Effects of sgRNAs, Promoters, and Explants on the Gene Editing Efficiency of the CRISPR/Cas9 System in Chinese Kale
Abstract
:1. Introduction
2. Results
2.1. Selection of the Target Site and Construction of the Vector
2.2. Single sgRNA Targeting in the Transient Transformation of Protoplast
2.3. Double sgRNA Targeting in the Transient Transformation of the Protoplast
2.4. Stable Genetic Transformation of BoaZDS in Chinese Kale Cotyledons with Petioles
2.5. Stable Genetic Transformation of BoaCRTISO in Chinese Kale Cotyledons with Petioles
3. Discussion
3.1. Effect of sgRNA on the Editing Efficiency of the CRISPR/Cas9 System
3.2. Effect of Double-sgRNAs on the Editing Efficiency of the CRISPR/Cas9 System
3.3. Effect of Promoters on the Editing Efficiency of the CRISPR/Cas9 System
3.4. Effect of Explants on the Editing Efficiency of the CRISPR/Cas9 System
4. Materials and Methods
4.1. Plant Material and Cultivation Conditions
4.2. Selection of sgRNAs and Construction of the CRISPR/Cas9 Vector
4.3. PEG-Mediated Transient Transformation of Chinese Kale Protoplasts
4.4. Agrobacterium-Mediated Stable Transformation of Chinese Kale Cotyledons with Petioles
4.5. Detection of Mutations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, B.; Yan, H.; Liu, N.; Wei, J.; Wang, Q. Effect of 1-mcp treatment on postharvest quality characters, antioxidants and glucosinolates of Chinese kale. Food Chem. 2012, 131, 519–526. [Google Scholar] [CrossRef]
- Sun, T.; Yuan, H.; Cao, H.; Yazdani, M.; Tadmor, Y.; Li, L. Carotenoid metabolism in plants: The role of plastids. Mol. Plant 2018, 11, 58–74. [Google Scholar] [CrossRef]
- Nisar, N.; Li, L.; Lu, S.; Khin, N.C.; Pogson, B.J. Carotenoid metabolism in plants. Mol. Plant 2015, 8, 68–82. [Google Scholar] [CrossRef]
- Yan, P.; Gao, X.Z.; Shen, W.T.; Zhou, P. Cloning and expression analysis of phytoene desaturase and ζ-carotene desaturase genes in Carica papaya. Mol. Biol. Rep. 2011, 38, 785–791. [Google Scholar] [CrossRef]
- Fang, Y.; Hou, L.; Zhang, X.; Pan, J.; Ren, D.; Zeng, D.; Guo, L.; Qian, Q.; Hu, J.; Xue, D. Disruption of ζ-carotene desaturase protein ale1 leads to chloroplast developmental defects and seedling lethality. J. Agric. Food Chem. 2019, 67, 11607–11615. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, X.; Li, Y.; Xia, Z. Transcriptome Analysis of a new maize albino mutant reveals that zeta-carotene desaturase is involved in chloroplast development and retrograde signaling. Plant Physiol. Biochem. 2020, 156, 407–419. [Google Scholar] [CrossRef]
- Avendaño-Vázquez, A.O.; Cordoba, E.; Llamas, E.; San Román, C.; Nisar, N.; De la Torre, S.; Ramos-Vega, M.; Gutiérrez-Nava, M.D.; Cazzonelli, C.I.; Pogson, B.J.; et al. An uncharacterized apocarotenoid-derived signal generated in ζ-carotene desaturase mutants regulates leaf development and the expression of chloroplast and nuclear genes in Arabidopsis. Plant Cell 2014, 26, 2524–2537. [Google Scholar] [CrossRef]
- McQuinn, R.P.; Gapper, N.E.; Gray, A.G.; Zhong, S.; Tohge, T.; Fei, Z.; Fernie, A.R.; Giovannoni, J.J. Manipulation of ZDS in tomato exposes carotenoid- and ABA-specific effects on fruit development and ripening. Plant Biotechnol. J. 2020, 18, 2210–2224. [Google Scholar] [CrossRef]
- Breitenbach, J.; Sandmann, G. ζ-Carotene cis isomers as products and substrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene. Planta 2005, 220, 785–793. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, F.; Yuan, Q.; Lin, P.; Zheng, H.; Liang, S.; Jian, Y.; Miao, H.; Li, H.; Wang, Q.; et al. Characterization of BoaCRTISO reveals its role in carotenoid biosynthesis in Chinese kale. Front. Plant Sci. 2021, 12, 662684. [Google Scholar] [CrossRef]
