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Abstract: In this work, an attempt was made to reveal and explain the influence of the process of
formation of 2D nanostructures at the surface of an amorphous alloy (an alloy with the composition
Co75Si15Fe5Cr4.5Al0.5 (in at.%) was used for this purpose) on the corrosion and magnetic properties
of such an alloy. Two-dimensional nanostructures (nanocells of 100–150 nm in size, which were
obtained by anodizing the initial sample in an ionic liquid) are essentially a pattern on the surface
of the sample, and they cannot completely cover and block the surface from external effects. It was
postulated that the presence of these nanostructures during corrosion and magnetic tests has no
significant effect. However, a noticeable inhibition effect was observed during corrosion tests and a
less noticeable (but still detectable) effect was observed during magnetic tests. The authors believe
that the effect obtained, with a detailed study, can be used to increase the corrosion resistance and to
improve the properties of traditional magnetic materials.

Keywords: ionic liquid; anodization; nanostructures; magnetic nanoparticles; surface functionalization;
magnetic materials; magnetic alloys; corrosion; self-assembly; information storage

1. Introduction

Magnetically soft amorphous alloys (AAs) play a key role in the production and
conversion of electrical energy [1,2], high-density information storage and spintronic
devices [3], biomedicine [4], micro-nanomachine engineering [5], as electrode catalysts [6].
Such alloys have a low coercive force and a relatively high magnetic saturation induction.
The low coercivity is due to small magnetocrystalline and magnetoelastic anisotropy
values [7]. The addition of chromium [1] and non-metallic components (Si, B) has no
negative effect on the magnetic properties and prevents the crystallization of the alloy with
time [8,9].

The application of magnetic AAs is accompanied by their corrosion in the atmosphere
under the influence of negative environmental factors. These factors accelerate the process
of the natural “aging” of alloys and degrade their properties [10]. A lot of attention in
the literature is focused on the comparison of the corrosion resistance of crystalline and
amorphous alloys [10], as well as the influence of various alloying additives. It has been
shown [11] that chromium additives increase the corrosion resistance of AAs and that
silicon, on the contrary, reduces the corrosion resistance [12]. The corrosion properties of
AAs were mainly examined by using potentiodynamic polarization curves, although the
impedance method is more informative in these investigations.
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The description and analysis of corrosion processes involves the study of the influence
of various factors: the microstructure, surface irregularities, oxide layer composition, and
concentration of chloride ions [13]. So the homogeneous structure of AAs contributes to
the formation of a uniform protective film, which results in an increase in corrosion resis-
tance [10]. Surface modification can slow down or prevent corrosion processes. Corrosion
has a great influence on the magnetic properties of the surface [4]. It has been found [12]
that the magnetic stability of cobalt-based AAs decreases after prolonged corrosion in
distilled water. The magnetic field can also affect the corrosion properties of the surface.
It has been shown that the direction of the applied magnetic field has different effects on
the corrosion behavior of a BeCu alloy in a sodium chloride solution [14]. The effect of
different magnetic fields on the kinetics of the reduction of magnetite with hydrogen was
shown [15].

An optimal combination of corrosion and magnetic properties Is necessary to expand
the range of practical applications of cobalt-based AAs. Amorphous alloys exhibit in-
teresting properties due to their domain structure, microstructure contribution, and low
anisotropy energy [3]. Excellent soft magnetic properties are demonstrated by Co-based
amorphous alloys [16]. Cobalt-based AAs are characterized by a decrease in the maximum
values of saturation induction, an increase in the temperature coefficient of magnetic charac-
teristics, high wear resistance, and corrosion resistance. The addition of Fe to cobalt-based
amorphous alloys contributes to an increase in saturation magnetization and a decrease
in coercive force [17]. To improve the magnetic characteristics and significantly reduce
magnetostriction, the partial replacement of iron atoms with aluminum was carried out [18].
Transmission electron microscopy (TEM) indicated that such an improvement in the prop-
erties was due to the fine dispersion of (CoFe)SiAl nanoparticles in the amorphous matrix.
Nanocrystallization also raised the Curie temperature of the aluminum-containing alloy.
Alloys with aluminum have been studied to a low extent.

