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Abstract: Amino acid substitutions and post-translational modifications (PTMs) play a crucial role in
many cellular processes by directly affecting the structural and dynamic features of protein interaction.
Despite their importance, the understanding of protein PTMs at the structural level is still largely
incomplete. The Protein Data Bank contains a relatively small number of 3D structures having
post-translational modifications. Although recent years have witnessed significant progress in three-
dimensional modeling (3D) of proteins using neural networks, the problem related to predicting
accurate PTMs in proteins has been largely ignored. Predicting accurate 3D PTM models in proteins
is closely related to another fundamental problem: predicting the correct side-chain conformations of
amino acid residues in proteins. An analysis of publications as well as the paid and free software
packages for modeling three-dimensional structures showed that most of them focus on working
with unmodified proteins and canonical amino acid residues; the number of articles and software
packages placing emphasis on modeling three-dimensional PTM structures is an order of magnitude
smaller. This paper focuses on modeling the side-chain conformations of proteins containing PTMs
(nonstandard amino acid residues). We collected our own libraries comprising the most frequently
observed PTMs from the PDB and implemented a number of algorithms for predicting the side-
chain conformation at modification points and in the immediate environment of the protein. A
comprehensive analysis of both the algorithms per se and compared to the common Rosetta and
FoldX structure modeling packages was also carried out. The proposed algorithmic solutions are
comparable in their characteristics to the well-known Rosetta and FoldX packages for the modeling
of three-dimensional structures and have great potential for further development and optimization.
The source code of algorithmic solutions has been deposited to and is available at the GitHub source.

Keywords: modeling side chains; non-canonical amino acid; post-translational modifications;
rotamer library; phosphorylation

1. Introduction

Amino acid substitutions and post-translational modifications (PTMs) are critical to the
function of many proteins in living systems, and understanding their effects at the molec-
ular level is important for both basic and applied research in biology and medicine [1,2].
Post-translational modifications of proteins, such as phosphorylation, acetylation, methyla-
tion, carboxylation, and hydroxylation, play a key role in cell ontogeny [3,4]. For example,
PTMs play an important role in regulation of enzyme activity, protein transport, and chang-
ing of protein stability [5,6]. Non-enzymatic PTMs, such as carbonylation and oxidation,
often occur as a consequence of oxidative stress and are considered a ubiquitous mech-
anism for non-specific protein damage associated with age-related disorders, including
neurodegenerative diseases, cancer, and diabetes mellitus [7,8]. It is important to note that
amino acids often undergo significant changes in their physicochemical properties upon
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modification, which sometimes dramatically alters the structure of the affected protein and
its dynamics and ability to interact with the environment and other proteins [3,9].

One of the key challenges in modeling 3D protein structures for amino acid substitu-
tions and post-translational modifications is predicting the correct conformations of amino
acid side chains in proteins, also called “packing” [10]. Most of the currently available
side-chain packing methods can be roughly divided into two large groups.

The first group is the protein physics-based approaches that involve searching within a
given sample space, often defined by a library of predefined rotamers. A rotamer (short for
“rotational isomer”) is a single side-chain conformation represented as a set of values, one
for each degree of freedom of the dihedral angle. The side chains of proteins usually exist in
a limited number of low-energy conformations, and these conformations are contained in
rotamer libraries. Rotamer libraries typically contain information about the conformation,
the frequency of a particular conformation, and the variance of dihedral mean values that
can be used in searches or sampling. One of the most famous and frequently used libraries
today is the Dunbrack library [11]. This group of methods looks at the problem from a
physicochemical point of view and tries to optimize the interactions between side chains,
avoiding steric collisions and minimizing the overall energy of the system.

The second group uses machine learning methods to reconstruct amino acid side
chains. These methods use deep neural networks or neural network ensembles to model
the position of side chains [12–15]. Some solutions use a combination of machine learning
and rotamer library space search to determine the optimal side-chain conformation. A
number of solutions use neural networks to find optimal side-chain scoring functions and
use these functions to search for side-chain conformations in the rotamer library [16].

All methods for predicting side-chain conformations show good results for canonical
amino acid residues, but for non-canonical amino acid residues (PTMs), there exists a
practical problem hindering progress in this area. The problem is that the Protein Data Bank
(PDB, https://www.rcsb.org/, accessed on 5 June 2023) contains significantly less data on
PTM residues than on canonical amino acid residues. For comparison, while the number of
residues of canonical amino acids is measured in millions, the number of residues modified
by a particular type of PTM is in the best-case scenario measured in thousands of units
and on average hundreds or even tens. This amount is not enough for training neural
network models or building rotameter libraries with full-fledged statistical potential. This
explains the relatively small number of solutions for the incorporation and packaging of
post-translational modifications into the 3D protein structure. Rosetta and FoldX are the
most famous and widespread packages currently providing PTM modeling and repacking.

