Molecular Structure of Gaseous Oxopivalate Co(II): Electronic States of Various Multiplicities
Abstract
:1. Introduction
2. Results and Discussions
2.1. Vapor Composition of Cobalt(II) Oxopivalate at T = 410 K
2.2. Electronic States of the Tetranuclear Co(II) Complex with Different Multiplicity. Results of Quantum Chemical Calculations
2.3. Geometric Structure of the Co4O(piv)6 in the Gas Phase. Results of Structural Analysis of Electron Diffraction Data
2.4. Nature of Chemical Bonds in the Co4O(formyl)6 and Co4O(piv)6 Complexes
2.5. Structure of Cobalt Carboxylates in the Gas and Crystalline Phases
3. Materials and Methods
3.1. Conditions of the Synchronous GED/MS Experiments
3.2. Details of Quantum Chemical Calculation of Co4O(formyl)6 in Different Electronic States
3.3. Features of Structural Analysis of GED/MS Data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Syrkin, V.G. CVD Method. In Chemical Vapor Phase Metallization; Nauka: Russia, Moscow, 2000; 496p. [Google Scholar]
- Modak, R.; Sikdar, Y.; Thuijs, A.E.; Christou, G.; Goswami, S. CoII4, CoII7, and a Series of CoII2LnIII (LnIII = NdIII, SmIII, GdIII, TbIII, DyIII) Coordination Clusters: Search for Single Molecule Magnets. Inorg. Chem. 2016, 55, 10192–10202. [Google Scholar] [CrossRef] [PubMed]
- Shiga, T.; Nojiri, H.; Oshio, H. A Ferromagnetically Coupled Octanuclear Manganese(III) Cluster: A Single-Molecule Magnet with a Spin Ground State of S = 16. Inorg. Chem. 2020, 59, 4163–4166. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.P.; Luo, X.X.; Liu, Y.F.; Li, K.; Wu, X.L. [Co3(μ3-O)]-Based Metal–Organic Frameworks as Advanced Anode Materials in K- and Na-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 46902–46908. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Pang, W.; Feng, H.; Zhang, R.; Zhu, W.; Wang, Q.; Miao, J.; Li, Y.; Liu, Y.; Xu, X. Light-guided tumor diagnosis and therapeutics: From nanoclusters to polyoxometalates. Chin. Chem. Lett. 2022, 33, 2783–2798. [Google Scholar] [CrossRef]
- Tanimoto, R.; Wada, T.; Okada, K.; Shiomi, D.; Sato, K.; Takui, T.; Suzuki, S.; Naota, T.; Kozaki, M. A Molecule Having 13 Unpaired Electrons: Magnetic Property of a Gadolinium(III) Complex Coordinated with Six Nitronyl Nitroxide Radicals. Inorg. Chem. 2022, 61, 3018–3023. [Google Scholar] [CrossRef]
- Doheny, P.W.; Cassidy, S.J.; Saines, P.J. Investigations of the Magnetocaloric and Thermal Expansion Properties of the Ln3(adipate)4.5(DMF)2 (Ln = Gd–Er) Framework Series. Inorg. Chem. 2022, 61, 4957–4964. [Google Scholar] [CrossRef]
- Baruah, J.B. Synthesis of first row transition metal carboxylate complexes by ring opening reactions of cyclic anhydrides. J. Chem. Sci. 2011, 123, 123–129. [Google Scholar] [CrossRef]
- Liu, G.-C.; Lu, X.; Li, X.-W.; Wang, X.-L.; Xu, N.; Li, Y.; Lin, H.-Y.; Chen, Y.-Q. Metal/Carboxylate-Induced Versatile Structures of Nine 0D → 3D Complexes with Different Fluorescent and Electrochemical Behaviors. Am. Chem. Soc. Omega 2019, 4, 17366–17378. [Google Scholar] [CrossRef]
- Bhasin, H.; Kashyap, P.; Fernandes, P.; Mishra, D. Multi-topic Carboxylates as Versatile Building Blocks for the Design and Synthesis of Multifunctional MOFs Based on Alkaline Earth, Main Group and Transition Metals. Comments Inorg. Chem. 2022, 43, 257–304. [Google Scholar] [CrossRef]
- Aromí, G.; Batsanov, A.S.; Christian, P.; Helliwell, M.; Parkin, A.; Parsons, S.; Smith, A.A.; Timco, G.A.; Winpenny, R.E.P. Synthetic and Structural Studies of Cobalt—Pivalate Complexes. Chem. Eur. J. 2003, 9, 5142–5161. [Google Scholar] [CrossRef]
- Gu, F.; Li, C.; Hu, Y.; Zhang, L. Synthesis and optical characterization of Co3O4 nanocrystals. J. Cryst. Growth 2007, 304, 369–373. [Google Scholar] [CrossRef]
