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Abstract: The oriental river prawn (Macrobrachium nipponense) is a commercially important species
in Asia. A previous study showed that the succinate dehydrogenase complex iron sulfur subunit B
(SDHB) gene participates in testes development in this species through its effect on the expression of
the insulin-like androgenic gland hormone gene. This study knocked-down the Mn-SDHB genes in
M. nipponense using RNAi. A transcriptome analysis of the androgenic gland and testes was then
performed to discover the male sex-related genes regulated by SDHB and investigate the mechanism
of male sexual development in this species. More than 16,623 unigenes were discovered in each
sample generated. In the androgenic gland, most of the differentially expressed genes were enriched
in the hypertrophic cardiomyopathy pathway, while in the testes, they were enriched in the citrate
cycle pathway. In addition, after Mn-SDHB knockdown, five genes were found to be downregulated in
the androgenic gland in a series of biological processes associated with phosphorylated carbohydrate
synthesis and transformations in the glycolysis/gluconeogenesis pathway. Moreover, a total of nine
male sex-related genes were identified including Pro-resilin, insulin-like androgenic gland hormone,
Protein mono-ADP-ribosyltransferase PAPR11, DNAJC2, C-type Lectin-1, Tyrosine-protein kinase
Yes, Vigilin, and Sperm motility kinase Y-like, demonstrating the regulatory effects of Mn-SDHB, and
providing a reference for the further study of the mechanisms of male development in M. nipponense.

Keywords: crustaceans; Macrobrachium nipponense; RNAi; male sexual development; transcriptome
analysis

1. Introduction

The oriental river prawn (Macrobrachium nipponense) is an economically important
species in China, and is widely distributed in freshwater and low-salinity estuarine re-
gions of China and other Asian countries [1–3]. The annual production of M. nipponense
reached 225,321 tons in 2019 with a value of over 3 billion dollars, producing huge eco-
nomic benefits [4]. A previous study showed that both the testes and ovaries of newly
hatched M. nipponense can reach sexual maturity within 45 days after hatching [5]. This
enables inbreeding between newborn shrimps, resulting in shrimps with a small market
size and short life span, and therefore restricts the sustainable development of the M.
nipponense industry. There is therefore an urgent need to understand the reproductive
mechanisms of M. nipponense, in order to establish artificial techniques to regulate their
gonad development processes.

Succinate dehydrogenase complex iron sulfur subunit B (SDHB) is a crucial protein
subunit comprising one of the four components of succinate dehydrogenase, the only
enzyme to be involved in the tricarboxylic acid cycle through its association with the inner
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mitochondrial membrane, where it catalyzes the oxidation of succinate [6,7]. Its particular
iron–sulfur structure enables the succinate dehydrogenase complex to bind to two small
integral membrane proteins of 13.5 and 15.5 kDa, which participate in the oxidative stress
of oxidative phosphorylation, and play vital roles in the electron transport chain. The
spermatogenic cells of Lymnaea stagnalis contain succinate dehydrogenase, which prevents
metabolic acidosis in the testes through the anaerobic production of lactate and succinate by
the Sertoli cells. They also play essential roles in developing rat testes [8]. SDHB also had
multiple functions, including resistance to carboxin in Ustilago maydis [9], the prevention of
superoxide generation and premature aging in Caenorhabditis elegans [10], and resistance
to the fungicide boscalid in Sclerotinia sclerotiorum [11]. A previous study showed that
knockdown of the expression of SDHB by RNAi in male M. nipponense can inhibit the
development of the testes by affecting the expression of the insulin-like androgenic gland
hormone (IAG) [12].

Many researchers have proposed that the eyestalk-androgenic gland-testis endocrine
axis in male crustaceans plays an essential role in regulating male sexual differentiation
and reproduction [13,14]. The androgenic gland and testes have therefore become the
target tissues for studies of male differentiation and reproduction in crustacean species.
The androgenic gland is a special organ in male crustaceans. The hormones it secretes
play essential roles in testis formation and male secondary sexual characteristics [15–17].
IAG is specifically expressed in the androgenic gland, and has been shown to regulate the
process of male sexual differentiation and reproduction in many crustaceans [18–22]. Sexual
development and the regulatory mechanism of IAG in crustaceans are very complicated
processes and rely on the expression of multiple genes. Recent studies have shown that
several sex-related genes, including CFSH, Vtg, Wnt4, the Dmrt gene family, the Sox
gene family, the cell cycle gene family, and Fem-1, participate in the regulation of IAG,
either directly or indirectly. Nevertheless, further investigations are required to explore
the interrelationships between sex-related genes and their association with IAG [23–26].
Knockdown of IAG using RNAi had a significant inhibitory effect on spermatogenesis in M.
rosenbergii [27]. The testes play an essential regulatory role in reproduction, sexual maturity,
and sex differentiation in M. nipponense. Some transcriptome analyses have been conducted
on the testes of this species [28,29], and a number of genes selected from the testes have
been shown to regulate its male reproductive processes [30–32].

