Molecular Markers of Early Immune Response in Tuberculosis: Prospects of Application in Predictive Medicine
Abstract
:1. Introduction
2. Pathophysiology of Tuberculosis Infection
3. M. tuberculosis and Innate Immunity
3.1. The Role of T Lymphocytes in the Immune Response in Tuberculosis
3.2. The Role of B Lymphocytes in the Immune Response in Tuberculosis
3.3. The Role of Immune Cells’ Cytokine Profiles in Pathogenesis of M. tuberculosis Infection
3.4. Role of Matrix Metalloproteases and Their Tissue Inhibitors
4. Detection of M. tuberculosis Infection at Different Stages
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bagcchi, S. WHO’s Global Tuberculosis Report 2022. Lancet Microbe 2023, 4, e20. [Google Scholar] [CrossRef]
- Pagaduan, J.V.; Altawallbeh, G. Advances in TB Testing. Adv. Clin. Chem. 2023; in press. [Google Scholar] [CrossRef]
- Kiazyk, S.; Ball, T. Latent Tuberculosis Infection: An Overview. Can. Commun. Dis. Rep. 2017, 43, 62–66. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Latent Tuberculosis Infection: Updated and Consolidated Guidelines for Programmatic Management; WHO Guidelines Approved by the Guidelines Review Committee; World Health Organization: Geneva, Switzerland, 2018; ISBN 978-92-4-155023-9. [Google Scholar]
- Eguiguren, L.; Delair, S.F.; Chatterjee, A. Chapter 1—Clinical Applications of Molecular Diagnosis in Infectious Diseases. In Viral, Parasitic, Bacterial, and Fungal Infections; Bagchi, D., Das, A., Downs, B.W., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 3–17. ISBN 978-0-323-85730-7. [Google Scholar]
- Gill, C.M.; Dolan, L.; Piggott, L.M.; McLaughlin, A.M. New Developments in Tuberculosis Diagnosis and Treatment. Breathe 2022, 18, 210149. [Google Scholar] [CrossRef]
- World Health Organization. WHO Consolidated Guidelines on Tuberculosis: Tuberculosis Preventive Treatment: Module 1: Prevention; WHO Guidelines Approved by the Guidelines Review Committee; World Health Organization: Geneva, Switzerland, 2020; ISBN 978-92-4-000150-3. [Google Scholar]
- Simmons, J.D.; Stein, C.M.; Seshadri, C.; Campo, M.; Alter, G.; Fortune, S.; Schurr, E.; Wallis, R.S.; Churchyard, G.; Mayanja-Kizza, H.; et al. Immunological Mechanisms of Human Resistance to Persistent Mycobacterium Tuberculosis Infection. Nat. Rev. Immunol. 2018, 18, 575–589. [Google Scholar] [CrossRef] [PubMed]
- Petruccioli, E.; Scriba, T.J.; Petrone, L.; Hatherill, M.; Cirillo, D.M.; Joosten, S.A.; Ottenhoff, T.H.; Denkinger, C.M.; Goletti, D. Correlates of Tuberculosis Risk: Predictive Biomarkers for Progression to Active Tuberculosis. Eur. Respir. J. 2016, 48, 1751–1763. [Google Scholar] [CrossRef]
- de Waal, A.M.; Hiemstra, P.S.; Ottenhoff, T.H.; Joosten, S.A.; van der Does, A.M. Lung Epithelial Cells Interact with Immune Cells and Bacteria to Shape the Microenvironment in Tuberculosis. Thorax 2022, 77, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Chandra, P.; Grigsby, S.J.; Philips, J.A. Immune Evasion and Provocation by Mycobacterium Tuberculosis. Nat. Rev. Microbiol. 2022, 20, 750–766. [Google Scholar] [CrossRef]
- Chai, Q.; Wang, L.; Liu, C.H.; Ge, B. New Insights into the Evasion of Host Innate Immunity by Mycobacterium Tuberculosis. Cell Mol. Immunol. 2020, 17, 901–913. [Google Scholar] [CrossRef]
- Liu, C.H.; Liu, H.; Ge, B. Innate Immunity in Tuberculosis: Host Defense vs Pathogen Evasion. Cell Mol. Immunol. 2017, 14, 963–975. [Google Scholar] [CrossRef]
- Méndez-Samperio, P.; Miranda, E.; Trejo, A. Expression and Secretion of Cathelicidin LL-37 in Human Epithelial Cells after Infection by Mycobacterium Bovis Bacillus Calmette-Guérin. Clin. Vaccine Immunol. 2008, 15, 1450–1455. [Google Scholar] [CrossRef]