- Wang, G.; Shen, X.; Horvat, J.; Wang, B.; Liu, H.; Wexler, D.; Yao, J. Hydrothermal and optical, magnetic and supercapacitance properties of nanoporous cobalt oxide nanorodes. J. Phys. Chem. 2009, 113, 4357–4361. [Google Scholar] [CrossRef]
- Jogade, S.M.; Sutrave, D.S.; Gothe, S.D. Electrochemical analysis of cobalt oxide thin film for supercapacitor. Int. J. Adv. Res. Phys. Sci. 2015, 2, 36–41. [Google Scholar]
- Yang, H.; Ouyang, J.; Tang, A. Single Step Synthesis of High-Purity CoO Nanocrystals. J. Phys. Chem. 2007, 111, 8006–8013. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Chen, Y.; Wang, L.; Zeng, D.; Peng, D.-L. Phase-controlled synthesis and magnetic properties of cubic and hexagonal CoO nanocrystals. Nanotecnology 2016, 27, 455602. [Google Scholar] [CrossRef]
- Nam, H.-J.; Sasaki, T.; Koshizaki, N. Optical CO Gas Sensor Using a Cobalt Oxide Thin Film Prepared by Pulsed Laser Deposition under Various Argon Pressures. J. Phys. Chem. 2006, 110, 23081. [Google Scholar] [CrossRef]
- Li, W.; Xu, L.; Chen, J. Co3O4 Nanomaterials in Lithium-Ion Batteries and Gas Sensors. Adv. Funct. Mater. 2005, 15, 851–857. [Google Scholar] [CrossRef]
- Blake, A.B. A tetranuclear oxopivalate of cobalt(II). Chem. Commun. 1966, 16, 569a. [Google Scholar] [CrossRef]
- Sidorov, A.A.; Fomina, I.G.; Talismanov, S.S.; Aleksandrov, G.G.; Novotortsev, V.M.; Nefedov, S.E.; Eremenko, I.L. Formation and Transformations of Polynuclear Hydroxoand Oxotrimethylacetate Complexes of Ni(II) and Co(II). Russ. J. Coord. Chem. 2001, 27, 548–559. [Google Scholar] [CrossRef]
- Fomina, G.; Aleksandrov, G.G.; Dobrokhotova, Z.V.; Proshenkina, O.Y.; Kiskin, M.A.; Velikodnyi, Y.A.; Ikorskii, V.N.; Novotortsev, V.M.; Eremenko, I.L. High spin carboxylate polymers [M(OOCCMe3)2]n of Group VIII 3d metals. Russ. Chem. Bull. Int. Ed. 2006, 55, 1909–1919. [Google Scholar] [CrossRef]
- Morozova, E.A.; Malkerova, I.P.; Kiskin, M.A.; Alikhanyan, A.S. Gas Phase Composition and Vaporization Thermodynamics of Cobalt(II) Pivalate Complexes. Russ. J. Inorg. Chem. 2018, 63, 1436–1442. [Google Scholar] [CrossRef]
- Girichev, G.V.; Giricheva, N.I.; Kuzmina, N.P.; Medvedeva, Y.S.; Rogachev, A.Y. Molecular structure of nickel(ii) and copper(ii) N,N′-ethylene-bis(acetylacetoneiminates) MO2N2C12H18 according to gas-phase electron diffraction data and quantum-chemical calculations. Russ. J. Struct. Chem. 2008, 49, 837–849. [Google Scholar] [CrossRef]
- Girichev, G.V.; Giricheva, N.I.; Kuzmina, N.P.; Levina, Y.S.; Rogachev, A.Y. Molecular structure of NiO2N2C16H14 from gas-phase electron diffraction and quantum chemical data. Russ. J. Struct. Chem. 2005, 46, 813–823. [Google Scholar] [CrossRef]
- Vest, B.; Varga, Z.; Hargittai, M.; Hermann, A.; Schwerdtfeger, P. The Elusive Structure of CrCl2—A Combined Computational and Gas-Phase Electron-Diffraction Study. Chem. Eur. J. 2008, 14, 5130–5143. [Google Scholar] [CrossRef]
- Grabowski, S.J. What Is the Covalency of Hydrogen Bonding? Chem. Rev. 2011, 111, 2597–2625. [Google Scholar] [CrossRef]
- Blom, C.E.; Altona, C. Application of self-consistent-field ab initio calculations to organic molecules II. Scale factor method for the calculation of vibrational frequencies from ab initio force constants: Ethane, propane and cyclopropane. Mol. Phys. 1976, 31, 1377–1391. [Google Scholar] [CrossRef]
- Jaitner, P.; Veciana, J.; Sporer, C.; Kopacka, H.; Wurst, K.; Ruiz-Molina, D. Synthesis, Crystal Structure, and Spectroscopic and Magnetic Properties of a New [Co4O(OOCNC9H18)6] Cluster. Organometallics 2001, 20, 568–571. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Keith, T.A. AIMAll; TK Gristmill Software: Overland Park, KS, USA, 2016. [Google Scholar]
- Glendening, E.D.; Badenhoop, J.K.; Reed, A.E.; Carpenter, J.E.; Bohmann, J.A.; Morales, C.M.; Weinhold, F. NBO 5.G. 2004. Available online: https://onlinelibrary.wiley.com/doi/10.1002/jcc.23266 (accessed on 19 August 2023).