One method of optimization is to modify the surface with nanostructures. A re-
view [19] showed the role of an ionic liquid (IL) in the formation of nanostructures. An-
odizing an alloy in an ionic liquid can lead to the formation of porous oxide, dense oxide
film, the appearance of nanotubes, nanocells, nanorolls decorated with nanotubes, and
many other forms [19–22]. The task of using the material determines the type of surface
modification. It has been shown that the amorphous alloy Fe70Cr15B15 with a surface
modified with hexagonal nanostructures demonstrates a significant anodic shift of the
corrosion potential (Ecorr = + 379 mV) compared to the initial alloy (Ecorr = −125 mV) [20].

The purpose of this Investigation was to obtain the surface of CoFeCrSiAl AA modified
by nanostructures (nanocells) under anodic treatment in BmimNTf2 and to compare the
corrosion resistance of the modified and original alloys. Comparison of magnetic properties
such as domain structure, coercive force, and saturation magnetization for an alloy of this
composition has not been carried out before. These properties depend in part on the surface
modification. Impedance spectroscopy assists in examining phase interfaces at the electrode
surface, which is useful for studying nanoscale oxide layers on the surface of alloys.

2. Results and Discussion
2.1. Anodic Modification of the Alloy Surface in BmimNTf2

Thin oxide films with a developed surface are promising for applications in electro-
chemical capacitors [23]. The formation of nanocells with four or five walls during the
anodizing of silicon in IL with a water content of up to 2% was observed recently [24].
The anodization of aluminum in IL is accompanied by the formation of various nanostruc-
tures [25]. These facts made it possible to propose the possibility of producing nanocells
on the alloy surface under study. The conditions (current, time) providing the formation
of hexagonal nanocells on the AA surface were found (Figure 1). Figure 1 shows SEM
images of the surface of the initial Co75Si15Fe5Cr4.5Al0.5 alloy after abrasive treatment
and anodizing in IL for 80 s (i = 17.5 mA cm−2) before and after corrosion tests in Ringer’s
solution. The average cell size was 100–150 nm.
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Figure 1. SEM images of the surface: (a) after abrasive treatment, (b) the initial alloy, (c) anodizing in
IL for 80 s (i = 17.5 mA cm−2), and (d–f) after corrosion tests.

The dynamics of surface changes with the variation of the anodizing time in the IL
revealed that the optimal anodizing time for the formation of nanostructures at the same
current density (i = 15 mA cm−2) ranged from 40 to 300 s (Figure 2). During this time,
the cells have time to form completely, but then the process of their “overgrowth” and
coverage by oxide occurs (300–1800 s). At longer times, the images become less clear due
to the formation of surface oxide, with its film covering the cells.
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The elemental composition of the surface after the abrasive treatment (1, “clean” sur-
face), initial (2, natural oxide) and anodizing (3, nanocells on the surface) alloy, and samples
after corrosion tests in the Ringer’s solution (see Section 3.4) are shown in Table 1. The
data in Table 1 indicate that the surface modification with cells is not accompanied by
enrichment with any element. The surface of the initial alloy is coated with natural oxide.
Abrasive treatment leads to the removal of natural oxide, but the renewed surface easily
interacts with oxygen in air, which dramatically increases the oxygen content compared to
the original sample due to the formation of new oxide structures [26].
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Table 1. The elemental composition of the alloy before and after corrosion tests.