- Yang, D.; Chertov, O.; Bykovskaia, S.N.; Chen, Q.; Buffo, M.J.; Shogan, J.; Anderson, M.; Schröder, J.M.; Wang, J.M.; Howard, O.M.; et al. Beta-Defensins: Linking Innate and Adaptive Immunity through Dendritic and T Cell CCR6. Science 1999, 286, 525–528. [Google Scholar] [CrossRef] [PubMed]
- Gold, M.C.; Napier, R.J.; Lewinsohn, D.M. MR1-Restricted Mucosal Associated Invariant T (MAIT) Cells in the Immune Response to Mycobacterium Tuberculosis. Immunol. Rev. 2015, 264, 154–166. [Google Scholar] [CrossRef]
- Arora, P.; Foster, E.L.; Porcelli, S.A. CD1d and Natural Killer T Cells in Immunity to Mycobacterium Tuberculosis. Adv. Exp. Med. Biol. 2013, 783, 199–223. [Google Scholar] [CrossRef] [PubMed]
- Abrahem, R.; Chiang, E.; Haquang, J.; Nham, A.; Ting, Y.-S.; Venketaraman, V. The Role of Dendritic Cells in TB and HIV Infection. J. Clin. Med. 2020, 9, 2661. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Ernst, J.D.; Desvignes, L. Beyond Macrophages: The Diversity of Mononuclear Cells in Tuberculosis. Immunol. Rev. 2014, 262, 179–192. [Google Scholar] [CrossRef]
- Ahmad, F.; Rani, A.; Alam, A.; Zarin, S.; Pandey, S.; Singh, H.; Hasnain, S.E.; Ehtesham, N.Z. Macrophage: A Cell With Many Faces and Functions in Tuberculosis. Front. Immunol. 2022, 13, 747799. [Google Scholar] [CrossRef]
- Chakarov, S.; Lim, H.Y.; Tan, L.; Lim, S.Y.; See, P.; Lum, J.; Zhang, X.-M.; Foo, S.; Nakamizo, S.; Duan, K.; et al. Two Distinct Interstitial Macrophage Populations Coexist across Tissues in Specific Subtissular Niches. Science 2019, 363, eaau0964. [Google Scholar] [CrossRef]
- Guilliams, M.; Svedberg, F.R. Does Tissue Imprinting Restrict Macrophage Plasticity? Nat. Immunol. 2021, 22, 118–127. [Google Scholar] [CrossRef]
- Cohen, S.B.; Gern, B.H.; Delahaye, J.L.; Adams, K.N.; Plumlee, C.R.; Winkler, J.K.; Sherman, D.R.; Gerner, M.Y.; Urdahl, K.B. Alveolar Macrophages Provide an Early Mycobacterium Tuberculosis Niche and Initiate Dissemination. Cell Host Microbe 2018, 24, 439–446.e4. [Google Scholar] [CrossRef]
- Huang, L.; Nazarova, E.V.; Tan, S.; Liu, Y.; Russell, D.G. Growth of Mycobacterium Tuberculosis in Vivo Segregates with Host Macrophage Metabolism and Ontogeny. J. Exp. Med. 2018, 215, 1135–1152. [Google Scholar] [CrossRef]
- Pisu, D.; Huang, L.; Grenier, J.K.; Russell, D.G. Dual RNA-Seq of Mtb-Infected Macrophages In Vivo Reveals Ontologically Distinct Host-Pathogen Interactions. Cell Rep. 2020, 30, 335–350.e4. [Google Scholar] [CrossRef] [PubMed]
- Gibbings, S.L.; Thomas, S.M.; Atif, S.M.; McCubbrey, A.L.; Desch, A.N.; Danhorn, T.; Leach, S.M.; Bratton, D.L.; Henson, P.M.; Janssen, W.J.; et al. Three Unique Interstitial Macrophages in the Murine Lung at Steady State. Am. J. Respir. Cell Mol. Biol. 2017, 57, 66–76. [Google Scholar] [CrossRef]
- Singh, V.; Jamwal, S.; Jain, R.; Verma, P.; Gokhale, R.; Rao, K.V.S. Mycobacterium Tuberculosis-Driven Targeted Recalibration of Macrophage Lipid Homeostasis Promotes the Foamy Phenotype. Cell Host Microbe 2012, 12, 669–681. [Google Scholar] [CrossRef]
- Mahajan, S.; Dkhar, H.K.; Chandra, V.; Dave, S.; Nanduri, R.; Janmeja, A.K.; Agrewala, J.N.; Gupta, P. Mycobacterium Tuberculosis Modulates Macrophage Lipid-Sensing Nuclear Receptors PPARγ and TR4 for Survival. J. Immunol. 2012, 188, 5593–5603. [Google Scholar] [CrossRef] [PubMed]
- Waku, T.; Shiraki, T.; Oyama, T.; Maebara, K.; Nakamori, R.; Morikawa, K. The Nuclear Receptor PPARγ Individually Responds to Serotonin- and Fatty Acid-Metabolites. EMBO J. 2010, 29, 3395–3407. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Lee, Y.-F.; Kim, E.; Chen, L.-M.; Ni, J.; Fang, L.-Y.; Liu, S.; Lin, S.-J.; Abe, J.-I.; Berk, B.; et al. TR4 Nuclear Receptor Functions as a Fatty Acid Sensor to Modulate CD36 Expression and Foam Cell Formation. Proc. Natl. Acad. Sci. USA 2009, 106, 13353–13358. [Google Scholar] [CrossRef]