In this study, we aimed to identify the genes regulated by SDHB in M. nipponense using
transcriptome profiling analysis after SDHB knockdown using RNAi. The differentially
expressed genes (DEGs) identified in this study may be involved in regulating male repro-
duction, providing valuable information regarding the mechanisms of male reproduction
in crustacean species in general.

2. Results
2.1. Overview of the RNA-Seq of M. nipponense

Androgenic gland and testis samples were collected from both the control and the
RNAi groups on day 7 after the injection of double-stranded RNA to form RNA-seq
samples, namely SDHB_AG for the androgenic gland SDHB knockdown group; SDHB_T
for the testis SDHB knockdown group; C_AG for the androgenic gland control group; and
C_T for the testis control group. After quality control screening, about 84.34 Gb of the
total raw reads (about 7.02 Gb for each sample) were generated. As the data show, the
percentage of Q30 bases of all products exceeded 92.42%, indicating high quality sequences.
Through alignment with the reference genome, the mapping rate exceeded 91.23% and the
unigenes obtained exceeded 16,623 for each RNA-seq sample (Table 1).

All sequence reads were deposited in the Sequence Read Archive of the National
Center for Biotechnology Information (NCBI) (accession SRR24335442-SRR24335459) under
Bioproject PRJNA962267.
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Table 1. Statistics of the RNA-seq data in each of the three replicates.

Sample Clean Bases (Gb) Q30 (%) GC (%) Mapped Reads (%) Unigene Number

C_AG1 7.15 92.49 45.89 91.58 16,623
C_AG2 6.89 92.47 45.34 91.23 16,731
C_AG3 6.94 92.48 45.14 91.76 17,035
C_T1 7.03 92.68 43.13 91.98 18,951
C_T2 6.76 92.78 43.11 91.28 19,421
C_T3 6.96 92.72 43.37 91.32 20,053

SDHB_AG1 6.98 92.58 45.7 92.19 16,623
SDHB_AG2 6.86 92.42 45.33 92.04 16,731
SDHB_AG3 7.14 92.87 45.32 91.31 17,035
SDHB_T1 7.3 92.61 43.59 91.62 18,951
SDHB_T2 7.13 92.65 43.59 91.48 19,421
SDHB_T3 7.2 92.84 43.48 92.22 20,053

2.2. Identification and Functional Analysis of DEGs

Fragments per kilobase per million reads (FPKM) is a common measure for estimating
gene expression levels in transcriptome sequencing data analysis. For the 12 samples in
this study, the mean FPKM values for each gene ranged from 29.76 to 34.43, and the overall
trends in gene expression were similar between the samples (Table S1, Figure S1).

The DEG analysis results revealed a total of 67 DEGs in the “SDHB_T vs. C_T”
comparison. Of these, 49 genes were upregulated and 18 were downregulated. Similarly,
the “SDHB_AG vs. C_AG” comparison identified 235 DEGs, consisting of 52 upregulated
genes and 183 downregulated genes.

2.3. GO and KEGG Enrichment Analysis of DEGs

The gene products of the total unigenes and DEGs were clustered according to the
GO database to describe their functional attributes. All of the unigenes and DEGs were
clustered into cellular components, molecular functions, and biological processes (Figure 1).
Most DEGs in the “SDHB_AG vs. C_AG” comparison involved terms including “cy-
toplasm” (32 DEGs), “extracellular region” (27 DEGs), “metal ion binding” (22 DEGs),
“integral component of membrane” (22 DEGs), and “ATP binding” (18 DEGs). In the
“SDHB_T vs. C_T” comparison, most of the DEGs involved terms including “cytoplasm”
(12 DEGs), “ATP binding” (10 DEGs), “cytosol” (8 DEGs), and “protein serine/threonine
kinase activity” (7 DEGs).