Sample 1
The Content of Elements before Corrosion Tests (at. %)

Co Si Fe Cr Al O

(1) 72.55 ± 2.40 14.06 ± 0.90 4.73 ± 0.37 3.94 ± 0.17 0.30 ± 0.22 4.42 ± 3.44
(2) 75.10 ± 0.49 14.27 ± 0.39 4.63 ± 0.37 4.19 ± 0.17 0.17 ± 0.16 1.65 ± 0.70
(3) 75.18 ± 0.49 14.54 ± 0.40 4.98 ± 0.25 4.21 ± 0.29 0.29 ± 0.15 0.81 ± 0.12

The Content of Elements after Corrosion Tests (at. %)

(1k) 70.65 ± 0.91 14.64 ± 0.61 4.76 ± 0.34 3.78 ± 0.24 0.34 ± 0.30 5.82 ± 1.07
(2k) 75.30 ± 1.12 14.37 ± 0.57 4.75 ± 0.24 4.16 ± 0.25 0.30 ± 0.27 1.13 ± 0.73
(3k) 71.39 ± 1.54 14.12 ± 0.28 4.85 ± 0.45 4.03 ± 0.26 0.23 ± 0.18 5.37 ± 1.47

1 The K index in the sample name means that the sample was studied after corrosion tests. A more detailed
description of the samples is given in the text and Appendix A.

The role of natural oxide in the formation of nanostructures is discussed in detail
earlier [21]. Nanostructures are formed only in the presence of natural oxide of a certain
thickness. Anodizing in an ionic liquid can lead to the formation of nanotubes, nanocells,
and “nanorolls” depending on the intrinsic properties of the surface oxide. A dense oxide
with good adhesion promotes the formation of nanocells. It was found that the natural
surface oxide of cobalt has the composition Co3O4 [27] and does not change the magnetic
properties of cobalt itself. Through anodizing in a buffer solution, compact films with good
adhesion were obtained on the cobalt surface, the inner layer of which is composed of CoO,
and the outer layer consists of Co3O4 [28].

2.2. Electrochemical Corrosion Testing

Electrochemical corrosion of the samples described in Section 3.1 was performed by
using potentiodynamic polarization curves in the Ringer’s solution (Figure 3, Table 2) and
using the impedance method in the Ringer’s solution and the sodium sulfate solution
(Figure 4) [29].
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Figure 3. Linear polarization curves (scanning rate 1 mV·s−1 in Riger’s solution) for samples 1–3 of
amorphous Co75Si15Fe5Cr4.5Al0.5 alloy. All measurements were carried out using both anodic and
cathodic regions. A more detailed description of the samples is given in the text and Appendix A.
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Table 2. Experimental and calculated corrosion potentials and polarization resistance in the Ringer’s
solution: (1) alloy after abrasive treatment, (2) initial alloy, and (3) modified alloy.

Sample Ecorr exp (mV) Ecorr calc (mV) PR × 105 (Ohm)

(1) −348 −372 0.06
(2) −319 −322 1.76
(3) −189 −188 0.04
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Figure 4. Electrochemical impedance response for electrodes: (1) after abrasive treatment, (2) initial,
(3) modified, (4) crystal Co electrode (indexes denote: S–solution of Na2SO4, R–Ringer’s solution);
insert: fragments of hodographs in the ZRe area 0–25 kOhm cm2; (b) the equivalent scheme. A more
detailed description of the samples is given in the text and Appendix A.

The resulting corrosion potentials and resistances, calculated on the basis of polariza-
tion measurements, are shown in Table 2.