- Steinman, R.M. Decisions about Dendritic Cells: Past, Present, and Future. Annu. Rev. Immunol. 2012, 30, 1–22. [Google Scholar] [CrossRef]
- Patente, T.A.; Pinho, M.P.; Oliveira, A.A.; Evangelista, G.C.M.; Bergami-Santos, P.C.; Barbuto, J.A.M. Human Dendritic Cells: Their Heterogeneity and Clinical Application Potential in Cancer Immunotherapy. Front. Immunol. 2019, 9, 3176. [Google Scholar]
- Eisenbarth, S.C. Dendritic Cell Subsets in T Cell Programming: Location Dictates Function. Nat. Rev. Immunol. 2019, 19, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, I.; Kato, T.; Hemmi, H.; Fukuda-Ohta, Y.; Wakaki-Nishiyama, N.; Yamamoto, A.; Kaisho, T. Conventional Type 1 Dendritic Cells in Intestinal Immune Homeostasis. Front. Immunol. 2022, 13, 857954. [Google Scholar] [CrossRef]
- Kim, H.; Shin, S.J. Pathological and Protective Roles of Dendritic Cells in Mycobacterium Tuberculosis Infection: Interaction between Host Immune Responses and Pathogen Evasion. Front. Cell Infect. Microbiol. 2022, 12, 891878. [Google Scholar] [CrossRef]
- Leepiyasakulchai, C.; Taher, C.; Chuquimia, O.D.; Mazurek, J.; Söderberg-Naucler, C.; Fernández, C.; Sköld, M. Infection Rate and Tissue Localization of Murine IL-12p40-Producing Monocyte-Derived CD103+ Lung Dendritic Cells during Pulmonary Tuberculosis. PLoS ONE 2013, 8, e69287. [Google Scholar] [CrossRef]
- Mayer-Barber, K.; Andrade, B.; Barber, D.; Hieny, S.; Feng, C.; Caspar, P.; White, S.; Gordon, S.; Sher, A. Innate and Adaptive Interferons Suppress IL-1α and IL-1β Production by Distinct Pulmonary Myeloid Subsets during Mycobacterium Tuberculosis Infection. Immunity 2011, 35, 1023–1034. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-J. IPC: Professional Type 1 Interferon-Producing Cells and Plasmacytoid Dendritic Cell Precursors. Annu. Rev. Immunol. 2005, 23, 275–306. [Google Scholar] [CrossRef]
- Meng, C.; Liu, J.; Kang, X.; Xu, Z.; Xu, S.; Li, X.; Pan, Z.; Chen, X.; Jiao, X. Discrepancy in Response of Mouse Dendritic Cells against BCG: Weak Immune Effects of Plasmacytoid Dendritic Cells Compared to Classical Dendritic Cells despite the Uptake of Bacilli. Trop. Med. Infect. Dis. 2023, 8, 140. [Google Scholar] [CrossRef]
- Anderson, K.G.; Mayer-Barber, K.; Sung, H.; Beura, L.; James, B.R.; Taylor, J.J.; Qunaj, L.; Griffith, T.S.; Vezys, V.; Barber, D.L.; et al. Intravascular Staining for Discrimination of Vascular and Tissue Leukocytes. Nat. Protoc. 2014, 9, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Mayer-Barber, K.D.; Barber, D.L. Innate and Adaptive Cellular Immune Responses to Mycobacterium Tuberculosis Infection. Cold Spring Harb. Perspect. Med. 2015, 5, a018424. [Google Scholar] [CrossRef] [PubMed]
- Balboa, L.; Kviatcovsky, D.; Schierloh, P.; García, M.; de la Barrera, S.; Sasiain, M.D.C. Monocyte-Derived Dendritic Cells Early Exposed to Mycobacterium Tuberculosis Induce an Enhanced T Helper 17 Response and Transfer Mycobacterial Antigens. Int. J. Med. Microbiol. 2016, 306, 541–553. [Google Scholar] [CrossRef]
- Arase, H.; Arase, N.; Saito, T. Interferon Gamma Production by Natural Killer (NK) Cells and NK1.1+ T Cells upon NKR-P1 Cross-Linking. J. Exp. Med. 1996, 183, 2391–2396. [Google Scholar] [CrossRef]
- Lu, C.-C.; Wu, T.-S.; Hsu, Y.-J.; Chang, C.-J.; Lin, C.-S.; Chia, J.-H.; Wu, T.-L.; Huang, T.-T.; Martel, J.; Ojcius, D.M.; et al. NK Cells Kill Mycobacteria Directly by Releasing Perforin and Granulysin. J. Leukoc. Biol. 2014, 96, 1119–1129. [Google Scholar] [CrossRef]