- Girichev, G.V.; Utkin, A.N.; Revichev, F. Modernization of electron diffraction recorder EMR-100 for gas research. Prib. Tekh. Eksp. 1984, 27, 187–190. (In Russian) [Google Scholar]
- Girichev, G.V.; Shlykov, S.A.; Revichev, Y.F. Equipment for studying the structure of molecules of valence-unsaturated compounds. Prib. Tekh. Eksp. 1986, 4, 167. (In Russian) [Google Scholar]
- Girichev, E.G.; Zakharov, A.V.; Girichev, G.V.; Bazanov, M.I. Automation of a physicochemical experiment: Photometry and voltammetry. Izv. Vyssh. Uchebn. Zaved. Tekstiln. Prom. 2000, 2, 142. (In Russian) [Google Scholar]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6169. [Google Scholar] [CrossRef]
- Nakano, H. Quasidegenerate perturbation theory with multiconfigurational self-consistent-field reference functions. J. Chem. Phys. 1993, 99, 7983–7992. [Google Scholar] [CrossRef]
- Granovsky, A.A. Extended multi-configuration quasi-degenerate perturbation theory: The new approach to multi-state multi-reference perturbation theory. J. Chem. Phys. 2011, 134, 214113. [Google Scholar] [CrossRef] [PubMed]
- Noro, T.; Sekiya, M.; Koga, T. Segmented contracted basis sets for atoms H through Xe: Sapporo-(DK)-nZP sets (n = D, T, Q). Theor. Chem. Acc. 2012, 131, 1124. [Google Scholar] [CrossRef]
- Noro, T.; Sekiya, M.; Koga, T. Correlating basis sets for the H atom and the alkali-metal atoms from Li to Rb. Theor. Chem. Acc. 2003, 109, 85–90. [Google Scholar] [CrossRef]
- Granovsky, A.A. Firefly Version 8. 2013. Available online: http://classic.chem.msu.su/gran/firefly/index.html (accessed on 1 September 2019).
