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Abstract: As an endosymbiont, Wolbachia exerts significant effects on the host, including on repro-
duction, immunity, and metabolism. However, the study of Wolbachia in Thysanopteran insects, such
as flower thrips Frankliniella intonsa, remains limited. Here, we assembled a gap-free looped genome
assembly of Wolbachia strain wFI in a length of 1,463,884 bp (GC content 33.80%), using Nanopore
long reads and Illumina short reads. The annotation of wFI identified a total of 1838 protein-coding
genes (including 85 pseudogenes), 3 ribosomal RNAs (rRNAs), 35 transfer RNAs (tRNAs), and
1 transfer-messenger RNA (tmRNA). Beyond this basic description, we identified mobile genetic
elements, such as prophage and insertion sequences (ISs), which make up 17% of the entire wFI
genome, as well as genes involved in riboflavin and biotin synthesis and metabolism. This research
lays the foundation for understanding the nutritional mutualism between Wolbachia and flower thrips.
It also serves as a valuable resource for future studies delving into the intricate interactions between
Wolbachia and its host.
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1. Introduction

Wolbachia, gram-negative bacteria, were first discovered in the reproductive tissue of
Culex pipiens in 1924 and officially named Wolbachia pipientis in 1936 [1,2]. These matrilin-
eally inherited endosymbionts are widely distributed among arthropods and nematodes [3].
Wolbachia are primarily transmitted in their host by vertical and horizontal modes [4].
Vertical transmission, via cytoplasmic transfer from the mother’s germ cell to the off-
spring, is the primary mode of transmission, while horizontal transmission occurs between
different hosts.

The wide distribution of Wolbachia can be attributed to its ability to be efficiently
transmitted maternally and to manipulate host reproduction in a way that benefits infected
females [5]. Wolbachia play a critical role in regulating the reproductive phenotype of their
host through various mechanisms, including cytoplasmic incompatibility (CI), partheno-
genesis induction (PI), feminization (FEM), and male killing (MK). In arthropods, CI is
the most common phenotype induced by Wolbachia, resulting in embryonic death when
uninfected females mate with infected males or males and females carrying incompatible
Wolbachia. The cifA and cifB genes associated with phage WO are of significant importance
in the study of CI, with their homologs classified as Types I-V [6]. In addition, Wolbachia can
induce parthenogenesis in haplodiploid insects, leading to the production of female rather
than male offspring from unfertilized eggs. Furthermore, Wolbachia influences the morpho-
logical expression of female characteristics in male offspring and can selectively eliminate
developing Wolbachia-infected males thereby consequently altering the male–female ratio.
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In Drosophila melanogaster, the presence of Wolbachia has been shown to confer resis-
tance to RNA viruses such as Drosophila C virus, Nora virus, and Flock House virus, the
first two of which are natural pathogens of D. melanogaster [7]. Conversely, when wMelPop
from D. melanogaster was introduced into Aedes aegypti mosquitoes, it resulted in a reduction
in the lifespan of adult female mosquitoes [8]. In addition, Wolbachia has the ability to infect
thrips and regulate their reproductive phenotype. For example, it mediates parthenogene-
sis in Franklinothrips vespiformis and induces CI in Pezothrips kellyanus [9,10]. Comparative
genomic studies have identified several genes associated with CI modification and rescue
functions [11]. Remarkable transcriptional differences have been observed in the cifA and
cifB genes during host development, and these genes may be degraded or lost in Wolbachia
strains that no longer induce CI [12]. While most Wolbachia infections in arthropods are
considered facultative mutualists, meaning that the host can survive and reproduce with-
out the presence of Wolbachia, there are cases where Wolbachia act as obligate mutualists.
For example, bed bugs rely on Wolbachia to provide essential B vitamins for their normal
development and reproduction. Removing Wolbachia from bed bugs with antibiotics can
lead to impaired growth and sterility [13]. Additionally, genome analysis of Wolbachia in
planthoppers has revealed the presence of intact biotin and riboflavin biosynthetic operons.
This suggests that Wolbachia have the ability to synthesize biotin and riboflavin, potentially
enhancing the reproductive capacity of the host [14].