- Allen, M.; Bailey, C.; Cahatol, I.; Dodge, L.; Yim, J.; Kassissa, C.; Luong, J.; Kasko, S.; Pandya, S.; Venketaraman, V. Mechanisms of Control of Mycobacterium Tuberculosis by NK Cells: Role of Glutathione. Front. Immunol. 2015, 6, 508. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, L. Revisiting the Role of the Granuloma in Tuberculosis. Nat. Rev. Immunol. 2012, 12, 352–366. [Google Scholar] [CrossRef] [PubMed]
- Walzl, G.; Ronacher, K.; Hanekom, W.; Scriba, T.J.; Zumla, A. Immunological Biomarkers of Tuberculosis. Nat. Rev. Immunol. 2011, 11, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Vankayalapati, R.; Klucar, P.; Wizel, B.; Weis, S.E.; Samten, B.; Safi, H.; Shams, H.; Barnes, P.F. NK Cells Regulate CD8+ T Cell Effector Function in Response to an Intracellular Pathogen. J. Immunol. 2004, 172, 130–137. [Google Scholar] [CrossRef]
- Yoneda, T.; Ellner, J.J. CD4(+) T Cell and Natural Killer Cell-Dependent Killing of Mycobacterium Tuberculosis by Human Monocytes. Am. J. Respir. Crit. Care Med. 1998, 158, 395–403. [Google Scholar] [CrossRef]
- Choreño Parra, J.A.; Martínez Zúñiga, N.; Jiménez Zamudio, L.A.; Jiménez Álvarez, L.A.; Salinas Lara, C.; Zúñiga, J. Memory of Natural Killer Cells: A New Chance against Mycobacterium Tuberculosis? Front. Immunol. 2017, 8, 967. [Google Scholar] [CrossRef]
- Garand, M.; Goodier, M.; Owolabi, O.; Donkor, S.; Kampmann, B.; Sutherland, J.S. Functional and Phenotypic Changes of Natural Killer Cells in Whole Blood during Mycobacterium Tuberculosis Infection and Disease. Front. Immunol. 2018, 9, 257. [Google Scholar] [CrossRef]
- Evans, C.M.; Jenner, R.G. Transcription Factor Interplay in T Helper Cell Differentiation. Brief. Funct. Genom. 2013, 12, 499–511. [Google Scholar] [CrossRef]
- Lyadova, I.V.; Panteleev, A.V. Th1 and Th17 Cells in Tuberculosis: Protection, Pathology, and Biomarkers. Mediat. Inflamm. 2015, 2015, 854507. [Google Scholar] [CrossRef]
- Venturini, E.; Lodi, L.; Francolino, I.; Ricci, S.; Chiappini, E.; de Martino, M.; Galli, L. CD3, CD4, CD8, CD19 and CD16/CD56 Positive Cells in Tuberculosis Infection and Disease: Peculiar Features in Children. Int. J. Immunopathol. Pharmacol. 2019, 33, 2058738419840241. [Google Scholar] [CrossRef]
- de Martino, M.; Lodi, L.; Galli, L.; Chiappini, E. Immune Response to Mycobacterium Tuberculosis: A Narrative Review. Front. Pediatr. 2019, 7, 350. [Google Scholar] [CrossRef] [PubMed]
- Serbina, N.V.; Liu, C.C.; Scanga, C.A.; Flynn, J.L. CD8+ CTL from Lungs of Mycobacterium Tuberculosis-Infected Mice Express Perforin in Vivo and Lyse Infected Macrophages. J. Immunol. 2000, 165, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Hiebert, P.R.; Granville, D.J. Granzyme B in Injury, Inflammation, and Repair. Trends Mol. Med. 2012, 18, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.D. de S.; Trentini, M.M.; da Costa, A.C.; Kipnis, A.; Junqueira-Kipnis, A.P. Different Phenotypes of CD8+ T Cells Associated with Bacterial Load in Active Tuberculosis. Immunol. Lett. 2014, 160, 23–32. [Google Scholar] [CrossRef]
- Andersson, J.; Samarina, A.; Fink, J.; Rahman, S.; Grundström, S. Impaired Expression of Perforin and Granulysin in CD8+ T Cells at the Site of Infection in Human Chronic Pulmonary Tuberculosis. Infect. Immun. 2007, 75, 5210–5222. [Google Scholar] [CrossRef]
- Cooper, A.M.; D’Souza, C.; Frank, A.A.; Orme, I.M. The Course of Mycobacterium Tuberculosis Infection in the Lungs of Mice Lacking Expression of Either Perforin- or Granzyme-Mediated Cytolytic Mechanisms. Infect. Immun. 1997, 65, 1317–1320. [Google Scholar] [CrossRef]
- Stenger, S.; Rosat, J.P.; Bloom, B.R.; Krensky, A.M.; Modlin, R.L. Granulysin: A Lethal Weapon of Cytolytic T Cells. Immunol. Today 1999, 20, 390–394. [Google Scholar] [CrossRef]