In this study, we consider a number of algorithms for choosing the optimal position of
side chains from an ensemble of rotamers for protein structures with PTMs. The algorithms
are evaluated for a large test set of proteins, and their performance is compared with that of
the well-known Rosetta and FoldX protein structure modeling packages. We also discuss
the advantages and drawbacks of the algorithms and point out possible improvements and
extensions to our methods.

2. Results

We carried out a comprehensive analysis aimed to evaluate the performance of algo-
rithms purposed for the modeling and reconstructing of PTMs and canonical amino acid
residues in three-dimensional protein structures:

• Monte Carlo Markov Chain (MCMC) sampling (rotamer) using rotamer libraries. Dun-
brack rotamer libraries were used for canonical amino acid residues, and proprietary
libraries were assembled for five common post-translational modifications.

• Monte Carlo Markov Chain (MCMC) sampling (off-rotamer): This algorithm allows
side-chain torsion angles to go beyond the values of the rotamer library. The rotamer
library is used only to control the degree of changes in angles.

• Generative algorithm (GA-rotamer) is an evolutionary search algorithm with initial-
ization of the initial population from the rotamer library.

https://www.rcsb.org/
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• Generative algorithm (GA-random) is an algorithm with initialization of the initial pop-
ulation from a uniform distribution. The rotamer library is not used in this algorithm.

A detailed description of these algorithms is available in Section 4.
We also compared outcomes obtained by these algorithms and the well-known mod-

eling services Rosetta and FoldX. Since our work is more focused on the prediction
of side-chain conformations caused specifically by PTMs and their neighborhoods, to
achieve satisfactory quality, we took a set of high-resolution (≤1.5 Å) PDB structures (total
100 structures) carrying each type of considered PTM function (complete list of advised set
of structures is available in Supplementary Table S3).

The evaluation algorithm was built as follows:

a. All side chains were removed from the PDB structure.
b. All side chains were restored, and side chains were repackaged within a radius of 10 Å

from the mutation point using the algorithms described before.
c. For the restored structure, the quality indicators provided by the MolProbity service [1]

(Table 1), RMSD indicators, and torsion angle were calculated for the comparison with
the original structure.

Table 1. Structure quality indicators obtained using the MolProbity service.

Metric Description
Reference

Good Caution Poor

Clashscore
Clashscore is the number of serious steric
overlaps (>0.4 Å) per 1000 atoms.
P—percentile.

P ≥ 66 66 > P ≥ 33 P < 33

Poor rotamers Residues with side chains marginal in
deviation from rotamers. Out—outlier %. Out ≤ 0.3% 0.3% < Out ≤ 1.5% Out > 1.5%

Favored rotamers
The percentage of amino acid residues
that are in the preferred regions of the
rotamers. Fav—favored % of the total.

Fav ≥ 98% Fav ≥ 95% Fav <95%

Ramachandran outliers

Ramachandran outliers—complete
marginals on the Ramachandran map,
the remains lie outside the allowed area
of the map. Out—outlier % of the total.

Out ≤ 0.05%

0.05% < Out ≤ 0.5%
Or

Out 0.5% and Outlier
count = 1

Out > 1.5%
Or

Outlier count ≥ 2

Ramachandran favored
The percentage of remnants that are in
the preferred areas of the Ramachandran
map. Fav—favored % of the total.

Fav ≥ 98% Fav ≥ 95% Fav < 95%

Ramachandran Z-score
Ramachandran Z-score validation checks
the total Ramachandran distribution
against the expected distribution [2].

abs(Z-score) ≤ 2% 2% < abs(Z-score) ≤ 3% abs(Z-score) > 3%

Cβ deviations > 0.25 Å
Number of Cβ atoms with an
unacceptable deviation from the
expected position.

Outlier count = 0 0 < Outliers < 5% Outliers ≥ 5%

Bad bonds
Number of covalent bonds that deviate
significantly from the expected value.
Out—outlier bond % of the total.

Out < 0.01% 0.01% ≤ Out < 0.2% Out ≥ 0.2%

Bad angles
Number of bond angles that deviate
significantly from the expected value.
Out—outlier angle % of the total.

Out < 0.1% 0.1% ≤ Out < 0.5% Out ≥ 0.5%

MolProbity score

Integral assessment of the quality of the
structure according to the MolProbity
service. The MolProbity score combines
the clashscore, rotamers, and
Ramachandran evaluations into a single
score, normalized to be on the same scale
as X-ray resolution. P—percentile.

P ≥ 66 66 > P ≥ 33 P < 33

A similar algorithm was used to assess performance with the Rosetta and FoldX
packages: the side chains were recovered and metrics were calculated for the recovered
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structures. Since the FoldX software package does not support the PTM part, the corre-
sponding positions in the tables and plots are not filled.