Initially, the classification of Wolbachia was primarily based on the 16S rRNA and
wsp genes [15,16], which encode Wolbachia surface proteins. However, 16S rRNA, with its
high conservation and slow evolutionary rate, cannot effectively distinguish closely related
strains. In addition, the high recombination and strong diversifying selection of the wsp
gene has led to potential confusion in strain clustering and introduced bias. To address
these issues, MLST was introduced as an effective tool for Wolbachia classification [17].
The combination of alleles from five conserved genes (ftsZ, gatB, coxA, hcpA, and fbpA) in
Wolbachia was used as the MLST to assign a sequence type (ST) to the Wolbachia strain. Each
ST represented a unique genetic allelic profile characterizing a particular strain of Wolbachia.
The relevant information on the five conserved genes and their locus, as well as details of
the STs, can be accessed via the PubMLST database [18].

Wolbachia strains from different hosts typically belong to different supergroups. Wol-
bachia of supergroups A and B are known to infect arthropods exclusively, with supergroup
A being predominantly found in Diptera and Hymenoptera, whereas supergroup B is
mainly found in Lepidoptera [19]. Conversely, supergroups C, D, and J are exclusively asso-
ciated with Wolbachia infecting filarial nematodes, as supported by several studies [20–22].
In addition, supergroup F Wolbachia have been found to infect both arthropods and nema-
todes [23]. Meanwhile, supergroup L Wolbachia have been reported to exclusively infect
plant-parasitic nematodes [24,25]. Notably, supergroups G and R are no longer considered
to be separate entities, with the former considered to be recombinants of supergroup A and
B, while the latter is considered to be part of supergroup A [26,27]. Other supergroups of
Wolbachia are predominantly found in arthropods [28–32]. Supergroup A and B Wolbachia
have been observed to infect and coexist within the same arthropod hosts, highlighting
the irreversible separation of supergroups. Similarly, supergroup B and K have also been
reported to coexist within the same host [31,33].

Wolbachia has previously been detected in flower thrips, F. intonsa, and the housekeep-
ing genes (gatB, coxA, hcpA, ftsZ, and fbpA) have been cloned for MLST, resulting in ST
code 397 [34]. However, despite this previous work, there has been limited investigation of
the relevant genomic information of Wolbachia in F. intonsa (wFI). This study presents the
first complete genome of Wolbachia in F. intonsa, which will serve as a valuable resource for
future investigations into the functional role of this endosymbiont in flower thrips.
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2. Results
2.1. Assembly and Annotation

We have obtained the genome assembly of the Wolbachia strains that infect F. intonsa.
The genome of Wolbachia strain wFI was 1,463,884 bp in size and had a GC content of
33.80%. A total of 1877 genes were identified, including 1838 protein-coding genes with 85
candidate pseudogenes, 3 rRNA genes, 35 tRNA genes, and 1 tmRNA (Table 1). The BUSCO
completeness scores of the wFI genome indicated that it contained 183 complete and single-
copy BUSCO groups, 3 complete and duplicated BUSCO groups, 2 fragmented BUSCO
groups, and 31 missing BUSCO groups. The BUSCO completeness of the wFI genome
score of 85.0% was comparable to that of the other two Wolbachia complete genomes
belonging to supergroup B (Figure S1). The genomic features of wFI, including coding
sequences (CDS), tRNA, rRNA, and others, were visualized using the CGView Server
(Figure 1 and Figure S2). The presence of the irregular GC skew in wFI, meant that there
was no obvious GC skew to identify a possible origin of replication, which also suggested
that wFI may have undergone frequent rearrangements. This abnormal GC skew pattern
has also been observed in other Wolbachia genomes [35–39]. However, it has been observed
that Wolbachia with reduced genomes exhibit a strong GC skew [40].

Table 1. Key characteristics of Wolbachia genome in F. intonsa (wFI).