- Isaacson, T.; Ronen, G.; Zamir, D.; Hirschberg, J. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell 2002, 14, 333–342. [Google Scholar] [CrossRef]
- Li, H.; Yu, K.; Amoo, O.; Yu, Y.; Guo, M.; Deng, S.; Li, M.; Hu, L.; Wang, J.; Fan, C.; et al. Site-directed mutagenesis of the carotenoid isomerase gene BnaCRTISO alters the color of petals and leaves in Brassica Napus L. Front. Plant Sci. 2022, 13, 801456. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Jiang, M.; Zheng, H.; Jian, Y.; Huang, W.L.; Yuan, Q.; Zheng, A.H.; Chen, Q.; Zhang, Y.T.; Lin, Y.X.; et al. Color-related chlorophyll and carotenoid concentrations of Chinese kale can be altered through CRISPR/Cas9 targeted editing of the carotenoid isomerase gene BoaCRTISO. Hortic. Res. 2020, 7, 161. [Google Scholar] [CrossRef]
- Li, T.; Yang, Y.; Qi, H.; Cui, W.; Zhang, L.; Fu, X.; He, X.; Liu, M.; Li, P.F.; Yu, T. CRISPR/Cas9 therapeutics: Progress and prospects. Signal Transduct. Target. Ther. 2023, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Gaj, T.; Gersbach, C.A.; Barbas, C.F., III. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013, 31, 397–405. [Google Scholar] [CrossRef]
- Mout, R.; Ray, M.; Lee, Y.W.; Scaletti, F.; Rotello, V.M. In vivo delivery of CRISPR/Cas9 for therapeutic gene editing: Progress and challenges. Bioconjugate Chem. 2017, 28, 880–884. [Google Scholar] [CrossRef]
- Yin, Y.; Yan, Z.; Guan, J.; Huo, Y.; Wang, T.; Li, T.; Cui, Z.; Ma, W.; Wang, X.; Chen, W. Two interacting basic helix-loop-helix transcription factors control flowering time in rice. Plant Physiol. 2023, 192, 205–221. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, S.; Li, J.; Gao, J.; Song, G.; Li, W.; Geng, S.; Liu, C.; Lin, Y.; Li, Y.; et al. CRISPR/Cas9-targeted mutagenesis of TaDCL4, TaDCL5 and TaRDR6 induces male sterility in common wheat. Plant Biotechnol. J. 2023, 21, 839–853. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wu, G.; Zhao, Y.; Wang, B.; Zhao, B.; Kong, D.; Wei, H.; Chen, C.; Wang, H. CRISPR/Cas9-mediated knockout and overexpression studies reveal a role of maize phytochrome c in regulating flowering time and plant height. Plant Biotechnol. J. 2020, 18, 2520–2532. [Google Scholar] [CrossRef]
- Charrier, A.; Vergne, E.; Dousset, N.; Richer, A.; Petiteau, A.; Chevreau, E. Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system. Front. Plant Sci. 2019, 10, 40. [Google Scholar] [CrossRef]
- Han, J.; Li, X.; Li, W.; Yang, Q.; Li, Z.; Cheng, Z.; Lv, L.; Zhang, L.; Han, D.G. Isolation and preliminary functional analysis of FvICE1, involved in cold and drought tolerance in Fragaria vesca through overexpression and CRISPR/Cas9 technologies. Plant Physiol. Biochem. 2023, 196, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Zhang, Y.; Orbović, V.; Xu, J.; White, F.F.; Jones, J.B.; Wang, N. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol. J. 2017, 15, 817–823. [Google Scholar] [CrossRef]
- Chandrasekaran, J.; Brumin, M.; Wolf, D.; Leibman, D.; Klap, C.; Pearlsman, M.; Sherman, A.; Arazi, T.; Gal-On, A. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 2016, 17, 1140–1153. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Lin, B.; Ren, Y.; Hao, P.; Huang, L.; Xue, B.; Jiang, L.; Zhu, Y.; Hua, S. CRISPR/Cas9-mediated editing of double loci of BnFAD2 increased the seed oleic acid content of rapeseed (Brassica Napus L.). Front. Plant Sci. 2022, 13, 1034215. [Google Scholar] [CrossRef]