- Witek, H.A.; Choe, Y.K.; Finley, J.P.; Hirao, K. Intruder state avoidance multireference Möller–Plesset perturbation theory. J. Comput. Chem. 2002, 23, 957–965. [Google Scholar] [CrossRef]
- Waller, M.P.; Braun, H.; Hojdis, N.; Bühl, M. Geometries of Second-Row Transition Metal Complexes from Density Functional Theory. J. Chem. Theory Comput. 2007, 3, 2234–2242. [Google Scholar] [CrossRef]
- Bühl, M.; Reimann, C.; Pantazis, D.A.; Bredow, T.; Neese, F. Geometries of Third-Row Transition-Metal Complexes from Density Functional Theory. J. Chem. Theory Comput. 2008, 4, 1449–1459. [Google Scholar] [CrossRef]
- Bühl, M.; Kabrede, H. Geometries of Transition Metal Complexes from Density Functional Theory. J. Chem. Theory Comput. 2006, 2, 1282–1290. [Google Scholar] [CrossRef]
- Minenkov, Y.; Cavallo, L. Ground-State Gas-Phase Structures of Inorganic Molecules Predicted by Density Functional Theory Methods. ACS Omega 2017, 2, 8373–8387. [Google Scholar] [CrossRef]
- Minenkov, Y.; Singstad, Å.; Occhipinti, G.; Jensen, V.R. The Accuracy of DFT-Optimized Geometries of Functional Transition Metal Compounds: A Validation Study of Catalysts for Olefin Metathesis and Other Reactions in the Homogeneous Phase. Dalton Trans. 2012, 41, 5526–5541. [Google Scholar] [CrossRef] [PubMed]
- Andersen, B.; Seip, H.; Strand, T.; Stolevik, R. Procedure and Computer Programs for the Structure Determination of Gaseous Molecules from Electron Diffraction Data. Acta. Chem. Scand. 1969, 23, 3224–3234. [Google Scholar] [CrossRef]
- Vishnevskiy, Y.; Zhabanov, Y. New implementation of the first-order perturbation theory for calculation of interatomic vibrational amplitudes and corrections in gas electron diffraction. J. Phys. Conf. Ser. 2015, 633, 012076. [Google Scholar] [CrossRef]
m/e | Ion | Irel, Uioniz = 50 V T = 410 K | Irel [22] Uioniz = 60 V T = 430 K |
---|---|---|---|
1429 | [Co8O2(piv)9O]+ | 2 | |
1344 | [Co8O2(piv)8O2]+ | 5 | |
1093 | [Co6O2(piv)7O2]+ | 1 | |
858 | [Co4O(piv)6]+ | 13 | 10.2 |
757 | [Co4O(piv)5]+ | 100 | 100 |
656 | [Co4O(piv)4]+ | 1 | 11.3 |
571 | [Co4O(piv)3O]+ | 1 | |
555 | [Co4O(piv)3]+ | 1 | 12.1 |
498 | [Co4O(piv)3-tb]+ | 25 | 100.6 |
395 | [Co3O(piv)2]+ | 1 | |
59 | [Co]+ | 5 | 20.7 |
Spin State 1 | |||||||
---|---|---|---|---|---|---|---|
Multiplicity, M | 13 | 11 | 9 | 7 | 5 | 3 | 1 |
CASSCF, ΔE | 1.51 | 1.12 | 0.77 | 0.39 | 0.20 | 0.08 | 0.00 |
XMCQDPT2, ΔE | 6.48 | 4.82 | 3.32 | 1.90 | 0.89 | - | 0.00 |
Qav(MO1) | 1.000 | 1.007 | 1.013 | 1.029 | 1.024 | 1.025 | 1.026 |
Qav(MO2) | 1.000 | 1.007 | 1.013 | 1.020 | 1.020 | 1.024 | 1.026 |
Qav(MO3) | 1.000 | 1.007 | 1.013 | 1.021 | 1.026 | 1.025 | 1.026 |
Qav(MO4) | 1.000 | 1.003 | 1.005 | 1.005 | 1.012 | 1.010 | 1.010 |
Qav(MO5) | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Qav(MO6) | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Qav(MO7) | 1.000 | 1.000 | 1.000 | 1.000 | 1.001 | 1.000 | 1.000 |
Qav(MO8) | 1.000 | 0.999 | 0.999 | 0.998 | 0.995 | 0.998 | 0.998 |
Qav(MO9) | 1.000 | 0.999 | 0.999 | 0.999 | 0.999 | 0.998 | 0.998 |
Qav(MO10) | 1.000 | 0.992 | 0.985 | 0.979 | 0.977 | 0.973 | 0.972 |
Qav(MO11) | 1.000 | 0.992 | 0.985 | 0.970 | 0.975 | 0.973 | 0.972 |
Qav(MO12) | 1.000 | 0.992 | 0.985 | 0.979 | 0.972 | 0.973 | 0.972 |