Attribute wFI
(GCA_029856955.1)

Size (bp) 1,463,884
Total genes 1877

Pseudogenes * 85
GC (%) 33.80
Proteins 1838
rRNAs 3
tRNAs 35
tmRNA 1

BUSCO Score 85.0%
* Candidate pseudogenes were mentioned in the log file rather than the result file.
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Figure 1. Circular map of the wFI genome. The outermost tracks 1 and 2 represent the positions of
the CDS, tRNA, rRNA, and tmRNA genes on the positive and negative strands. Tracks 3 and 4 tracks
show the GC content and GC skew, respectively.

A total of 1564 protein-coding genes with Clusters of Orthologous Genes (COG) func-
tional annotations were identified in the wFI genome by searching against the eggNOG
database v5.0.2 [41]. Of these, 713 (45.58%) genes were classified under the functional cate-
gory of replication, recombination, and repair (Figure 2A, Table S1A). A total of 486 genes
were categorized into 32 different Gene Ontology (GO) terms (Figure 2B). These GO terms
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were further grouped into three main categories: Biological Process, Cellular Component,
and Molecular Function. The Biological Process category consisted of 19 distinct elements
with 434 genes. The Cellular Component category included 2 elements, with a total of
401 genes assigned to them. Within the Molecular Function there were 11 elements, with
415 genes assigned to them. Notably, the number of genes associated with cellular process,
metabolic process, and the cellular anatomical entity GO term was approximately 400. A
total of 540 genes were mapped to 28 different Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways (Figure 2C). Among these pathways, the Metabolism pathway stood out
with 309 genes, representing a significantly higher number of coding genes compared to
other pathways. Within the metabolism pathway, several subcategories were identified.
These included energy metabolism with 96 genes, metabolism of cofactors and vitamins
with 75 genes, and carbohydrate metabolism with 64 genes. Furthermore, the genetic
information processing pathway included a total of 172 genes, of which 83 genes were
associated with translation, 56 genes were involved in replication and repair processes,
34 genes were associated with folding, sorting and degradation, and 3 genes were involved
in transcription.
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Genome-wide pathway annotation based on the eggNOG database v5.0.2 revealed that
the wFI genome lacked key genes involved in biotin synthesis, including bioA, bioD, bioC,
bioH, bioF, and bioB. However, it contained the bioY gene (ko: K03524), which is responsible
for biotin transport, and the birA gene (ko: K03523), which is involved in the synthesis
of essential metabolites using biotin as a precursor. Moreover, we found that, while wFI
encodes riboflavin synthesis operons, it was not a compact operon but scattered throughout
the Wolbachia genome, as ribA, ribD, ribB, ribH, ribE, and ribF (Figure S3, Table S1B). The
hypothetical phosphatase responsible for coverting 5-amino-6-ribitylamino-2,4(1H,3H)-
pyrimidinedione5′-phosphate into 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione
was absent in Figure S3, which may be due to the fact that it remains uncharacterized in
most organisms [42].

Pfam annotation of the wFI genome revealed 1352 protein-coding genes containing
at least one Pfam domain (Table S2). The most abundant Pfam profile identified was
the endonuclease of the DDE superfamily DDE_3 (PF13358). In addition, the domain re-
lated to mobile genetic elements, such as DDE_Tnp_1 (PF01609), DDE_Tnp_1_3 (PF13612),
DDE_Tnp_1_5 (PF13737), DDE_Tnp_1_IS240 (PF13610), and HTH_Tnp_IS630 (PF01710),
were found abundantly in wFI genome, which are transposase domains. Moreover, the
retroviral integrase domain rve (PF00665), rve_2 (PF13333), rve_3 (PF13683), reverse tran-
scriptase domain RVT_1 (PF00078), and Group II intron reverse transcriptase domain GIIM
(PF08388) were identified in the wFI genome. Members of the IS3 family have shown
remarkable similarity to integrase [43]; this similarity was also shown in wFI. The results
of the Pfam and IS annotation (Tables S2 and S3) revealed that most of the proteins con-
taining retroviral integrase domains were identified as IS3 family members. The Group
II intron encoded proteins with reverse transcriptase, maturase, and endonuclease activi-
ties. It was observed that introns could mediate genomic rearrangements in the Wolbachia
genome [44]. This suggested that intron-mediated genomic rearrangement events might be
present in wFI.