The MolProbity service was chosen to control integrity characteristics of the restored
structures and provides metrics for the assessing of the quality of structures (Table 1).
Hydrogen atoms were added to and possible inversions of the side chains of asparagine,
glutamine, and histidine were recognized and accepted.

Result comparisons between the in-house algorithms and Rosetta or FoldX were
consequently handled using the MolProbity service to elucidate the quality of calculated
structures (Figure 1).
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We also determined typical deviations in the structures of amino acid residues for each
algorithm and established those residues where deflection incidents were the most frequent.



Int. J. Mol. Sci. 2023, 24, 13431 5 of 15

We defined such residuals with deviations as “marginal” if such residuals matched
one of the following provisions:

• Abnormally closely located atoms;
• Going beyond the allowable values of the Ramachandra map;
• Abnormal angles or out of angles of the rotamers.

The defined marginal amino acid residues among plenty of structures in the test data
set were extracted, and deviations classified by the PTM type and canonical amino acids
for each algorithm were estimated and ranged (Figure 2) with an average calculated RMSD
(Table S1 in the Supplementary Materials).
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Figure 2. Comparison of algorithm results for MCMC (rotamer), MCMC (off-rotamer), GA (rotamer
initialization), GA (random initialization), Rosetta Packer, and FoldX. (A) Types of the most common
marginal amino acid residues with examples from the test set (PDB ID: 6s1b A-180 VAL, 5n3q A-141
PRO, 5m2f X-23 SER). (B) Distribution of marginal amino acid residues by test set. (C) Distribution of
mean RMSD values between original and reconstructed structures.
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It is also interesting to look at the comparison of mean absolute errors (MAEs) of
torsion angles χ in different methods (Table S2 in the Supplementary Materials).

Gathering the obtained data, we found that the tested in-house algorithms demon-
strated well results that are not at odds with the well-known Rosetta and FoldX packages,
and some were better for PTMs. Some outliers in MolProbity indicators could be observed
for PHE, ASN, and ARG residues. However, these emissions are typical of all consid-
ered algorithms and software packages, which may indicate that the reference model in
MolProbity imposes excessive quality requirements.

If we compare the speeds of these algorithms, it should be immediately noted that
the FoldX software package takes more computing time than all other algorithms. A
comparison of the operation speed is presented in Figure 3.
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Figure 3. Average running time of algorithms, depending on the number of residues in the repacking
area (GA population size = 300, number of generations = 40). CPU AMD Ryzen 5 4000. For MCMC
algorithms, this plot reflects MCMC (rotamer) and GA (random) for GA since the speeds within the
group are approximately the same.

The following conclusions can be drawn from the presented comparative data.

1. The best results in our study, in terms of both accuracy and processing speed, were
demonstrated by the Rosetta software package. This was expected, since Rosetta is
one of the leading molecular modeling packages and is widely used by researchers
around the world. According to the published documentation [17], Rosetta also
uses the MCMC algorithm inside its software implementation, and the difference in
performance apparently depends only on the selected scoring function.

2. The FoldX software package also generally shows good results, but its speed is much
slower than that of all the algorithms considered. In addition, FoldX only supports
two PTMs (SEP and TPO), and we could not fully evaluate its results.

3. The MCMC algorithm with sampling from the rotamer library shows good results,
close to those of Rosetta, and even better for some PTMs.

4. The results of the MCMC off-rotamer algorithm are slightly worse but still acceptable.
If we thoroughly analyze the results provided by this algorithm, we can observe that
in some cases its performance is better than that of other algorithms, but no regular
pattern could be identified.

5. The results of the work of genetic algorithms, despite the fact that their performance in
general turned out to be worse than that of all the others, surprised us. The interesting
point here is that GA initialized with random numbers from a uniform distribution
works better than GA initialized from the rotamer library. This makes it possible not
to use rotamer libraries at all for identifying the optimal position of side chains and
obtain results with quite acceptable accuracy, which is especially important for rare
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non-canonical amino acid residues. If we analyze in detail the results of the work of
GA algorithms, we can observe a picture similar to that for the MCMC off-rotamer:
some structures are determined better compared to other algorithms, while some are
worse. In general, the results of GA work are unstable, but as it seems to us these
algorithms show great promise for solving this problem.

We assume that genetic algorithms have a great potency to cover modeling of three-
dimensional protein structures, although they are still rarely applied in this realm. We also
noticed that as the resolution of protein structures increases, the accuracy of all algorithms,
including Rosetta Packer and FoldX, drops dramatically (Figure S1 in the Supplementary
Materials), while the accuracy of GA severely increases. This can be caused by the fact that
the electron density in structures with a low resolution and poor quality is closer to the
posterior distribution of the rotamer libraries used for sampling. The genetic algorithm
initialized from uniform distribution does not use rotamer libraries, and for structures with
good resolution, its predictions are closer to the experimental data.