In the KEGG pathway enrichment analysis, DEGs in the “SDHB_AG vs. C_AG” com-
parison were enriched including those related to hypertrophic cardiomyopathy (HCM), di-
lated cardiomyopathy (DCM), and the PI3K-Akt signaling pathway. DEGs in the “SDHB_T
vs. C_T” comparison were enriched including those related to the citrate cycle (TCA cycle),
oxidative phosphorylation, and the MAPK signaling pathway. The top 20 pathways with
the largest number of DEGs are shown in Figure 2.

Notably, some DEGs were enriched in energy-related biological pathways, includ-
ing the TCA cycle and the glycolysis/gluconeogenesis pathway (Figure 2). In the TCA
cycle pathway, the SDHB gene was downregulated in both the “SDHB_AG vs. C_AG”
comparison and the “SDHB_T vs. C_T” comparison, as a direct result of the RNAi treat-
ment. Additionally, in the “SDHB_AG vs. C_AG” comparison, five genes were found
to be downregulated in a set of relatively continuous biological processes related to the
phosphorylated carbohydrate synthesis and transformation in glycolysis/gluconeogenesis
pathways, including hexokinase, fructose-1,6-bisphosphatase I (FBP), triosephosphate iso-
merase (TPI), phosphoenolpyruvate carboxykinase-GTP (PCK-GTP), and multiple inositol-
polyphosphate phosphatase (MINPP1) (Figure 3).



Int. J. Mol. Sci. 2023, 24, 13176 4 of 13Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 13 
 

 

  
Figure 1. GO classification of the unigenes and DEGs discovered: (A) “SDHB_AG vs. C_AG”; (B) 
“SDHB_T vs. C_T”. The abscissa shows the second level terms in the three GO categories. The ordi-
nates show the number of genes annotated to each term and the percentage of all genes. 

In the KEGG pathway enrichment analysis, DEGs in the “SDHB_AG vs. C_AG” com-
parison were enriched including those related to hypertrophic cardiomyopathy (HCM), 
dilated cardiomyopathy (DCM), and the PI3K-Akt signaling pathway. DEGs in the 
“SDHB_T vs. C_T” comparison were enriched including those related to the citrate cycle 
(TCA cycle), oxidative phosphorylation, and the MAPK signaling pathway. The top 20 
pathways with the largest number of DEGs are shown in Figure 2. 

Figure 1. GO classification of the unigenes and DEGs discovered: (A) “SDHB_AG vs. C_AG”;
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Figure 3. Schematic diagram of a partial glycolysis/gluconeogenesis pathway. The green boxes
represent genes that are downregulated in the androgenic gland of Macrobrachium nipponense.

2.4. Male Sexual Development-Related DEGs

In the “SDHB_AG vs. C_AG” and “SDHB_T vs. C_T” comparisons, a total of nine
male development-related genes were screened (Table 2). Among them, Pro-resilin is a DEG
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expressed during the embryonic development of male and female crustaceans, while IAG
and the serine protease inhibitor 1 (SERPINB1) are related to hormone regulating processes,
and the other six genes are related to spermiogenesis and sperm motility (Table 2). As
shown in Table 2, after the knockdown of SDHB in the androgenic gland of M. nipponense,
Pro-resilin and IAG were downregulated, while Protein mono-ADP-ribosyltransferase
PAPR11 (PARP11) was upregulated. In the testes of M. nipponense, DNAJC2 and C-type
Lectin-1 (CTL-1) were upregulated, while Pro-resilin, Tyrosine-protein kinase Yes (YES),
Vigilin, and sperm motility kinase Y-like (SMOK-Y-like) were upregulated.

Table 2. Male development-related genes screened from the differentially expressed genes.

Gene Name Accession Number
Differential Expression

SDHB_AG vs. C_AG SDHB_T vs. C_T

Pro-resilin XM_043027950.1 down up
IAG XM_045267991.1 down

SERPINB1 XM_045251131.1 down
PARP11 XM_047641508.1 up
DNAJC2 XM_042365393.1 down

CTL-1 XM_042349745.1 down
YES XM_043000203.1 up

Vigilin XM_027372514.1 up
SMOK-Y-like XM_027369036.1 up

2.5. Validation of DEGs by qRT-PCR

To validate the transcriptome results, six DEGs from each comparison that showed
significantly different expression levels in the qRT-PCR analysis were selected at random.
Positive numbers represent an upward trend, and negative numbers represent a downward
trend. As shown in Figure 4, the expression patterns of the DEGs identified using qRT-PCR
were generally similar to those obtained in the RNA-Seq analyses, although the relative
expression levels were not completely consistent, thus proving that the transcriptome
sequencing data were reliable.
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3. Discussion