2.2. Insertion Sequences, Ankyrin Repeat, Type IV Secretory System, and Prophage Genes

ISs are a critical component of bacterial genomes and consist of inverted repeats and
transposase-encoding sequences. They are the simplest mobile genetic elements and play
a crucial role in bacterial evolution. To date, approximately 20 families of IS have been
identified [45]. Wolbachia genomes are known to contain numerous ISs, accounting for
approximately 10% of the genome, and play a critical role in Wolbachia evolution [46,47]. In
this study, 587 open reading frames (ORFs) associated with ISs belonging to 15 IS families
were identified in the wFI genome. Among them, 80 were considered as putative complete
ORFs, 410 as putative partial ORFs, and 97 remained uncategorized ORFs. Notably, the
number of IS-associated ORFs in wFI was higher compared to other supergroup B Wolbachia
genomes like wDi (GCA_019355355.1) and wAlbB (GCA_004171285.1) (Table S3). The
ISs had a median size of 357 bp, ranging from 93 to 1389 bp, and a total of 254.637 bp,
accounting for around 17% of the entire wFI genome (Table S3A). Among the ISs, the largest
family identified was IS 630 with 400 copies (Table S3B).

The Ankyrin repeat (ANK) protein family has been shown to play a critical role in
mediating protein-protein interactions and is of particular interest in the context of host-
Wolbachia interactions. Examination of Pfam protein domains within the wFI genome
revealed the presence of 38 proteins containing at least one ANK domain, comprising 61
ANK domains with diverse functions (Table S2).

The Type IV secretion system (T4SS) is a pivotal mechanism used by Wolbachia to
transfer DNA and/or proteins to eukaryotic cells, which is crucial for successful host
infection and proliferation [48,49]. Two operons associated with T4SS have been identified
in the Wolbachia genome. The first operon comprises virB8, virB9, virB10, virB11, virD4,
and the downstream wspB locus, while the second operon includes virB3, virB4, virB6,
and several open reading frames (orf1 to orf4) [50]. By combining the prokka, pfam, and
eggNOG annotation results and then matching them with NR database, the wFI genome
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revealed the presence of 13 genes associated with T4SSs (Table S4). These genes were
organized into two operons in the wFI genome. Furthermore, three duplicated genes,
virB4-2 (AJACLIMF_00502), virB8 (AJACLIMF_01223), and virB9 (AJACLIMF_01675), were
found scattered elsewhere in the genome.

The majority of the sequenced Wolbachia genomes contain the prophage WO, except
for those involved in obligate mutualistic relationships [51]. Prophage genes, which are
dynamic elements that mediate gene transfer, play a critical role in the evolution and
adaptation of the Wolbachia genome [52,53]. Notably, these genes are widely distributed
throughout the Wolbachia genome. The wFI genome does not support the notion that each
Wolbachia genome contains at least one intact prophage WO and usually several degener-
ate, independently acquired WO prophages [54]. In the wFI genome, PHASTER analysis
revealed an incomplete prophage region (position: 955,379–965,628) measuring 10.2 kb
and consisting of 12 proteins. The incomplete prophage region in wFI consisted of two
attachment sites (attL and attR), four transposases, a lytic transglycolase, an endonucle-
ase, a transferase, a phage portal protein, one ParE toxin of the type II toxin-antitoxin
system, one gpw residue protein, and two uncharacterized proteins. The prophage re-
gion of wFI, which was incomplete, lacked the modules responsible for encoding head,
baseplate, and tail-associated proteins. As a result, it was considered cryptic, meaning
that it no longer possessed the ability to form virions and lyse host cells. Additionally,
through functional annotation, we identified several prophage-related genes outside of
the incomplete prophage region. These genes encode products including phage inte-
grase (AJACLIMF_00069, AJACLIMF_01338), phage gp6-like head-tail connector protein
(AJACLIMF_01293), phage tail tube protein (AJACLIMF_01290), phage portal protein (AJA-
CLIMF_01198, AJACLIMF_01350, AJACLIMF_01351, AJACLIMF_01719), and phage ter-
minase large subunit (AJACLIMF_01354) (Figure S2). Prophage was integrated into the
wFI genome, it could be threatened by selective pressure to lose the gene components
required for infection and/or genome replication and scattered on the wFI genome as
prophage remnants.