Figures 1 and 3, and Table 2 demonstrate that the removal of the natural oxide film
via abrasive treatment leads to failure of the alloy’s corrosion resistance. Irregularities
appear on the surface of the alloy (Figure 1a,b). After corrosion tests, the AA surface with
natural oxide exhibits the least observable changes (Figure 1b,e). The corrosion resistance
of the alloy modified with oxide nanostructures is higher than that of the original alloy
(Figure 3, Table 2). The anodic modification in IL does not practically change the surface
composition. The enrichment of the surface with chromium was not observed (Table 1),
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allowing us to conclude that the increase in the corrosion resistance is due to the presence
of nanostructures. The cobalt content after corrosion decreases for abrasive-treated and
modified samples (Table 1). The active dissolution of the alloy in the Ringer’s solution is
caused by the formation of a CoCl42− complex. In the presence of a chelating agent, cobalt
hydroxide/cobalt oxide can be dissolved, resulting in the occurrence of a transpassive
dissolution mechanism [30]. After active dissolution, passivation is observed in both
the original and modified samples (Figure 3, curves 2 and 3). The role of chromium
as a component that improves the corrosion properties of alloys is not unambiguous.
According to [11], chromium significantly improves the corrosion resistance of an iron-
based alloy in a hydrochloric acid solution. An investigation of the corrosion product film
composition on the surface of a chromium-doped alloy showed that only chromium oxide
has protective properties among all the products [31]. For alloys with a higher Co content
(68–70 at.%), regardless of the concentration of Cr and Mo, no significant passive behavior
was observed [32]. Alloys of cobalt with chromium in the Ringer’s solution showed a
tendency toward passivation due to the formation of mixed protective layers of Cr2O3-CoO
with a high stability on their surfaces [33].

Figure 4 shows the impedance spectra of the samples under study in a sodium sulfate
solution (Hodograph 2-S and 3-S) and in the Ringer’s solution (Hodograph 1-R and 3-R).
For comparison, the impedance spectrum of crystalline cobalt in the Ringer’s solution
(Hodograph 4-R) is given.

An equivalent circuit for the process is shown in Figure 4b. The form of the equivalent
circuit for all of the studied electrodes and solutions is identical and differs in the resistance
value of the solution and the oxide film. The values of the parameters of the equivalent
circuit are presented in Table 3.

Table 3. The values of the parameters of the equivalent circuit of the studied samples: Rs is the
electrolyte resistance; Rp, CPE are the metal charge transfer resistance and double layer capacitance;
N is the degree for calculations of CPE.

Sample 1 Environment Rs/Ohm cm2 Rp/Ohm cm2 CPE/Ohm−1 cm−2 cN N

(1) Ringer’s solution 20.4 ± 2% 15455 ± 2% 1.88 × 10–5 ± 3.4% 0.88 ± 0.7%
(2) 1 M Na2SO4 8.9 ± 3% 173120 ± 3% 6.34 × 10–6 ± 2.1% 0.87 ± 0.4%
(3) 1 M Na2SO4 10.3 ± 7% 33546 ± 10% 5.09 × 10–5 ± 5.2% 0.84 ± 1.5%
(3) Ringer’s solution 26.3 ± 4% 19669 ± 5% 3.34 × 10–5 ± 5.8% 0.83 ± 1.3%
(4) Ringer’s solution 34.0 ± 2% 17117 ± 2% 1.01 × 10–5 ± 2.5% 0.79 ± 0.4%

1 A more detailed description of the samples is given in the text and Appendix A.

As the frequency of the AC signal decreases, the impedance spectra (Figure 4) represent
a half-circle corresponding to the sum of the Faraday resistance and the volume resistance
of the electrolyte. The radius of the “high-frequency arc” of the impedance spectra for the
sample with “natural oxide” is comparable to the sample with cells. This section of the
diagram is responsible for the outer layers of the sample surface and indicates comparable
surface activity of these samples.

The resistance of the Ringer’s solution is higher than that of the sodium sulfate
solution as the ion concentration in the sodium sulfate solution is higher. CPE and Rp in
the equivalent circuit represent the corrosion layer. The change in CPE and Rp values, as
well as their relationship to the value of the corrosion potential, allows the estimation of the
protective function of the surface film formed during corrosion. There is a direct correlation
between the charge transfer resistance and the protective function of the corrosion layer [34].
The samples show significant resistance to charge transfer (Table 3). For the sample with
the nanocell-modified surface, Rp is higher and CPE is approximately the same as for the
abrasive-treated sample. Thus, the corrosion layer formed on the nanocell-modified surface
is protective [35]. The alloy with the modified surface is more resistant to corrosion than
the abrasive-treated one, in agreement with the results of Table 2 showing the shift of the
corrosion potential of this sample to the anodic region. The CPE and Rp values for the
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alloy in the Ringer’s solution are close to those for crystalline cobalt (Figure 4a and Table 3).
Particularly high resistance to pitting corrosion induced by chloride ions was found for the
cobalt electrode preliminarily passivated at a potential of 0.15 V [36]. The resulting passive
film was identified as a thick inner CoO layer and a thin outer Co3O4 layer. Apparently,
the surface modification through anodizing in IL is similar to the effect of pre-passivation.