- Krensky, A.M.; Clayberger, C. Biology and Clinical Relevance of Granulysin. Tissue Antigens 2009, 73, 193–198. [Google Scholar] [CrossRef]
- Walch, M.; Dotiwala, F.; Mulik, S.; Thiery, J.; Kirchhausen, T.; Clayberger, C.; Krensky, A.M.; Martinvalet, D.; Lieberman, J. Cytotoxic Cells Kill Intracellular Bacteria through Granulysin-Mediated Delivery of Granzymes. Cell 2014, 157, 1309–1323. [Google Scholar] [CrossRef]
- Stenger, S.; Hanson, D.A.; Teitelbaum, R.; Dewan, P.; Niazi, K.R.; Froelich, C.J.; Ganz, T.; Thoma-Uszynski, S.; Melián, A.; Bogdan, C.; et al. An Antimicrobial Activity of Cytolytic T Cells Mediated by Granulysin. Science 1998, 282, 121–125. [Google Scholar] [CrossRef]
- Lin, P.L.; Flynn, J.L. CD8 T Cells and Mycobacterium Tuberculosis Infection. Semin. Immunopathol. 2015, 37, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Parkash, O.; Agrawal, S.; Madhan Kumar, M. T Regulatory Cells: Achilles’ Heel of Mycobacterium Tuberculosis Infection? Immunol. Res. 2015, 62, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.; Mehta, S.; Bharrhan, S.; Chen, Y.; Achkar, J.M.; Casadevall, A.; Flynn, J. The Role of B Cells and Humoral Immunity in Mycobacterium Tuberculosis Infection. Semin. Immunol. 2014, 26, 588–600. [Google Scholar] [CrossRef] [PubMed]
- Kozakiewicz, L.; Phuah, J.; Flynn, J.; Chan, J. The Role of B Cells and Humoral Immunity in Mycobacterium Tuberculosis Infection. Adv. Exp. Med. Biol. 2013, 783, 225–250. [Google Scholar] [CrossRef]
- Loxton, A.G. Bcells and Their Regulatory Functions during Tuberculosis: Latency and Active Disease. Mol. Immunol. 2019, 111, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Dubois Cauwelaert, N.; Baldwin, S.L.; Orr, M.T.; Desbien, A.L.; Gage, E.; Hofmeyer, K.A.; Coler, R.N. Antigen Presentation by B Cells Guides Programing of Memory CD4+ T-Cell Responses to a TLR4-Agonist Containing Vaccine in Mice. Eur. J. Immunol. 2016, 46, 2719–2729. [Google Scholar] [CrossRef]
- Linge, I.; Dyatlov, A.; Kondratieva, E.; Avdienko, V.; Apt, A.; Kondratieva, T. B-Lymphocytes Forming Follicle-like Structures in the Lung Tissue of Tuberculosis-Infected Mice: Dynamics, Phenotypes and Functional Activity. Tuberculosis 2017, 102, 16–23. [Google Scholar] [CrossRef]
- Helgeby, A.; Robson, N.C.; Donachie, A.M.; Beackock-Sharp, H.; Lövgren, K.; Schön, K.; Mowat, A.; Lycke, N.Y. The Combined CTA1-DD/ISCOM Adjuvant Vector Promotes Priming of Mucosal and Systemic Immunity to Incorporated Antigens by Specific Targeting of B Cells. J. Immunol. 2006, 176, 3697–3706. [Google Scholar] [CrossRef]
- Andersen, C.S.; Dietrich, J.; Agger, E.M.; Lycke, N.Y.; Lövgren, K.; Andersen, P. The Combined CTA1-DD/ISCOMs Vector Is an Effective Intranasal Adjuvant for Boosting Prior Mycobacterium Bovis BCG Immunity to Mycobacterium Tuberculosis. Infect. Immun. 2007, 75, 408–416. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Z.; Graner, M.W.; Yang, L.; Liao, M.; Yang, Q.; Gou, J.; Zhu, Y.; Wu, C.; Liu, H.; et al. B Cell Infiltration Is Associated with the Increased IL-17 and IL-22 Expression in the Lungs of Patients with Tuberculosis. Cell Immunol. 2011, 270, 217–223. [Google Scholar] [CrossRef]
- Starshinova, A.; Malkova, A.; Zinchenko, Y.; Kudryavtsev, I.; Serebriakova, M.; Akisheva, T.; Lapin, S.; Mazing, A.; Kudlay, D.; Glushkova, A.; et al. Identification of Autoimmune Markers in Pulmonary Tuberculosis. Front. Immunol. 2022, 13, 1059714. [Google Scholar] [CrossRef] [PubMed]
- Joosten, S.A.; van Meijgaarden, K.E.; Del Nonno, F.; Baiocchini, A.; Petrone, L.; Vanini, V.; Smits, H.H.; Palmieri, F.; Goletti, D.; Ottenhoff, T.H.M. Patients with Tuberculosis Have a Dysfunctional Circulating B-Cell Compartment, Which Normalizes Following Successful Treatment. PLoS Pathog. 2016, 12, e1005687. [Google Scholar] [CrossRef]