2.3. Orthology Analysis and Identification of a Core Proteome across Completed Wolbachia
Genomes

Using Orthofinder v2.5, we analyzed the orthology relationships between the wFI
genome and 25 complete Wolbachia genomes (Table S5). Our analysis revealed
1786 orthogroups of 32,733 proteins (Table S6). Among these orthogroups, 604 were
shared by all Wolbachia genomes, of which 502 were single-copy orthogroups (Table S6A).
Furthermore, orthology analysis identified 79 orthogroups containing 379 proteins that
were unique to each individual Wolbachia genome analyzed. Additionally, 739 genes
were not assigned to any orthogroup (Table S6B). For wFI, we assigned 1783 (97.0%)
of its protein-coding genes to 973 orthogroups, of which 191 (10.4%) were assigned to
21 species-specific orthogroups, whereas 55 protein-coding genes were not assigned to any
orthogroup (Table S6C). The assignment rate for protein-coding genes in other Wolbachia
genomes was higher than 91.4%, the wCle, which had 150 (11.5%) protein-coding genes
that were not assigned to any orthogroup (Table S6C). The core proteome, consisting of
604 common orthogroups that included all proteins present in the analyzed genomes, was
significantly higher than the number of orthogroups among other species (Figure 3).

A total of 604 common orthogroups were identified, consisting of 16,224 genes. Among
the top 10 enriched GO terms, the ATP metabolic process stood out with 460 genes in-
volved, while regulation of translation and regulation of cellular amide metabolic process
had the fewest genes, with 361 each (Figure 4A). As for the top 10 enriched KEGG path-
ways, Protein export showed the highest number of enriched genes (419), closely followed
by Mismatch repair (378) and DNA replication (353) (Figure 4B). In addition, a total of
21 wFI-specific orthogroups, containing 191 genes were identified, with the majority of
these genes being ISs and belonging to COG L genes. During the enrichment analysis, we
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found that no genes related to any GO terms were enriched, and none of the genes could
be mapped to any specific pathways.
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2.4. wFI Belong to Supergroup B

The phylogenetic analysis, based on the concatenated sequences of allele of the MLST
locus, revealed that wFI (ST-397) formed a distinct clade with other ST codes belonging
to supergroup B, indicating its classification within this supergroup (Figure 5). To elimi-
nate the interference caused by abnormal Wolbachia genomes, we performed a thorough
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examination of the GC content and genome size. As a result, we identified eight candidate
abnormal Wolbachia genomes (Figure S4). Further investigation in the NCBI led us to
exclude three of the eight candidate abnormal Wolbachia genomes. Moreover, two of the
eight candidate abnormal Wolbachia genomes with an unknown host were also excluded
(Table S7A). This resulted in a total of 76 complete genomes, 22 chromosome-scale genomes,
48 scaffold-scale genomes, and 1218 contig-scale genomes (Table S7B). The majority of
the 1364 Wolbachia genomes belonged to strains infecting the hosts D. melanogaster and
D. simulans, both of which are classified under supergroup A. Using these genomes and
wFI, we constructed a large-scale NJ phylogenetic tree, which showed that wFI clustered
with the Wolbachia genome belonging to supergroup B (Figure S5). The Wolbachia from
different supergroups can infect the same host [55]. Wolbachia infecting A. aegypti, A. albopic-
tus, Dactylopius coccus, D. simulans, and Nasonia vitripennis could be categorized into two
supergroups, A and B (Figure S5), highlighting the distinct and irreversible segregation of
supergroups as evidenced by the co-infection of the same host species by Wolbachia belong-
ing to different supergroups. We would like to acknowledge the presence of supergroup
classification unknowns, namely wPcr (GCA_918697765.1), wPch (GCA_918342435.1), and
wCas (GCA_918231965.1), which infect Phyllotreta cruciferae, Psylliodes chrysocephala, and
Ceutorhynchus assimilis, respectively. Notably, wPcr and wPch clustered with supergroup A,
whereas wCas clustered with supergroup B, indicating their potential supergroup classi-
fication (Figure S5). We used concatenated protein sequences of single-copy genes from
26 complete Wolbachia genomes to construct a maximum-likelihood phylogenetic tree us-
ing IQ-TREE v2.2.0.3. The resulting tree indicated that the wFI formed a clade with the
supergroup B Wolbachia strains (Figure 6).
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Figure 5. Maximum-likelihood phylogenetic tree of Wolbachia MLST from supergroups A, B, D, F,
and H. The tree was generated using IQ-TREE v2.2.0.3 based on five MLST genes using ultrafast
bootstrap mode with 5000 iterations. The amino acid substitution model used was GTR + F + G4.
The Wolbachia supergroups are color-coded and shown in colored ranges.