- Zheng, X.; Qi, C.; Yang, L.; Quan, Q.; Liu, B.; Zhong, Z.; Tang, X.; Fan, T.; Zhou, J.; Zhang, Y. The Improvement of CRISPR-Cas9 system with ubiquitin-associated domain fusion for efficient plant genome editing. Front. Plant Sci. 2020, 11, 621. [Google Scholar] [CrossRef]
- Char, S.N.; Neelakandan, A.K.; Nahampun, H.; Frame, B.; Main, M.; Spalding, M.H.; Becraft, P.W.; Meyers, B.C.; Walbot, V.; Wang, K.; et al. An agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol. J. 2017, 15, 257–268. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, G.; Liu, Z. Efficient genome editing of wild strawberry genes, vector development and validation. Plant Biotechnol. J. 2018, 16, 1868–1877. [Google Scholar] [CrossRef]
- Cao, H.X.; Vu, G.T.H.; Gailing, O. From genome sequencing to CRISPR-based genome editing for climate-resilient forest trees. Int. J. Mol. Sci. 2022, 23, 966. [Google Scholar] [CrossRef]
- Lawrenson, T.; Shorinola, O.; Stacey, N.; Li, C.; Østergaard, L.; Patron, N.; Uauy, C.; Harwood, W. Induction of targeted, heritable mutations in Barley and Brassica Oleracea using RNA-guided Cas9 nuclease. Genome Biol. 2015, 16, 258. [Google Scholar] [CrossRef]
- Biswas, S.; Bridgeland, A.; Irum, S.; Thomson, M.J.; Septiningsih, E.M. Optimization of prime editing in rice, peanut, chickpea, and cowpea protoplasts by restoration of GFP activity. Int. J. Mol. Sci. 2022, 23, 9809. [Google Scholar] [CrossRef]
- Ren, C.; Liu, X.; Zhang, Z.; Wang, Y.; Duan, W.; Li, S.; Liang, Z. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis Vinifera L.). Sci. Rep. 2016, 6, 32289. [Google Scholar] [CrossRef]
- Corsi, G.I.; Qu, K.; Alkan, F.; Pan, X.; Luo, Y.; Gorodkin, J. CRISPR/Cas9 grna activity depends on free energy changes and on the target pam context. Nat. Commun. 2022, 13, 3006. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, R.; Gao, J.; Gu, T.; Song, G.; Li, W.; Li, D.; Li, Y.; Li, G. Highly Efficient and heritable targeted mutagenesis in wheat via the agrobacterium tumefaciens-mediated CRISPR/Cas9 system. Int. J. Mol. Sci. 2019, 20, 4257. [Google Scholar] [CrossRef]
- Mekler, V.; Kuznedelov, K.; Severinov, K. Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences. J. Biol. Chem. 2020, 295, 6509–6517. [Google Scholar] [CrossRef]
- Xie, K.; Minkenberg, B.; Yang, Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci. USA 2015, 112, 3570–3575. [Google Scholar] [CrossRef]
- Xing, H.L.; Dong, L.; Wang, Z.P.; Zhang, H.Y.; Han, C.Y.; Liu, B.; Wang, X.C.; Chen, Q.J. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol. 2014, 14, 327. [Google Scholar] [CrossRef]
- Cheng, Z.; Sun, Y.; Yang, S.; Zhi, H.; Yin, T.; Ma, X.; Zhang, H.; Diao, X.; Guo, Y.; Li, X.; et al. Establishing in planta haploid inducer line by edited SiMTL in foxtail millet (Setaria italica). Plant Biotechnol. J. 2021, 19, 1089–1091. [Google Scholar] [CrossRef]
- Amack, S.C.; Ferreira, S.S.; Antunes, M.S. Tuning the transcriptional activity of the CaMV 35s promoter in plants by single-nucleotide changes in the TATA box. ACS Synth. Biol. 2023, 12, 178–185. [Google Scholar] [CrossRef]
- Yan, L.; Wei, S.; Wu, Y.; Hu, R.; Li, H.; Yang, W.; Xie, Q. High-efficiency genome editing in Arabidopsis using Yao Promoter-driven CRISPR/Cas9 system. Mol. Plant 2015, 8, 1820–1823. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Jiang, Y.; Yan, T.; Fang, C.; Hou, Q.; Wu, S.; Xie, K.; An, X.; Wan, X. Use of CRISPR/Cas9-based gene editing to simultaneously mutate multiple homologous genes required for pollen development and male fertility in maize. Cells 2022, 11, 439. [Google Scholar] [CrossRef]