- Slight, S.R.; Rangel-Moreno, J.; Gopal, R.; Lin, Y.; Fallert Junecko, B.A.; Mehra, S.; Selman, M.; Becerril-Villanueva, E.; Baquera-Heredia, J.; Pavon, L.; et al. CXCR5+ T Helper Cells Mediate Protective Immunity against Tuberculosis. J. Clin. Investig. 2013, 123, 712–726. [Google Scholar] [CrossRef] [PubMed]
- Ravesloot-Chávez, M.M.; Van Dis, E.; Stanley, S.A. The Innate Immune Response to Mycobacterium Tuberculosis Infection. Annu. Rev. Immunol. 2021, 39, 611–637. [Google Scholar] [CrossRef] [PubMed]
- Giacomini, E.; Iona, E.; Ferroni, L.; Miettinen, M.; Fattorini, L.; Orefici, G.; Julkunen, I.; Coccia, E.M. Infection of Human Macrophages and Dendritic Cells with Mycobacterium Tuberculosis Induces a Differential Cytokine Gene Expression That Modulates T Cell Response. J. Immunol. 2001, 166, 7033–7041. [Google Scholar] [CrossRef]
- Banchereau, J.; Steinman, R.M. Dendritic Cells and the Control of Immunity. Nature 1998, 392, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, S.H.E.; Schaible, U.E. A Dangerous Liaison between Two Major Killers: Mycobacterium Tuberculosis and HIV Target Dendritic Cells through DC-SIGN. J. Exp. Med. 2003, 197, 1–5. [Google Scholar] [CrossRef]
- Mihret, A.; Mamo, G.; Tafesse, M.; Hailu, A.; Parida, S. Dendritic Cells Activate and Mature after Infection with Mycobacterium Tuberculosis. BMC Res. Notes 2011, 4, 247. [Google Scholar] [CrossRef]
- Marino, S.; Pawar, S.; Fuller, C.L.; Reinhart, T.A.; Flynn, J.L.; Kirschner, D.E. Dendritic Cell Trafficking and Antigen Presentation in the Human Immune Response to Mycobacterium Tuberculosis. J. Immunol. 2004, 173, 494–506. [Google Scholar] [CrossRef]
- Sasindran, S.J.; Torrelles, J.B. Mycobacterium Tuberculosis Infection and Inflammation: What Is Beneficial for the Host and for the Bacterium? Front. Microbiol. 2011, 2, 2. [Google Scholar] [CrossRef]
- Park, Y.M.; Febbraio, M.; Silverstein, R.L. CD36 Modulates Migration of Mouse and Human Macrophages in Response to Oxidized LDL and May Contribute to Macrophage Trapping in the Arterial Intima. J. Clin. Investig. 2009, 119, 136–145. [Google Scholar] [CrossRef]
- Lastrucci, C.; Bénard, A.; Balboa, L.; Pingris, K.; Souriant, S.; Poincloux, R.; Al Saati, T.; Rasolofo, V.; González-Montaner, P.; Inwentarz, S.; et al. Tuberculosis Is Associated with Expansion of a Motile, Permissive and Immunomodulatory CD16(+) Monocyte Population via the IL-10/STAT3 Axis. Cell Res. 2015, 25, 1333–1351. [Google Scholar] [CrossRef]
- Gordon, S.; Martinez, F.O. Alternative Activation of Macrophages: Mechanism and Functions. Immunity 2010, 32, 593–604. [Google Scholar] [CrossRef]
- Krupa, A.; Fol, M.; Dziadek, B.R.; Kepka, E.; Wojciechowska, D.; Brzostek, A.; Torzewska, A.; Dziadek, J.; Baughman, R.P.; Griffith, D.; et al. Binding of CXCL8/IL-8 to Mycobacterium Tuberculosis Modulates the Innate Immune Response. Mediat. Inflamm. 2015, 2015, 124762. [Google Scholar] [CrossRef]
- Sallin, M.A.; Kauffman, K.D.; Riou, C.; Du Bruyn, E.; Foreman, T.W.; Sakai, S.; Hoft, S.G.; Myers, T.G.; Gardina, P.J.; Sher, A.; et al. Host Resistance to Pulmonary Mycobacterium Tuberculosis Infection Requires CD153 Expression. Nat. Microbiol. 2018, 3, 1198–1205. [Google Scholar] [CrossRef] [PubMed]