In prokaryotes, a commonly used threshold for defining species is a 95% average
nucleotide identity (ANI), and an ANI greater than 95% usually indicates that organisms
belong to the same species. Conversely, the ANI between different species is typically
less than 83% [56]. Notably, the ANI between wCfeT and other Wolbachia genomes was
approximately 78% (Figure 7), indicating that wCfeT may have ancestral origins in most
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other Wolbachia lineages [57]. The ANI between wFI and Wolbachia in supergroup B was
approximately 95% (Figure 7), providing compelling evidence that wFI belongs to this
particular supergroup, which is typically found in arthropods [28].
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3. Discussion

ISs have been shown to cause large-scale rearrangements in the genome of
Escherichia coli [58]. In the case of wFI, ISs represented a significant proportion, accounting
for 17% of the entire genome. Notably, a considerable number of COG L genes, involved in
DNA replication, recombination, and repair, were associated with IS elements (Figure S2).
The prevalence of ISs in wFI suggested that ISs may have caused rearrangements in the wFI
genome, potentially contributing to the abnormal GG skew observed.

Biotin is a part of the vitamin B family and is not normally synthesized by insects. In
many cases, insects rely on microbial symbionts to meet their vitamin B requirements [59].
Studies have shown that wCle (GCA_000829315.1) possesses a complete biotin pathway
for vitamin B7, which is essential for the growth and reproduction of its host, the bed
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bug [60]. Additionally, a complete vitamin B7 synthesis operon was discovered in wNfla
(GCA_001675695.1) and wNleu (GCA_001675715.1) [61], while the complete biotin and
riboflavin biosynthesis operons were identified in wLug (GCA_007115045.1) and wStri
(GCA_001637495.1) [14]. A comprehensive genomic survey investigating the B vitamin syn-
thetic capabilities of various insect-associated Wolbachia strains revealed that the riboflavin
synthesis pathway was the only one highly conserved pathway [62]. According to the
EggNOG annotation results, the biotin synthesis pathway was incomplete in wFI. However,
despite this deficiency, the wFI genome contained the genes bioY and birA, suggesting that
wFI could potentially interact with its host or other endosymbionts to provide biotin to the
host. The wFI possessed a complete pathway of riboflavin, suggesting that wFI could have
provided riboflavin to the host as a mutualist (Figure S3).