2.3. Magnetic Properties of Studied Samples

The well-defined magnetic properties of AA and their wide application make it useful
to investigate the possible correlation of magnetic properties with the corrosion behavior
of the alloy, as well as with the presence/absence of nanostructures and oxides on the
alloy surface.

The influence of the nanoparticle structure (spherical/hexagonal) on the magnetic
properties of cobalt was studied in the literature [37].

The magnetic properties of alloys are sensitive to changes in many factors, including
changes in the surface layer structure and composition [38]. Amorphous alloys, due to
their structure, have few defects and are capable of magnetization to saturation in magnetic
fields of a low strength. Amorphous alloys have a high resistance to corrosion, which can
be improved by modifying the surface of the material (Section 2.2).

The coercive force is a structure-sensitive magnetic characteristic of the material, and
it can be assumed that modifying the surface with nanostructures changes the value of the
coercive force and the domain structure of the surface layer (Table 4).

Table 4. The values of the coercive force, saturation, and remanence magnetization obtained for the
initial samples and after corrosion testing (Section 2.2) at room temperature (298 K) and T = 100 K.

Conditions Sample 1 Coercivity at
298 K (Oe)

Coercivity at
100 K (Oe)

Saturation
Magnetization (Ms)

at 298 K (emu/g)

Remanence
Magnetization (Mr)

at 298 K (emu/g)

Before corrosion
testing

(1) 0.35 0.16 61 0.9
(2) 0.38 0.08 60 0.4
(3) 0.45 0.01 59 1.3

After corrosion
testing

(1k) 5.00 4.70 51 11.5
(2k) 4.95 4.50 48 9.0
(3k) 5.10 4.80 47 8.0

1 The K index in the sample name means that the sample was studied after corrosion tests. A more detailed
description of the samples is given in the text and Appendix A.

The coercivity at T = 298 K varies in a small range of values from 0.35 E (Oe) for sample
1 (curve 1_298 K) to 0.45 E (Oe) for sample 3 with nanostructures (curve 3_298 K), which
is clearly visible in Figure 5a. After corrosion, the coercivity value increases significantly
(Figure 5b), and this can be explained by an increase in the number of defects on the
surface [39]. The saturation magnetization is higher for samples 1–3 at 100 K and then
decreases at 298 K (Figure 5a).

The coercive force value is lower for samples when magnetized at 100 K, which
corresponds to a stronger and lighter magnetization at a lower temperature. Remanence
magnetization is stronger for samples after corrosion (Figure 5b).

Figure 6 shows images of the domain structures at room temperature obtained on
the samples after and before abrasive treatment (Figure 6a,b) and on the surface modified
with nanostructures (Figure 6c). The morphology of the domain structures can be seen to
change under the effect of treatment (Figure 6a–c). Various magnetic domain structures can
be considered as candidates for use in magnetic storage media [3].
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Figure 6. Domain structures of the surface of the samples (a)—(1); (b)—(2); (c)—(3) during magneti-
zation along one axis obtained at T = 298 K.

Although nanocells have a noticeable effect on the domain structure at the material
surface (Figure 6b,c), the direct effect of modification on the coercive force is worth noting
as being very small. The presence of nanostructures on the surface does not significantly
change the saturation magnetization and residual magnetization, as illustrated in Figure 7.
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The coercive force is sensitive to a deeper surface modification. The thickness of the
modified layer is less than 1 µm. After polarization testing in the Ringer’s solution, the
surface layer undergoes significant changes with the destruction of the modified layer and
the formation of new defects. This is reflected in the magnetic characteristics such as the
increase in the value of the coercive force by more than 10 times (Figure 7, Table 4).

