The Influence of KE and EW Dipeptides in the Composition of the Thymalin Drug on Gene Expression and Protein Synthesis Involved in the Pathogenesis of COVID-19
Abstract
:1. Introduction
2. Results
2.1. Identification of the Binding Sites of EW and KE Dipeptides to the Classical B-Form of Double-Stranded DNA and the Nucleosome
2.2. Identification of COVID-19-Associated Target Genes for EW and KE Peptides
2.3. Thymalin and Dipeptides EW and KE: Effect on Cytokine Release in Blood Mononuclear Cells in an In Vitro Inflammatory Response Model
3. Discussion
4. Materials and Methods
4.1. Molecular Modeling of the EW and KE Dipeptides’ Interaction with Double-Stranded DNA and Nucleosomes
4.2. Bioinformatics
4.3. Isolation of Human Peripheral Blood Mononuclear Cells
4.4. Cell Culture, Treatments, and ELISA
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Director-General’s Opening Remarks at the Media Briefing—5 May 2023. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing---5-may-2023 (accessed on 11 June 2023).
- Post COVID-19 Condition (Long COVID). Available online: https://www.who.int/europe/news-room/fact-sheets/item/post-covid-19-condition (accessed on 11 June 2023).
- Chippa, V.; Aleem, A.; Anjum, F. Post-Acute Coronavirus (COVID-19) Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 Entry into Cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Khavinson, V.; Linkova, N.; Dyatlova, A.; Kuznik, B.; Umnov, R. Peptides: Prospects for Use in the Treatment of COVID-19. Molecules 2020, 25, 4389. [Google Scholar] [CrossRef] [PubMed]
- Jarczak, D.; Nierhaus, A. Cytokine Storm-Definition, Causes, and Implications. Int. J. Mol. Sci. 2022, 23, 11740. [Google Scholar] [CrossRef]
- Yang, L.; Liu, S.; Liu, J.; Zhang, Z.; Wan, X.; Huang, B.; Chen, Y.; Zhang, Y. COVID-19: Immunopathogenesis and Immunotherapeutics. Signal Transduct. Target. Ther. 2020, 5, 128. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, S.; Liu, J.; Liang, B.; Wang, X.; Wang, H.; Li, W.; Tong, Q.; Yi, J.; Zhao, L.; et al. Longitudinal Characteristics of Lymphocyte Responses and Cytokine Profiles in the Peripheral Blood of SARS-CoV-2 Infected Patients. EBioMedicine 2020, 55, 102763. [Google Scholar] [CrossRef] [PubMed]
- Kuznik, B.; Khavinson, V.; Shapovalov, K.; Linkova, N.; Lukyanov, S.; Smolyakov, Y.; Tereshkov, P.; Shapovalov, Y.; Konnov, V.; Tsybikov, N. Peptide Drug Thymalin Regulates Immune Status in Severe COVID-19 Older Patients. Adv. Gerontol. 2021, 11, 368–376. [Google Scholar] [CrossRef]
- Kuznik, B.I.; Shapovalov, K.G.; Smolyakov, Y.N.; Lukyanov, S.A.; Tereshkov, P.P.; Kazantseva, L.S.; Linkova, N.S. Morphological compound and indicators of the blood clotting system in severe COVID-19 patients of middle aged and elderly during treatment of Tocilizumab and Thymalin. Adv. Gerontol. 2022, 35, 368–374. [Google Scholar]
- Coleman, M.J.; Zimmerly, K.M.; Yang, X.O. Accumulation of CD28null Senescent T-Cells Is Associated with Poorer Outcomes in COVID19 Patients. Biomolecules 2021, 11, 1425. [Google Scholar] [CrossRef]
- Wang, F.; Hou, H.; Luo, Y.; Tang, G.; Wu, S.; Huang, M.; Liu, W.; Zhu, Y.; Lin, Q.; Mao, L.; et al. The Laboratory Tests and Host Immunity of COVID-19 Patients with Different Severity of Illness. JCI Insight 2020, 5, e137799. [Google Scholar] [CrossRef] [PubMed]
- Khedr, S.; Deussen, A.; Kopaliani, I.; Zatschler, B.; Martin, M. Effects of Tryptophan-Containing Peptides on Angiotensin-Converting Enzyme Activity and Vessel Tone Ex Vivo and in Vivo. Eur. J. Nutr. 2018, 57, 907–915. [Google Scholar] [CrossRef]