The large-scale NJ tree was able to classify several Wolbachia genomes whose super-
group classification was previously unknown. Specifically, wPcr and wPch clustered with
supergroup A, whereas wCas clustered with supergroup B (Figure S5). Notably, although
WOLB1015 (GCA_902646985.2) and wMoviF (GCA_023661065.1) belong to supergroup
F and are both presented in the insect Melophagus ovinus, they did not cluster together
in the same clade in the NJ tree and had an ANI of approximately 99%. In addition, the
wChem (GCA_014771645.1) from supergroup T was found to be closely related to Wolbachia
strains supergroups F, S and D (Figure S5), which is consistent with previous research [63].
The mashtree v1.2.0 [64] allows the rapid clustering of Wolbachia genomes into NJ trees,
which can provide a first indication of the supergroup classification of unknown Wolbachia
genomes, and help to identify misclassifications or relationships between supergroups.
The classification results obtained using mashtree v1.2.0 [64], wFI belong to supergroup B,
which is consistent with the results of a previous MLST analysis [34].

wFI belong to supergroup B by using mashtree v1.2.0 [64] is consistent of previous
MLST analysis result [34].

4. Materials and Methods
4.1. Genome Assembly

In 2017, adults of F. intonsa were collected from Capsicum annuum L. plants in Jiaxing,
Zhejiang, China (30.75◦ N, 120.79◦ E). These insects were subsequently reared on fresh
cowpea (Vigna unguiculata ssp. Sesquipedalis) under controlled conditions at 25 ± 1 ◦C with
a 16 h light cycle. A total of approximately 200 adult F. intonsa, representing a mixture
of ages, were selected from the laboratory population and subjected to decontamination
procedures. Briefly, the adult F. intonsa were immersed in 1% sodium hypochlorite solution
for 5 min, followed by rinsing with sterile water, then immersion in 70% ethanol, and
finally another rinse with sterile water. Subsequently, the samples were rapidly frozen
using liquid nitrogen and preserved at −80 ◦C. The F. intonsa genomic DNA was extracted
and purified using the QIAGEN DNA tissue kit (QIAGEN 69506, Hilden, Germany), and
prepared for sequencing libraries following the manufacturer’s guidelines for sequencing
technology (Nextomics Biosciences Co., Ltd., Wuhan, China). Long DNA fragments were
sequenced on the Oxford Nanopore PromethION platform, and short-read sequencing was
performed on the Illumina NovaSeq 6000 platform.

The F. intonsa genome assembly was performed using NextDenovo v2.5.0 [65] with
clean Nanopore reads. The assembled sequences were further corrected using NextPolish
v1.4.0 [66] with long sequencing reads and Illumina short reads in two iterations, following
default parameters. A careful analysis of the F. intonsa genome was performed to identify
any potential bacterial contamination. During the investigation, a particular looped contig
raised suspicion. To gain a clearer understanding, manual binning was carried out using
Anvi’o v7 [67], which definitively confirmed that the looped contig corresponded to the
Wolbachia endosymbiont of F. intonsa, specifically identified as wFI.
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4.2. Genome Annotations and Assessments

The identification and annotation of genetic elements are critical for understand-
ing the functional properties of a genome. Here, we employed several bioinformatics
tools to identify protein-coding genes as well as non-coding RNA components, including
5S rRNA, 16S rRNA, 23S rRNA, tRNA, and tmRNA. Specifically, we used prokka v1.14.6 [68]
to identify these genetic elements with the default parameters. It is important to note that
information regarding candidate pseudogenes was mentioned in the log file rather in the
result file. To evaluate the completeness of genome, we employed Benchmarking Universal
Single-Copy Orthologs (BUSCO) v5.4.3, based on the Proteobacteria_odb10 database [69].
Functional annotation of protein-coding genes was performed by searching against the
eggNOG database v5.0.2 [41] using eggNOG-Mapper v2.1.9 [70]. The annotation was
performed using the—tax_scope Bacteria parameter to focus on bacterial annotations
specifically. Additionally, Pfam domains were annotated using the pfam_scan.pl v1.6 script
to search against Pfam database v35.0 [71]. In addition, we employed the PHASTER web
server [72] to identify prophage regions within the genome. Furthermore, the ISsaga web
server [73] was utilized to identify IS elements presented in the genome. Finally, we used
the CGview Server [74] to represent the IS elements, ANK, T4SS, and prophage regions in a
circle map.