The AA has negligible magnetic anisotropy along the surface due to its amorphous
nature, which contributes to lower coercive force values for its magnetization. In conclusion,
it should be noted that the samples were magnetized in different directions, and the
change in the slopes of the hysteresis loops indicates the presence of light and hard axes of
magnetization. The shapes and parameters of the hysteresis loops change depending on
the orientation of the magnetic field. This indicates that the AA has negligible magnetic
anisotropy along the axis, which is directed into the bulk of the sample, where the coercive
force values are slightly higher than for measurements along the surface of the samples.

3. Materials and Methods
3.1. Materials

Ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide—BmimNTf2
(purity 99.5%) (ABCR GmbH, Germany) was used as an electrolyte to modify the electrode
surface. The water content (900 ppm) was determined using Fischer titration using a
899 coulometer (Metrohm, Switzerland). All chemicals in the current study were of high
purity and were used without any prior purification. The composition of the alloy under
study is Co75Si15Fe5Cr4.5Al0.5 (in at.%). The preparation method of the amorphous alloy
is given in Supplementary Materials.

3.2. Material Characterization

The amorphous nature of the alloy was confirmed using DSC measurements with a
Jupiter STA 449 F1 calorimeter (NETZSCH, Waldkraiburg, Germany). The temperature
scanning speed was 20 K min−1. X-ray phase analysis was performed using a diffrac-
tometer DRON-3 (Cu-Kα). According to DSC (Figure S3) and X-ray diffraction data
(Figures S1 and S2), the obtained alloy is amorphous. The temperature at the beginning of
crystallization was 530 ◦C. The size of the crystallites was determined (Scherrer equation)
from the XRD data and is equal to 1.46 nm.

Surface morphology and composition of the sample were characterized using an
EVO-50 Zeiss scanning electron microscope with an EDX (energy dispersive X-ray spec-
troscopy) analyzer (Zeiss AG, Jena, Germany) and a ZEISS Axio Vert. A1 optical microscope
(Zeiss AG, Germany).

3.3. Anodizing

All electrochemical experiments were performed at room temperature in air. Anodiz-
ing was performed in a three-electrode electrochemical cell with an undivided cathode–
anode space under galvanostatic conditions in the current density range 10–18 mA cm−2

with a PGSTAT Autolab 302N potentiostat/galvanostat (Metrohm AG, Herisau, Switzer-
land) in BmimNTf2 ionic liquid. The exposure time was 15 to 1800 s. The working and
auxiliary electrodes were made of an amorphous magnetically soft cobalt-based alloy
(≥70%) with a nominal composition of Co75Si15Fe5Cr4.5Al0.5. The geometric area of
the working electrode was 0.4 cm2. Silver wire was used as a reference electrode during
anodizing.

3.4. Corrosion Testing

The corrosion behavior of the initial and modified alloys was studied on the basis of
polarization curves and using the impedance method. The standard composition of the
Ringer’s solution (1L) is 0.33 g of calcium chloride + 0.3 g of potassium chloride + 8.6 g
of sodium chloride, and NaH2PO4 was used. Potentiodynamic polarization curves in the
Ringer’s solution were recorded using a PGSTAT Autolab 302N potentiostat/galvanostat
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(Metrohm AG, Switzerland) at a sweep rate of 1 mV s−1. The reference electrode was
a Ag/AgCl one. The auxiliary electrode was a platinum wire. The sample-immersion
time corresponded to the measurement time of the polarization curve without preliminary
exposure in the medium.