- Kolchina, N.; Khavinson, V.; Linkova, N.; Yakimov, A.; Baitin, D.; Afanasyeva, A.; Petukhov, M. Systematic Search for Structural Motifs of Peptide Binding to Double-Stranded DNA. Nucleic Acids Res. 2019, 47, 10553–10563. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, P.G.; Termini, L.; Durigon, E.L.; Lepique, A.P.; Sposito, A.C.; Boccardo, E. Diacerein: A Potential Multi-Target Therapeutic Drug for COVID-19. Med. Hypotheses 2020, 144, 109920. [Google Scholar] [CrossRef]
- Opal, S.M.; DePalo, V.A. Anti-Inflammatory Cytokines. Chest 2000, 117, 1162–1172. [Google Scholar] [CrossRef]
- Fajgenbaum, D.C.; June, C.H. Cytokine Storm. N. Engl. J. Med. 2020, 383, 2255–2273. [Google Scholar] [CrossRef]
- Fattahi, S.; Khalifehzadeh-Esfahani, Z.; Mohammad-Rezaei, M.; Mafi, S.; Jafarinia, M. PI3K/Akt/MTOR Pathway: A Potential Target for Anti-SARS-CoV-2 Therapy. Immunol. Res. 2022, 70, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Daniel, G.; Paola, A.-R.; Nancy, G.; Fernando, S.-O.; Beatriz, A.; Zulema, R.; Julieth, A.; Claudia, C.; Adriana, R. Epigenetic Mechanisms and Host Factors Impact ACE2 Gene Expression: Implications in COVID-19 Susceptibility. Infect. Genet. Evol. 2022, 104, 105357. [Google Scholar] [CrossRef] [PubMed]
- Thivierge, M.; Stankova, J.; Rola-Pleszczynski, M. Cysteinyl-Leukotriene Receptor Type 1 Expression and Function Is down-Regulated during Monocyte-Derived Dendritic Cell Maturation with Zymosan: Involvement of IL-10 and Prostaglandins. J. Immunol. 2009, 183, 6778–6787. [Google Scholar] [CrossRef]
- Latour, S. Inherited Immunodeficiencies Associated with Proximal and Distal Defects in T Cell Receptor Signaling and Co-Signaling. Biomed. J. 2022, 45, 321–333. [Google Scholar] [CrossRef]
- Abagyan, R.; Totrov, M. Biased Probability Monte Carlo Conformational Searches and Electrostatic Calculations for Peptides and Proteins. J. Mol. Biol. 1994, 235, 983–1002. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING V11: Protein-Protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef]
- Arnautova, Y.A.; Abagyan, R.A.; Totrov, M. Development of a New Physics-Based Internal Coordinate Mechanics Force Field and Its Application to Protein Loop Modeling. Proteins 2011, 79, 477–498. [Google Scholar] [CrossRef] [PubMed]
- Périer, R.C.; Praz, V.; Junier, T.; Bonnard, C.; Bucher, P. The Eukaryotic Promoter Database (EPD). Nucleic Acids Res. 2000, 28, 302–303. [Google Scholar] [CrossRef] [PubMed]
- Belinky, F.; Nativ, N.; Stelzer, G.; Zimmerman, S.; Iny Stein, T.; Safran, M.; Lancet, D. PathCards: Multi-Source Consolidation of Human Biological Pathways. Database 2015, 2015, bav006. [Google Scholar] [CrossRef] [PubMed]
- Feltes, B.C.; Poloni, J.d.F.; Nunes, I.J.G.; Faria, S.S.; Dorn, M. Multi-Approach Bioinformatics Analysis of Curated Omics Data Provides a Gene Expression Panorama for Multiple Cancer Types. Front. Genet. 2020, 11, 586602. [Google Scholar] [CrossRef]
- Plevin, R.E.; Knoll, M.; McKay, M.; Arbabi, S.; Cuschieri, J. The Role of Lipopolysaccharide Structure in Monocyte Activation and Cytokine Secretion. Shock 2016, 45, 22–27. [Google Scholar] [CrossRef]
- Kozlovsky, M.M. Effectiveness of the Immunomodulator Thymalin in Experimental Coronavirus Infection. Emerg. Med. 2022, 18, 62–64. [Google Scholar] [CrossRef]
- Lukyanov, S.; Shapovalov, K.; Tereshkov, P.; Smolyakov, Y.; Vanchikova, A.; Kuznik, B. Thymalin as an Immunomodulation Option in Severe COVID-19. Eur. Respir. J. 2021, 58, PA3667. [Google Scholar] [CrossRef]