- Lin, C.S.; Hsu, C.T.; Yang, L.H.; Lee, L.Y.; Fu, J.Y.; Cheng, Q.W.; Wu, F.H.; Hsiao, H.C.; Zhang, Y.; Zhang, R.; et al. Application of protoplast technology to CRISPR/Cas9 mutagenesis: From single-cell mutation detection to mutant plant regeneration. Plant Biotechnol. J. 2018, 16, 1295–1310. [Google Scholar] [CrossRef] [PubMed]
- Shimatani, Z.; Kashojiya, S.; Takayama, M.; Terada, R.; Arazoe, T.; Ishii, H.; Teramura, H.; Yamamoto, T.; Komatsu, H.; Miura, K.; et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat. Biotechnol. 2017, 35, 441–443. [Google Scholar] [CrossRef]
- Sun, B.; Yuan, Q.; Zheng, H.; Liang, S.; Jiang, M.; Wang, M.M.; Chen, Q.; Li, M.Y.; Zhang, Y.; Luo, Y.; et al. An efficient and economical protocol for isolating, purifying and PEG-mediated transient gene expression of Chinese kale hypocotyl protoplasts. Plants 2019, 8, 385. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Zheng, A.; Jiang, M.; Xue, S.; Yuan, Q.; Jiang, L.; Chen, Q.; Li, M.; Wang, Y.; Zhang, Y.; et al. CRISPR/Cas9-mediated mutagenesis of homologous genes in Chinese kale. Sci. Rep. 2018, 8, 16786. [Google Scholar] [CrossRef] [PubMed]
CRISPR/Cas9 Vector | Target Gene | Target Site | Cultivate Time (h) | Number of Clones Detected | Number of Mutant Clones | Mutation Rate (%) |
---|---|---|---|---|---|---|
35S-CRISPR/Cas9 | BoaZDS | sgRNA: Z1 | 24 | 21 | 18 | 85.71 |
36 | 24 | 21 | 87.5 | |||
48 | 27 | 25 | 92.59 | |||
YAO-CRISPR/Cas9 | BoaZDS | sgRNA: Z1 | 48 | 31 | 22 | 70.97 |
sgRNA: Z2 | 48 | 30 | 27 | 90 | ||
sgRNA: Z3 | 48 | 31 | 17 | 54.84 | ||
BoaCRTISO | sgRNA:C1 | 48 | 31 | 7 | 22.58 |
Target Site | Target Gene | Number of Clones Detected | Number of Mutant Clones | Mutation Rate (%) |
---|---|---|---|---|
sgRNA: Z2-Z3 | BoaZDS | 30 | 30 | 100 |
sgRNA: Z3-C1 | BoaZDS | 30 | 7 | 23.33 |
BoaCRTISO | 30 | 12 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Zheng, A.; Huang, H.; Chen, Z.; Ma, J.; Li, X.; Liang, Q.; Li, L.; Liu, R.; Huang, Z.; et al. Effects of sgRNAs, Promoters, and Explants on the Gene Editing Efficiency of the CRISPR/Cas9 System in Chinese Kale. Int. J. Mol. Sci. 2023, 24, 13241. https://doi.org/10.3390/ijms241713241
Huang W, Zheng A, Huang H, Chen Z, Ma J, Li X, Liang Q, Li L, Liu R, Huang Z, et al. Effects of sgRNAs, Promoters, and Explants on the Gene Editing Efficiency of the CRISPR/Cas9 System in Chinese Kale. International Journal of Molecular Sciences. 2023; 24(17):13241. https://doi.org/10.3390/ijms241713241
Chicago/Turabian StyleHuang, Wenli, Aihong Zheng, Huanhuan Huang, Zhifeng Chen, Jie Ma, Xiangxiang Li, Qiannan Liang, Ling Li, Ruobin Liu, Zhi Huang, and et al. 2023. "Effects of sgRNAs, Promoters, and Explants on the Gene Editing Efficiency of the CRISPR/Cas9 System in Chinese Kale" International Journal of Molecular Sciences 24, no. 17: 13241. https://doi.org/10.3390/ijms241713241
APA StyleHuang, W., Zheng, A., Huang, H., Chen, Z., Ma, J., Li, X., Liang, Q., Li, L., Liu, R., Huang, Z., Qin, Y., Tang, Y., Li, H., Zhang, F., Wang, Q., & Sun, B. (2023). Effects of sgRNAs, Promoters, and Explants on the Gene Editing Efficiency of the CRISPR/Cas9 System in Chinese Kale. International Journal of Molecular Sciences, 24(17), 13241. https://doi.org/10.3390/ijms241713241