In this study, we attempted to identify male development-related genes and pathways
regulated by SDHB in M. nipponense, based on the transcriptomes observed after Mn-SDHB
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knockdown using RNAi. This method can inhibit gene expression or translation through
the short double-stranded RNA molecules in a cell’s cytoplasm [33], and has been widely
used in gene function analysis in M. nipponense. Based on the RNAi treatment of Mn-SDHB
dsRNA, a previous study found the inhibition of testis development and decrement in
sperm in M. nipponense, indicating that SDHB may be involved in male sexual development
in this species [12]. Because Mn-SDHB dsRNA was similarly employed in this study,
based on both qRT-PCR and the study of the differential expression of the transcriptome,
decreasing expression of Mn-SDHB was detected in the androgenic gland and testis in
samples from day 7 following the Mn-SDHB dsRNA treatment, indicating the effectiveness
of the dsRNA treatment. The qRT-PCR analysis of some representative DEGs suggested
that the transcriptome sequencing and differential expression analysis were reliable.

In the androgenic gland of M. nipponense, five downregulated genes were detected
in the glycolysis/gluconeogenesis pathway (which promotes the conversion of glucose
into pyruvate, which releases free energy to form ATP, and pyruvate, which fuels the
tricarboxylic acid cycle), as well as precursors for secondary metabolism, and amino acid
and fatty acid biosynthesis. These DEGs are involved in a relatively continuous series
of biological processes (Figure 3), indicating that the Mn-SDHB gene promotes the syn-
thesis of phosphorylated carbohydrate and the transformations in these processes, and
has an active role in the energy-related functions mentioned above. In addition, the gly-
colysis/gluconeogenesis pathway is involved in most biological processes, and has been
shown to be an important pathway participating in male development in M. nipponense. In
previous transcriptome studies in M. nipponense, the expression of many genes in the gly-
colysis/gluconeogenesis pathway was found to vary during the post-larval developmental
stages 5 (PL5) to PL25, the sensitive periods for gonad development [34]. In addition, after
ablation of the eyestalk, which is a key organ for secreting many hormones during male
sexual development in crustaceans, the glycolysis/gluconeogenesis pathway is also one
of the main sources of enrichment of the DEGs in the testes and androgenic gland of M.
nipponense [35]. Moreover, the downregulated genes have also been shown to be associ-
ated with male sexual development in mammals. Phosphoenolpyruvate carboxykinase
in the Leydig cells of prepubertal mouse testes have been shown to play an important
role in steroidogenesis [36]. In a study of human disease, expression of the androgen
receptor gene is abnormal in triosephosphate isomerase deficient patients, indicating that
triosephosphate isomerase may affect the action of androgen [37]. There is also evidence
that hexokinase, TPI, and MINPP1 are regulated by androgen [38–40]. Although the genes
in the glycolysis/gluconeogenesis pathway have also been shown to play an important
role in processes such as spermatogenesis or increasing sperm motility [41,42], this study
detected no differences in the expression of these genes in the testes of M. nipponense, which
might suggest that the different expression of Mn-SDHB does not affect these biological
processes by regulating the glycolysis/gluconeogenesis pathway. According to previous
in situ hybridization studies of the androgenic gland of M. nipponense, SDHB is expressed
in the ejaculatory bulb surrounding the androgenic gland cells rather than in the andro-
genic gland cells themselves [43], indicating that SDHB might promote and support the
formation of androgenic gland cells by influencing the glycolysis/gluconeogenesis process,
and that it plays an essential role in maintaining the normal structure and function of the
androgenic gland.

In this study, the differential expression of nine male sex-related genes was detected
after Mn-SDHB knockdown. Among them is one gene that is differentially expressed during
the embryonic development of male and female crustaceans. Pro-resilin is a type of resilin
in a family of elastic proteins that includes elastin, as well as gluten, gliadin, abductin, and
spider silks. Pro-resilin genes were found to be upregulated in males compared to females
in the embryonic development of M. rosenbergii [44], a related species in the same genus as
M. nipponense, indicating that it is important in the development of male prawn embryos.
In this study, after Mn-SDHB knockdown, the pro-resilin gene was down-regulated in the
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androgenic gland and up-regulated in the testes of M. nipponense, showing that the effects
of Mn-SDHB on pro-resilin vary in different male development-related tissues.