Complex, Parameter a | Co4O(piv)6 | Co8O2(piv)12 | Co4O(OOCNC9H18)2 | |
---|---|---|---|---|
Method | GED/MS 410 K rh1 (C3) Rf = 4.5% | B3LYP re (C3) | X-ray b [20] | X-ray [28] |
r(OC–Co1) c | 1.975 (5) d p1 e | 1.987 | 1.984 | 1.955 |
r(OC–Co2) | 1.972 (p1) | 1.984 | 1.966 | 1.936, 1.941, 1.954 |
r(Co1–OL) c | 1.963 (5) (p1) | 1.973 | 1.942 | 1.936, 1.939, 1.942 |
r(Co2–OL) | 1.965 (p1) | 1.975 | - | 1.919–1.950 |
r(OL–C) | 1.267/1.265(4) p2 | 1.265/1.263 | 1.247/1.257 | 1.240–1.288 |
r(C-Ct) | 1.537(4) p3 | 1.537 | 1.519 | - |
r(Ct–Cm) | 1.532 (p3) | 1.532 | 1.514 | - |
r(C–H) | 1.079(5) p4 | 1.09 | (0.96) | |
Co1–OC–Co2 | 110.4(6) p5 | 109.5 | 101.4 | 108.3–109.5 |
OL–Co1–OC | 111.8(3) p6 | 110.4 | 113.7 | 110.2–111.9 |
OL–Co1–OL | 107.1(3) (p6) | 108.5 | 104.9 | 107.5 |
Co1–OL–C | 131.8(6) (p5) | 132.5 | 132.7 | 131.9–133.2 |
Co2–OL–C | 128.8(6) (p5) | 130.7 | - | 131.6–132.3 |
OL-C–Ct | 117.2(13) p7 | 117.0 | 119.3 | - |
C–Ct–Cm | 112.1(12) p8 | 111.2 | 112.1 | - |
Cm–Ct–Cm | 108.3(27) p9 | 110.0 | 110.3 | - |
Ct–Cm–H | 111.0(18) p10 | 109.6 | (109.5) | - |
OL–C–Ct–Cm | 5.3(119) p11 | 0.1 | 11.9 | - |
H–Cm–Ct–C | 178.5(45) p12 | 180 | 177.3 | - |
QTAIM Co4O(formyl)6 | NBO Co4O(piv)6 | BCP, QTAIM Co4O(formyl)6 | NBO Co4O(piv)6 | |||||
---|---|---|---|---|---|---|---|---|
Atom | q | qNPA | Bond | ρ | ∇2ρ | ε | δ | P |
Co | 1.41 | 1.20 | Co-Oc | 0.087 | +0.425 | 0.00 | 0.52 | 0.28 |
Oc | −1.32 | −1.20 | Co-OL | 0.087 | +0.456 | 0.01 | 0.47 | 0.30 |
OL | −1.24 | −0.72 | C-OL | 0.383 | −0.592 | 0.07 | 1.06 | 1.37 |
C | 1.74 | 0.84 | ||||||
Natural electron configuration (NBO, Co4O(piv)6) | ||||||||
Oc | [core] 2s(1.75) 2p(5.43) | |||||||
Co | [core] 4s(0.22) 3d(7.25) 4p(0.32) | |||||||
OL | [core] 2s(1.67) 2p(5.04) |
Nozzle-To-Plate Distance, mm | 338 | 598 |
---|---|---|
Electron beam current, µA | 1.4 | 1.0 |
Temperature of effusion cell, K | 410 (5) | 411 (5) |
Accelerating voltage, kV | 83.5 | 81.4 |
Ionization voltage, V | 50 | 50 |
Exposure time, s | 100 | 45 |
Residual gas pressure, Torr | 1.4 × 10−6 | 2.0 × 10−6 |
Scattering angles, Å−1 | 3.0–28.6 | 1.5–16.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giricheva, N.I.; Sliznev, V.V.; Alikhanyan, A.S.; Morozova, E.A.; Girichev, G.V. Molecular Structure of Gaseous Oxopivalate Co(II): Electronic States of Various Multiplicities. Int. J. Mol. Sci. 2023, 24, 13224. https://doi.org/10.3390/ijms241713224
Giricheva NI, Sliznev VV, Alikhanyan AS, Morozova EA, Girichev GV. Molecular Structure of Gaseous Oxopivalate Co(II): Electronic States of Various Multiplicities. International Journal of Molecular Sciences. 2023; 24(17):13224. https://doi.org/10.3390/ijms241713224
Chicago/Turabian StyleGiricheva, Nina I., Valery V. Sliznev, Andrey S. Alikhanyan, Ekaterina A. Morozova, and Georgiy V. Girichev. 2023. "Molecular Structure of Gaseous Oxopivalate Co(II): Electronic States of Various Multiplicities" International Journal of Molecular Sciences 24, no. 17: 13224. https://doi.org/10.3390/ijms241713224
APA StyleGiricheva, N. I., Sliznev, V. V., Alikhanyan, A. S., Morozova, E. A., & Girichev, G. V. (2023). Molecular Structure of Gaseous Oxopivalate Co(II): Electronic States of Various Multiplicities. International Journal of Molecular Sciences, 24(17), 13224. https://doi.org/10.3390/ijms241713224