3.5. Impedance Response Testing

Impedance spectra were measured in a three-electrode unseparated cell at room tem-
perature in the Ringer’s solution and 1 M Na2sO4. The reference electrode was an Ag-AgCl
reference electrode. The auxiliary electrode was a platinum wire. Measurements were
performed by using a P-40X potentiostat with an FRA-24M electrochemical impedance
measurement module in the frequency range from 50 kHz to 0.01 Hz with an ac volt-
age amplitude of 20 mV. The measurements were performed at a potential of −200 mV.
The sample-immersion time corresponded to the impedance measurement time without
preliminary exposure in the medium.

3.6. Magnetic Properties Testing

To register hysteresis loops and observe the magnetic domain structure using the
MOKE method, the magneto-optical Kerr microscope Evico magnetics GmbH, Germany,
based on a Carl Zeiss polarization microscope, was employed. All magneto-optical mea-
surements were performed at room temperature and at a high resolution with standard
magnetizing coils without cores. A ZEISS EC Epiplan-NEOFLUAR 20x/0.50 Pol focusing
lens was used.

Measurements of volumetric magnetic properties were carried out with a LakeShore
magnetometer VSM (vibrating sample magnetometer), model 7407 (USA), at temperatures
from 100 to 450 K in fields up to 16 kE. The mass of the samples was determined using
analytical balances Rawdag (Germany) with a resolution of 0.01 mg. The magnetometer
was calibrated using a nickel standard with a magnetic moment of 6.92 emu in the field
of 5 kE.

4. Conclusions

Functional modification of the Co75Si15Fe5Cr4.5Al0.5 AA surface was carried out via
nanostructures. Nanostructures—hexagonal cells in the cross-section of 100–150 nm—were
obtained by anodizing them in ionic liquid BmimNTf2.

Corrosion resistance of the initial alloy, after abrasive treatment, and anodizing AAs
were investigated using the polarization curve method and impedance spectroscopy. Both
methods showed convergent results. The corrosion resistance of the alloy modified with
oxide nanostructures is higher than that of the original alloy. For the sample with the
nanocell-modified surface, Rp is higher and CPE is approximately the same as for the
abrasive-treated sample. Thus, the corrosion layer formed on the nanocell-modified surface
is protective. An equivalent scheme describing the process is proposed. The view of the
equivalent scheme for all investigated solutions and samples is identical and differs in the
value of the resistance of the solution and the oxide film.

The magnetic properties and corrosion resistance of the modified and initial alloys
were compared. A comparison of such magnetic properties as the domain structure,
coercive force, and saturation magnetization for an alloy of this composition has not been
carried out before. It has been shown that these properties are affected by the surface
modification. Although nanocells have a noticeable effect on the domain structure at
the material surface, the direct effect of modification on the coercive force is relatively
insignificant. The presence of nanostructures on the surface does not significantly change
the saturation magnetization and residual magnetization.

The results allow the prediction of a possible field of application of a nanocell-modified
magnetic alloy in the field of information storage on magnetic materials. Two-dimensional
nanostructures (nanocells) should allow one to easily record information (domain carriers)
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and at the same time to keep it without losses for a longer time compared with usual
(traditional) carriers.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ijms241713373/s1.
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Appendix A. Abbreviation of the Designations of the Samples of the
Co75Si15Fe5Cr4.5Al0.5 Amorphous Alloy (AA) Used and Crystalline Cobalt

Sample
Abbreviation

Description of the Sample What Methods Were Used for

(1)
The sample AAs with “clean”

(bare) surface
The elemental composition.

Polarization curves, impedance
spectra in Ringer’s solution, and

1 M Na2SO4

(2)
The sample AAs contain natural

oxide on the surface

(3)
The sample AAs contain nanocells

on the surface

(4)
The sample of crystalline cobalt

with “clean” (bare) surface
impedance spectra in

Ringer’s solution.

(1k)
The sample AAs with “clean”

(bare) surface after corrosion tests
The elemental composition after

corrosion tests in Ringer’s solution
and magnetic properties after

corrosion tests in Ringer’s solution.(2k)
The sample containing natural

oxide on the surface after
corrosion tests

(3k)
The sample containing nanocells on

the surface after corrosion tests
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