Two genes were related to the hormone regulatory process, IAG and SERPINB1.
Coded by the IAG gene, insulin-like androgenic gland hormone is an insulin analogue
of the insulin/insulin-like growth factor family, and has been shown to play essential
roles in male sexual differentiation and development in crustacean species [27,45–47]. In
the androgenic gland of M. nipponense, the expression of Mn-IAG was found to decrease
after treatment with Mn-SDHB dsRNA, which is consistent with the results of previous
qRT-PCR studies, and again points to the positive regulatory effect of Mn-SDHB on Mn-IAG
in M. nipponense. SERPINB1 is an inhibitor of serine proteases, and resides mainly in the
cytoplasm of neutrophils and monocytes, suppressing the enzymatic activities of serine
proteases and preventing unwanted cellular damage during degranulation [48]. In rats, the
SERPINB1 gene was apparently down-regulated after a Sertoli cell-selective knockout of the
androgen receptor, suggesting that it participates in tubular restructuring and cell junction
dynamics processes in Sertoli cells, controlled in part by androgens [49]. Mn-SERPINB1 was
also downregulated in the androgenic gland of M. nipponense after Mn-SDHB knockdown.

Six genes were related to spermiogenesis and sperm motility. PAPR11 is a kind of
ADP-ribosyltransferase poly polymerase, which plays a role in immune processes such
as antiviral activity [50]. Deletion of the PARP11 gene affects the shape of the cell nucleus
and causes the formation of abnormally shaped fertilization-incompetent sperm, resulting
in teratozoospermia and male infertility in mice. Therefore, it was predicted to have
functional relevance for nuclear envelope stability and nuclear reorganization during
spermiogenesis [51]. C-type lectins characteristically require calcium-related proteins
to mediate essential cell functions through binding to carbohydrates. In Ancylostoma
ceylanicum, the CTL-1 protein is a male gender-specific C-type lectin identified from sperm
and soluble protein extracts and is important in hookworm reproductive physiology [52].
In studies on humans and mice, the testes/sperm galactosyl receptor was identified as
a C-type lectin with possible roles in cell–cell interaction during spermatogenesis and
sperm-zona pellucida binding at fertilization [53]. DNAJ chaperone was initially identified
as a heat shock protein in Escherichia coli, and a prokaryotic homologue of the eukaryotic
heat shock protein 70. It assists other proteins in their folding, transport, and assembly into
complexes, which are necessary for testis development and spermatogenesis [54]. DNAJC2
was described in bull sperm by Selvaraju in 2017 and is involved in stem cell differentiation
and early embryonic development [55]. Tyrosine-protein kinase Yes Protein was shown to
participate in the phosphorylation of tyrosine residues, whose truncated forms are related
to spermiogenesis [55]. Vigilin, also known as high-density lipoprotein binding protein,
is related to the processes of DNA damage repair [56], chromatin condensation, and gene
silencing and according to a transcriptome study, its expression is the greatest in ovine
sperm [55]. The SMOK-Y-like gene belongs to the sperm motility kinase family and is
involved in sperm motility [57]. These male development-related genes were differentially
expressed after the decreased expression of Mn-SDHB. However, only the DNAJC2 and CLT-
1 found in the testes of M. nipponense were downregulated following Mn-SDHB treatment,
indicating that the influence of Mn-SDHB on male development is complicated and requires
further study.

4. Materials and Methods
4.1. Knockdown of the Expression of SDHB by RNAi in M. nipponense

The expression of SDHB of M. nipponense was knocked-down using RNAi. The specific
RNAi primer for SDHB with a T7 promoter site was described in Table S2 in our previous
study [12]. A Transcript Aid™ T7 High Yield Transcription kit (Fermentas Inc., Horsham,
PA, USA) was used to synthesize Mn-SDHB dsRNA (dsSDHB) and GFP dsRNA (dsGFP),
according to the manufacturer’s protocol. The dsGFP was used as a negative control [58].
A total of 300 mature male M. nipponense with body weights ranging from 3.26 to 4.76 g
were collected. They were randomly divided into a dsSDHB treatment group (RNAi) and a
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dsGFP treatment group (control), and kept in separate 500 L tanks for 72 h prior to injection
with either dsSDHB or dsGFP. The injected doses were 4 µg/g in both cases, consistent
with the dose rates used in previous studies [59,60]. Androgenic gland and testis samples
were collected from both the control and the RNAi groups on day 7 after dsSDHB and
dsGFP injection, consistent with previous studies. qRT-PCR analysis revealed that the
expression of Mn-SDHB decreased by over 90% in both the testes and androgenic glands of
the dsSDHB-treated group, compared with the dsGFP group.