- Du Bruyn, E.; Ruzive, S.; Lindestam Arlehamn, C.S.; Sette, A.; Sher, A.; Barber, D.L.; Wilkinson, R.J.; Riou, C. Mycobacterium Tuberculosis-Specific CD4 T Cells Expressing CD153 Inversely Associate with Bacterial Load and Disease Severity in Human Tuberculosis. Mucosal Immunol. 2021, 14, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Green, J.A.; Elkington, P.T.; Pennington, C.J.; Roncaroli, F.; Dholakia, S.; Moores, R.C.; Bullen, A.; Porter, J.C.; Agranoff, D.; Edwards, D.R.; et al. Mycobacterium Tuberculosis Upregulates Microglial Matrix Metalloproteinase-1 and -3 Expression and Secretion via NF-KappaB- and Activator Protein-1-Dependent Monocyte Networks. J. Immunol. 2010, 184, 6492–6503. [Google Scholar] [CrossRef] [PubMed]
- Rozot, V.; Vigano, S.; Mazza-Stalder, J.; Idrizi, E.; Day, C.L.; Perreau, M.; Lazor-Blanchet, C.; Petruccioli, E.; Hanekom, W.; Goletti, D.; et al. Mycobacterium Tuberculosis-Specific CD8+ T Cells Are Functionally and Phenotypically Different between Latent Infection and Active Disease. Eur. J. Immunol. 2013, 43, 1568–1577. [Google Scholar] [CrossRef]
- Phuah, J.; Wong, E.A.; Gideon, H.P.; Maiello, P.; Coleman, M.T.; Hendricks, M.R.; Ruden, R.; Cirrincione, L.R.; Chan, J.; Lin, P.L.; et al. Effects of B Cell Depletion on Early Mycobacterium Tuberculosis Infection in Cynomolgus Macaques. Infect. Immun. 2016, 84, 1301–1311. [Google Scholar] [CrossRef] [PubMed]
- Rijnink, W.F.; Ottenhoff, T.H.M.; Joosten, S.A. B-Cells and Antibodies as Contributors to Effector Immune Responses in Tuberculosis. Front. Immunol. 2021, 12, 640168. [Google Scholar] [CrossRef] [PubMed]
- Esmedlyaeva, D.S.; Alekseeva, N.P.; Gavrilov, P.V.; Pavlova, M.V.; Dyakova, M.E.; Sokolovich, E.G. The predictive function of rates of matrix metalloproteinases/inhibitors system when assessing reparative changes in the lung tissue in those with infiltrate pulmonary tuberculosis. Tuberc. Lung Dis. 2018, 96, 38–44. [Google Scholar] [CrossRef]
- Esmedlyaeva, D.S.; Alekseeva, N.P.; Novitskaya, T.A.; Dyakova, M.E.; Ariel, B.M.; Grigoriev, I.V.; Sokolovich, E.G. Inflammatory activity and markers of extracellular matrix destruction in pulmonary tuberculoma. Bull. Sib. Med. 2020, 19, 112–119. [Google Scholar] [CrossRef]
- Esmedlyaeva, D.S.; Alekseeva, N.P.; Kiryuhina, L.D.; Dyakova, M.E. Matrix Metalloproteinases in Pathogenesis of Ventilation Disorders of the Respiratory System in Patients with Chronic Pulmonary Tuberculosis. Tuberc. Lung Dis. 2022, 100, 22–29. [Google Scholar] [CrossRef]
- Lavrova, A.I.; Esmedljaeva, D.S.; Belik, V.; Postnikov, E.B. Matrix Metalloproteinases as Markers of Acute Inflammation Process in the Pulmonary Tuberculosis. Data 2019, 4, 137. [Google Scholar] [CrossRef]
- Rivera-Marrero, C.A.; Schuyler, W.; Roser, S.; Roman, J. Induction of MMP-9 Mediated Gelatinolytic Activity in Human Monocytic Cells by Cell Wall Components of Mycobacterium Tuberculosis. Microb. Pathog. 2000, 29, 231–244. [Google Scholar] [CrossRef]
- Kumar, N.P.; Moideen, K.; Viswanathan, V.; Sivakumar, S.; Hissar, S.; Kornfeld, H.; Babu, S. Effect of Anti-Tuberculosis Treatment on the Systemic Levels of Tissue Inhibitors of Metalloproteinases in Tuberculosis—Diabetes Co-Morbidity. J. Clin. Tuberc. Other Mycobact. Dis. 2021, 23, 100237. [Google Scholar] [CrossRef]
- Harris, J.E.; Fernandez-Vilaseca, M.; Elkington, P.T.G.; Horncastle, D.E.; Graeber, M.B.; Friedland, J.S. IFNgamma Synergizes with IL-1beta to up-Regulate MMP-9 Secretion in a Cellular Model of Central Nervous System Tuberculosis. FASEB J. 2007, 21, 356–365. [Google Scholar] [CrossRef]
- Moorlag, S.J.C.F.M.; Khan, N.; Novakovic, B.; Kaufmann, E.; Jansen, T.; van Crevel, R.; Divangahi, M.; Netea, M.G. β-Glucan Induces Protective Trained Immunity against Mycobacterium Tuberculosis Infection: A Key Role for IL-1. Cell Rep. 2020, 31, 107634. [Google Scholar] [CrossRef]
