubiquitin E3 ligase β-TrCP. Nat. Microbiol. 2019, 4, 1872–1884. [Google Scholar]
- Meyer-Ficca, M.L.; Ihara, M.; Bader, J.J.; Leu, N.A.; Beneke, S.; Meyer, R.G. Spermatid head elongation with normal nuclear shaping requires ADP-ribosyltransferase PARP11 (ARTD11) in mice. Biol. Reprod. 2015, 92, 80–81. [Google Scholar] [CrossRef]
- Brown, A.C.; Harrison, L.M.; Kapulkin, W.; Jones, B.F.; Sinha, A.; Savage, A.; Villalon, N.; Cappello, M. Molecular cloning and characterization of a C-type lectin from Ancylostoma ceylanicum: Evidence for a role in hookworm reproductive physiology. Mol. Biochem. Parasitol. 2007, 151, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Goluboff, E.T.; Mertz, J.R.; Tres, L.L.; Kierszenbaum, A.L. Galactosyl receptor in human testis and sperm is antigenically related to the minor C-type (Ca2+-dependent) lectin variant of human and rat liver. Mol. Reprod. Dev. 1995, 40, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.B.; Shao, Y.M.; Miao, S.; Wang, L. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell. Mol. Life Sci. CMLS 2006, 63, 2560–2570. [Google Scholar] [CrossRef] [PubMed]
- Selvaraju, S.; Parthipan, S.; Somashekar, L.; Kolte, A.P.; Krishnan Binsila, B.; Arangasamy, A.; Ravindra, J.P. Occurrence and functional significance of the transcriptome in bovine (Bos taurus) spermatozoa. Sci. Rep. 2017, 7, 42392. [Google Scholar] [CrossRef]
- Banday, S.; Pandita, R.K.; Mushtaq, A.; Bacolla, A.; Mir, U.S.; Singh, D.K.; Jan, S.; Bhat, K.P.; Hunt, C.R.; Rao, G. Autism-associated vigilin depletion impairs DNA damage repair. Mol. Cell. Biol. 2021, 41, e00082-00021. [Google Scholar] [CrossRef]
- Lyon, M.F. Transmission ratio distortion in mice. Annu. Rev. Genet. 2003, 37, 393–408. [Google Scholar] [CrossRef]
- Zhang, S.B.; Jiang, P.; Wang, Z.Q.; Long, S.R.; Liu, R.D.; Zhang, X.; Yang, W.; Ren, H.J.; Cui, J. DsRNA-mediated silencing of Nudix hydrolase in Trichinella spiralis inhibits the larval invasion and survival in mice. Exp. Parasitol. 2016, 162, 35–42. [Google Scholar] [CrossRef]
- Jiang, F.W.; Fu, H.T.; Qiao, H.; Zhang, W.Y.; Jiang, S.F.; Xiong, Y.W.; Sun, S.M.; Gong, Y.S.; Jin, S.B. The RNA interference regularity of transformer-2 gene of oriental river prawn Macrobrachium nipponense. Chin. Agric. Sci. Bull 2014, 30, 32–37. [Google Scholar]
- Li, F.; Bai, H.; Xiong, Y.; Fu, H.; Jiang, S.; Jiang, F.; Jin, S.; Sun, S.; Qiao, H.; Zhang, W. Molecular characterization of insulin-like androgenic gland hormone-binding protein gene from the oriental river prawn Macrobrachium nipponense and investigation of its transcriptional relationship with the insulin-like androgenic gland hormone gene. Gen. Comp. Endocrinol. 2015, 216, 152–160. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.A.; Zwinderman, A.H. On the benjamini–hochberg method. Ann. Statist. 2006, 34, 1827–1849. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T. Gene ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Hu, Y.; Fu, H.; Qiao, H.; Sun, S.; Zhang, W.; Jin, S.; Jiang, S.; Gong, Y.; Xiong, Y.; Wu, Y. Validation and evaluation of reference genes for quantitative real-time PCR in Macrobrachium Nipponense. Int. J. Mol. Sci. 2018, 19, 2258. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Sample | Clean Bases (Gb) | Q30 (%) | GC (%) | Mapped Reads (%) | Unigene Number |
---|---|---|---|---|---|
C_AG1 | 7.15 | 92.49 | 45.89 | 91.58 | 16,623 |
C_AG2 | 6.89 | 92.47 | 45.34 | 91.23 | 16,731 |
C_AG3 | 6.94 | 92.48 | 45.14 | 91.76 | 17,035 |
C_T1 | 7.03 | 92.68 | 43.13 | 91.98 | 18,951 |
C_T2 | 6.76 | 92.78 | 43.11 | 91.28 | 19,421 |
C_T3 | 6.96 | 92.72 | 43.37 | 91.32 | 20,053 |
SDHB_AG1 | 6.98 | 92.58 | 45.7 | 92.19 | 16,623 |
SDHB_AG2 | 6.86 | 92.42 | 45.33 | 92.04 | 16,731 |
SDHB_AG3 | 7.14 | 92.87 | 45.32 | 91.31 | 17,035 |
SDHB_T1 | 7.3 | 92.61 | 43.59 | 91.62 | 18,951 |
SDHB_T2 | 7.13 | 92.65 | 43.59 | 91.48 | 19,421 |
SDHB_T3 | 7.2 | 92.84 | 43.48 | 92.22 | 20,053 |
Gene Name | Accession Number | Differential Expression | |
---|---|---|---|
SDHB_AG vs. C_AG | SDHB_T vs. C_T | ||
Pro-resilin | XM_043027950.1 | down | up |
IAG | XM_045267991.1 | down | |
SERPINB1 | XM_045251131.1 | down | |
PARP11 | XM_047641508.1 | up | |
DNAJC2 | XM_042365393.1 | down | |
CTL-1 | XM_042349745.1 | down | |
YES | XM_043000203.1 | up | |
Vigilin | XM_027372514.1 | up | |
SMOK-Y-like | XM_027369036.1 | up |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Zhang, W.; Jiang, S.; Yuan, H.; Cai, P.; Jin, S.; Fu, H. Identification of Male Sex-Related Genes Regulated by SDHB in Macrobrachium nipponense Based on Transcriptome Analysis after an RNAi Knockdown. Int. J. Mol. Sci. 2023, 24, 13176. https://doi.org/10.3390/ijms241713176
Gao Z, Zhang W, Jiang S, Yuan H, Cai P, Jin S, Fu H. Identification of Male Sex-Related Genes Regulated by SDHB in Macrobrachium nipponense Based on Transcriptome Analysis after an RNAi Knockdown. International Journal of Molecular Sciences. 2023; 24(17):13176. https://doi.org/10.3390/ijms241713176
Chicago/Turabian StyleGao, Zijian, Wenyi Zhang, Sufei Jiang, Huwei Yuan, Pengfei Cai, Shubo Jin, and Hongtuo Fu. 2023. "Identification of Male Sex-Related Genes Regulated by SDHB in Macrobrachium nipponense Based on Transcriptome Analysis after an RNAi Knockdown" International Journal of Molecular Sciences 24, no. 17: 13176. https://doi.org/10.3390/ijms241713176
APA StyleGao, Z., Zhang, W., Jiang, S., Yuan, H., Cai, P., Jin, S., & Fu, H. (2023). Identification of Male Sex-Related Genes Regulated by SDHB in Macrobrachium nipponense Based on Transcriptome Analysis after an RNAi Knockdown. International Journal of Molecular Sciences, 24(17), 13176. https://doi.org/10.3390/ijms241713176