4.2. RNA Isolation, Library Construction, and Sequencing

The testes and androgenic glands of five M. nipponense from the dsSDHB-treated
group (RNAi) and the dsGFP-treated group (control), were collected and individually
pooled together to form a biological replicate, and three replicates were used for the
transcriptome analysis.

Total RNA was extracted from each replicate using TRIzol reagent (Invitrogen, Waltham,
MA, USA) according to the manufacturer’s protocol, followed by RNA purity and quantifica-
tion evaluation using a Nano Drop 2000 spectrophotometer (Thermo Scientific, Waltham, MA,
USA). RNA integrity was assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA). With the valid RNA samples (RIN ≥ 7, 28S:18S ≥ 0.7, >1 µg), libraries
were then constructed using a VAHTS Universal V6 RNA-seq Library Prep Kit (Vazyme,
Nanjing, China) according to the manufacturer’s instructions. The libraries were sequenced
using an Illumina Novaseq 6000 platform (Illumina, San Diego, CA, USA) to generate the
150 bp paired-end reads.

4.3. Differential Gene Expression Analysis

Low-quality raw reads for each sample were removed from the data using fastp [61]
with the default parameters. The clean reads obtained were mapped to the M. nipponense
reference genome (Genbank access numbers: GCA_015110555.1 and GCA_015104395.1)
using HISAT2 [62]. Gene expression was calculated using the FPKM method, where
FPKM = cDNA fragments/mapped fragments (millions)/transcript length (kb), using
HTSeq-count [63].

Differential expression analysis was performed using DESeq2 [64]. The false discovery
rate (FDR) was calculated using the Benjamini–Hochberg correction method [65] with
q-value < 0.05 and fold change >2 or <0.5 as the thresholds for significant DEGs.

Based on the hypergeometric distribution, with a threshold p-value < 0.05, the func-
tional annotation and classification of DEGs were conducted according to the GO [66] and
KEGG databases [67] to analyze the metabolic pathways of the enriched DEGs.

4.4. Quantitative Analysis

qRT-PCR was performed to evaluate the sequencing and data analysis and to validate
the DEGs. Gonadal RNA was extracted (100 mg) using 1 mL TRIzol reagent (TaKaRa, Tokyo,
Japan) and first-strand cDNA synthesis was performed using a Reverse Transcriptase M-
MLV Kit (TaKaRa, Tokyo, Japan).

Genes were randomly selected from the DEGs for evaluation and their functional
annotations, and the primers used are shown in Table S2. The qRT-PCR was performed
using an iCycler iQ5 real-time PCR system (Bio-Rad, Hercules, CA, USA), with eukaryotic
translation initiation factor 5 A (EIF) as the reference gene, because of its stable expression
in a variety of situations [68]. The reaction was amplified with 35 cycles of 94 ◦C for 30 s,
50 ◦C for 30 s, and 72 ◦C for 1 min, followed by 10 min incubation at 72 ◦C as the extension
step. Each sample had three replicates while each reaction had three controls: nuclease-free
water; primer-free water; and template-free water. The system recorded fluorescence curves
and data automatically, and dissociation curves of the amplified products were recorded
at the end of each PCR. The mRNA expression levels were determined using the 2−∆∆CT

method [69].
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4.5. Ethics Statement

The protocols of all experiments involving M. nipponense were approved by the In-
stitutional Animal Care and Use Ethics Committee of the Freshwater Fisheries Research
Center of the Chinese Academy of Fishery Sciences (Wuxi, China).

5. Conclusions

In this study, we knocked-down Mn-SDHB expression using RNAi and performed
transcriptome studies of the androgenic gland and testes of M. nipponense. In the an-
drogenic gland group treated with dsSDHB, five downregulated genes participating in
phosphorylated carbohydrate synthesis and transformation were found in the glycoly-
sis/gluconeogenesis pathway, which is important during the sexual development of male
M. nipponense. Moreover, a total of nine male development-related genes were screened
from the DEGs identified from the androgenic glands and testes of M. nipponense, demon-
strating some of the regulatory effects of Mn-SDHB in the male development process of M.
nipponense, and providing reference data for the further study of the mechanisms of male
development in crustaceans in general.
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