No. | Proteins Encoded by EW Peptide Target Genes | Proteins Involved in the Cytokine Storm | Evidence Suggesting Functional Links |
---|---|---|---|
1. | ACE2 * | IL1B, IL6, TNFA | Co-Mentioned in Pubmed Abstracts PMID:32222466, PMID:3226989, PMID:32635752, PMID:32121598, PMID:31746626, PMID:32247927 |
2. | AGRN | – | |
3. | AKT1 | IL-2, IL-4, IL-1B, Il-10, IL6, TNFA | Co-Mentioned in Pubmed Abstracts PMID:31918290, PMID:32251678, PMID:32117985, PMID:32132672, PMID:32059381 |
4. | AKT2 | IL6, TNFA | Co-Mentioned in Pubmed Abstracts PMID:32059381, PMID:35016612 |
5. | CHMP3 * | – | |
6. | CHMP4A * | – | |
7. | CHMP4B | – | |
8. | CHMP4C * | – | |
9. | CHMP6 * | – | |
10. | CHMP7 * | – | |
11. | CUL3 | – | |
12. | CYSLTR1 * | IL4, TNFA | Co-Mentioned in Pubmed Abstracts PMID:31936183, PMID:30516547, PMID:31592409, PMID:31231429, PMID:31781316 |
13. | DAD1 | – | |
14. | DDX20 * | – | |
15. | DDX5 * | – |
No. | Proteins Encoded by KE Peptide Target Genes | Proteins Involved in the Cytokine Storm | Evidence Suggesting Functional Links |
---|---|---|---|
1. | AKT1 | IL-2, IL-4, IL-1B, Il-10, IL6, TNFA | Co-Mentioned in Pubmed Abstracts PMID:31918290, PMID:32251678, PMID:32117985, PMID:32132672, PMID:32059381 |
2. | AKT2 | IL6, TNFA | Co-Mentioned in Pubmed Abstracts PMID:32059381, PMID:35016612 |
3. | CHMP2B * | – | |
4. | CHMP4B | – | |
5. | CHUK * | Il-10, IL6, TNFA | Co-Mentioned in Pubmed Abstracts PMID:31988590, PMID:32442901 |
6. | CSNK1A1 * | – | |
7. | CUL3 | – | |
8. | DAD1 | – | |
9. | AGRN | – |
Peptides, 1 mg/mL | The Concentration of Cytokines in % of the “LPS” Control | |||||
---|---|---|---|---|---|---|
TNF-α | IL-1β | IL-6 | ||||
With LPS | No LPS | With LPS | No LPS | With LPS | No LPS | |
KE | 16.8 * | 3.5 # | 56.9 | 5.4 | 39.4 * | 10.9 # |
EW | 19.7 * | 1.5 # | 70.9 | 12.3 | 47.5 | 11.4 # |
Thymalin | 44.9 * | 10.3 | 37.5 * | 12.3 | 80.0 | 79.9 # |
Control (no LPS or peptides) | 17.2 | 11.4 | 20.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linkova, N.; Khavinson, V.; Diatlova, A.; Petukhov, M.; Vladimirova, E.; Sukhareva, M.; Ilina, A. The Influence of KE and EW Dipeptides in the Composition of the Thymalin Drug on Gene Expression and Protein Synthesis Involved in the Pathogenesis of COVID-19. Int. J. Mol. Sci. 2023, 24, 13377. https://doi.org/10.3390/ijms241713377
Linkova N, Khavinson V, Diatlova A, Petukhov M, Vladimirova E, Sukhareva M, Ilina A. The Influence of KE and EW Dipeptides in the Composition of the Thymalin Drug on Gene Expression and Protein Synthesis Involved in the Pathogenesis of COVID-19. International Journal of Molecular Sciences. 2023; 24(17):13377. https://doi.org/10.3390/ijms241713377
Chicago/Turabian StyleLinkova, Natalia, Vladimir Khavinson, Anastasiia Diatlova, Michael Petukhov, Elizaveta Vladimirova, Maria Sukhareva, and Anastasiia Ilina. 2023. "The Influence of KE and EW Dipeptides in the Composition of the Thymalin Drug on Gene Expression and Protein Synthesis Involved in the Pathogenesis of COVID-19" International Journal of Molecular Sciences 24, no. 17: 13377. https://doi.org/10.3390/ijms241713377
APA StyleLinkova, N., Khavinson, V., Diatlova, A., Petukhov, M., Vladimirova, E., Sukhareva, M., & Ilina, A. (2023). The Influence of KE and EW Dipeptides in the Composition of the Thymalin Drug on Gene Expression and Protein Synthesis Involved in the Pathogenesis of COVID-19. International Journal of Molecular Sciences, 24(17), 13377. https://doi.org/10.3390/ijms241713377