- Sousa, J.; Cá, B.; Maceiras, A.R.; Simões-Costa, L.; Fonseca, K.L.; Fernandes, A.I.; Ramos, A.; Carvalho, T.; Barros, L.; Magalhães, C.; et al. Mycobacterium Tuberculosis Associated with Severe Tuberculosis Evades Cytosolic Surveillance Systems and Modulates IL-1β Production. Nat. Commun. 2020, 11, 1949. [Google Scholar] [CrossRef]
- O’Kane, C.M.; Elkington, P.T.; Friedland, J.S. Monocyte-Dependent Oncostatin M and TNF-Alpha Synergize to Stimulate Unopposed Matrix Metalloproteinase-1/3 Secretion from Human Lung Fibroblasts in Tuberculosis. Eur. J. Immunol. 2008, 38, 1321–1330. [Google Scholar] [CrossRef]
- Starshinova, A.; Zhuravlev, V.; Dovgaluk, I.; Panteleev, A.; Manina, V.; Zinchenko, U.; Istomina, E.; Pavlova, M.; Yablonskiy, P. A Comparison of Intradermal Test with Recombinant Tuberculosis Allergen (Diaskintest) with Other Immunologic Tests in the Diagnosis of Tuberculosis Infection. Int. J. Mycobacteriol 2018, 7, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Wu, K.; Zhou, H.; Yu, H.; Yuan, J.; Dong, L.; Liu, Q.; Ding, X.; Lu, W.; Yang, H.; et al. Evaluation of ESAT6-CFP10 Skin Test for Mycobacterium Tuberculosis Infection among Persons Living with HIV in China. J. Clin. Microbiol. 2023, 61, e0181622. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.-H.; Zheng, X.-F.; Yi, L.; Wang, J.; Wang, X.-J.; Wei, P.-J.; Jia, H.-Y.; Zhou, L.-J.; Zhao, Y.-L.; Zhang, H.-T. CD137 Is a Useful Marker for Identifying CD4+ T Cell Responses to Mycobacterium Tuberculosis. Scand. J. Immunol. 2017, 85, 372–380. [Google Scholar] [CrossRef]
- Streitz, M.; Tesfa, L.; Yildirim, V.; Yahyazadeh, A.; Ulrichs, T.; Lenkei, R.; Quassem, A.; Liebetrau, G.; Nomura, L.; Maecker, H.; et al. Loss of Receptor on Tuberculin-Reactive T-Cells Marks Active Pulmonary Tuberculosis. PLoS ONE 2007, 2, e735. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, M.; Yan, B.; Li, F.; Guan, S.; Chang, K.; Jiang, W.; Xu, H.; Yuan, T.; Chen, M.; et al. Diagnostic Performance of Plasma Cytokine Biosignature Combination and MCP-1 as Individual Biomarkers for Differentiating Stages Mycobacterium Tuberculosis Infection. J. Infect. 2019, 78, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Yong, Y.K.; Tan, H.Y.; Saeidi, A.; Wong, W.F.; Vignesh, R.; Velu, V.; Eri, R.; Larsson, M.; Shankar, E.M. Immune Biomarkers for Diagnosis and Treatment Monitoring of Tuberculosis: Current Developments and Future Prospects. Front. Microbiol. 2019, 10, 2789. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diatlova, A.; Linkova, N.; Lavrova, A.; Zinchenko, Y.; Medvedev, D.; Krasichkov, A.; Polyakova, V.; Yablonskiy, P. Molecular Markers of Early Immune Response in Tuberculosis: Prospects of Application in Predictive Medicine. Int. J. Mol. Sci. 2023, 24, 13261. https://doi.org/10.3390/ijms241713261
Diatlova A, Linkova N, Lavrova A, Zinchenko Y, Medvedev D, Krasichkov A, Polyakova V, Yablonskiy P. Molecular Markers of Early Immune Response in Tuberculosis: Prospects of Application in Predictive Medicine. International Journal of Molecular Sciences. 2023; 24(17):13261. https://doi.org/10.3390/ijms241713261
Chicago/Turabian StyleDiatlova, Anastasiia, Natalia Linkova, Anastasia Lavrova, Yulia Zinchenko, Dmitrii Medvedev, Alexandr Krasichkov, Victoria Polyakova, and Piotr Yablonskiy. 2023. "Molecular Markers of Early Immune Response in Tuberculosis: Prospects of Application in Predictive Medicine" International Journal of Molecular Sciences 24, no. 17: 13261. https://doi.org/10.3390/ijms241713261
APA StyleDiatlova, A., Linkova, N., Lavrova, A., Zinchenko, Y., Medvedev, D., Krasichkov, A., Polyakova, V., & Yablonskiy, P. (2023). Molecular Markers of Early Immune Response in Tuberculosis: Prospects of Application in Predictive Medicine. International Journal of Molecular Sciences, 24(17), 13261. https://doi.org/10.3390/ijms241713261