4.3. Comparative Genomics Analysis

The complete assembly of wFI was compared to 25 other complete genomes, as listed
in Table S5. All genomes were re-annotated using prokka v1.14.6 [68] with the default
parameters. Functional annotation of the protein-coding genes was conducted by search-
ing against the eggNOG database v5.0.2 [41] using eggNOG-Mapper v2.1.9 [70] with
the -tax_scope Bacteria parameter. The ANI between wFI and 25 complete genomes was
calculated using fastANI v1.33 [56]. Orthogroups shared between wFI and 25 complete
genomes were identified using Orthofinder v2.5.4 [75], and the common orthogroups
across multiple genomes were visualized as UpSet plots [76] using the R package Com-
plexUpset v1.3.3 [77]. Enrichment analysis for common orthogroups was performed using
clusterProfiler V4.6.2 [78].

4.4. Phylogenetic Analysis

A total of 12 STs, derived from Wolbachia strains belonging to supergroups A, B, D, F,
and H, were analyzed (Table S8). To construct a robust phylogenetic tree, concatenated
allelic sequences of the five MLST genes were retrieved from the PubMLST database [18]
and aligned using Muscle v5.1 [79]. Poorly aligned regions were then trimmed using
Trimal v1.4.1 [80]. The resulting alignment was then subjected to maximum-likelihood
analysis using IQ-TREE v2.2.0.3 [81] with ultrafast bootstrap mode and 5000 iterations. The
resulting tree was used to classify the wFI supergroup. Finally, the maximum-likelihood
phylogenetic tree was visualized using ITOL v6 [82].

The NCBI dataset command line tools were used to obtain all Wolbachia genome
sequences from the GenBank database. Scatter plots based on GC content and genome
size were used to identify candidate abnormal Wolbachia genomes, and then candidate
abnormal Wolbachia genomes were further investigated by searching NCBI to filter out
abnormal Wolbachia genomes. The mashtree v1.2.0 [64] was used to construct a large-scale
NJ phylogenetic tree of the normal Wolbachia genomes (Table S7B). The ANI between wFI
and other Wolbachia genomes was calculated using fastANI v1.33 [56], and the results were
visualized using the Interactive Tree Of Life (ITOL) v6 [82].

We selected wFI and 25 complete Wolbachia genomes from the A–F supergroups
(Table S5). Multiple sequence alignments for single-copy genes were performed using
Muscle v5.1 [79]. Poorly aligned regions were further trimmed using Trimal v1.4.1 [80].
We used ModelFinder [83] to obtain the best amino acid substitution model based on
Bayesian Information Criteria. The phylogenetic tree was constructed using IQ-TREE
v2.2.0.3 [81] with ultrafast bootstrap mode and 5000 iterations; wCfeT was used as
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an outgroup. Branch support was estimated using a Shimodaira–Hasegawa (SH)-like
approximate likelihood ratio test with 1000 replicates. Finally, the maximum-likelihood
phylogenetic tree was visualized using the ITOL v6 [82]. We also used the R package
pheatmap v1.0.12 [84] to display the ANI between 26 complete Wolbachia genomes with
a heat map.

5. Conclusions

We have successfully provided the complete assembly of the Wolbachia genome infect-
ing F. intonsa, which belongs to supergroup B. Our genomic analyses have revealed several
essential features, including mobile genetic elements such as prophage and ISs, as well as
genes related to ANK, T4SS, riboflavin, and biotin synthesis and metabolism. The discovery
of a complete riboflavin pathway in wFI suggested possibilities for meeting the riboflavin
needs of the host. Additionally, the identification of an incomplete biotin synthesis path-
way indicated potential interactions between wFI and the host or other endosymbionts to
meet the host’s biotin needs. The first complete genome of the Wolbachia endosymbiont of
F. intonsa provides a valuable resource for future investigations of Wolbachia–host interac-
tions, comparative genomics of Wolbachia, and phylogenetic relationships between different
supergroups of Wolbachia.
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