Currently, we are working under the following main hurdles:
1. Improving the overall accuracy of the genetic algorithm. According to our prelim-

inary studies, perfect improvement of accuracy can be achieved using the particle swap
optimization (PSO) [3] approach, where the elements of the search space (in our case, atoms
of amino acid residues) interact without centralized coordination.

2. Reproducibility of results. Since genetic algorithms are inherently heuristic, the
stability of their results is not guaranteed. To ensure stable reproducibility, we are working
toward the integration of GAs and neural networks, where neural networks implement the
functions of genetic operators and evaluation functions.

3. Discussion

We developed a solution for building a library of rotamers for PTMs and any non-
canonical amino acid residues present in the Protein Data Bank. We also implemented
and conducted a comparative analysis of the algorithms for side-chain reconstruction
and “repacking”:

1. Monte Carlo Markov Chain (MCMC) sampling (rotamer) using rotamer libraries.
Dunbrack rotamer libraries were used for canonical amino acid residues, and proprietary
libraries were assembled for five common post-translational modifications.

2. Monte Carlo Markov Chain (MCMC) sampling (off-rotamer): This algorithm allows
side-chain torsion angles to go beyond the values of the rotamer library. The rotamer library
is used only to control the degree of changes in angles.

3. Generative algorithm (GA-rotamer) is an evolutionary search algorithm with
initialization of the initial population from the rotamer library.

4. Generative algorithm (GA-random) is an algorithm with initialization of the initial
population from a uniform distribution. The rotamer library is not used in this algorithm.

The conducted comparative analysis shows that the most accurate results are obtained
by uses the MCMC algorithm using rotamer libraries (MCMC-rotamer). This was not
surprising, since this algorithm is classic for solving problems of this kind and is used
everywhere, including in such well-known software packages as Rosetta. The MCMC off-
rotamer algorithm yields results comparable with those of the MCMC-rotamer algorithm;
in general, it cannot be said that this methodology affects accuracy. For PTM amino acid
residues, accuracy scores were either equal to or better than those of Rosetta, indicating
that the rotamer libraries have been assembled with high quality.

Among GA algorithms, one should separately single out the algorithm with initializa-
tion of the initial population from a uniform random distribution, since this methodology
allows one to completely give up using rotamer libraries. Although the performance of
genetic algorithms is generally worse than that of the MCMC family, we deem that these
algorithms have great potential for further research and development. Thus, one obvious
way to improve the accuracy of GA side-chain modeling is to increase the population
size. In Figure 4, we plotted the relationship between population size and error rate (poor
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MolProbity score) for PTM O-phosphotyrosine. The experiment involved 20 PDB struc-
tures containing O-phosphotyrosine; the population increased by 100 individuals, and
10 technical repetitions were performed at each step.
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Figure 4. Improving the accuracy of the genetic algorithm by increasing the population size (GA-
random): 20 PDB structures containing O-phosphotyrosine, population change step = 100, repetitions
at each step = 10. Example: PDB ID: 2qon (A-701 O-phosphotyrosine).

As one can see in the diagram shown in Figure 4, the accuracy of GA increases
with population size. As the population size rises, the speed of the algorithm decreases
simultaneously, mainly due to the multiple increase in computational costs in the function
of assessing the fitness of each individual. This problem is solved well by parallelizing
the evaluation task on several CPUs. The ability to parallelize computations is one of the
important advantages of genetic algorithms.

Among the shortcomings of genetic algorithms, there is relative instability of the
search for solutions: they may differ each time the algorithms are run. This problem is
inherent in all heuristic search and optimization algorithms and can potentially be solved
by integrating genetic algorithms and neural networks (neuro-genetic networks).

We will continue our research in this direction and will present new research in this
area in future papers.

4. Materials and Methods
4.1. Rotamer Library

Our solution implements the functionality of building a rotamer library for any amino
acid residue present in the PDB (https://www.rcsb.org/). To build a library, one needs
to indicate the code of the amino acid residue and the possible torsion angles that groups
of atoms can form. The code of the residue is searched across the PDB, and a library
of rotamers is formed, consisting of a set of low-energy conformers and their associated
internal energies generated using CREST [18]. For canonical amino acid residues, the
Dunbrack library [19] was used, and for the most common PTMs, our own rotamer libraries
were collected from the PDB (available at https://figshare.com/s/253d32313e1294fbf1e2,
accessed on 5 June 2023).

Multiple entries in the same PDB file were treated as different entries. Our solution
allows one to build a library for any PTM of non-canonical amino acid residues. For the
PTM presented in Table 2, testing and debugging of algorithms for finding the optimal

https://www.rcsb.org/
https://figshare.com/s/253d32313e1294fbf1e2
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conformation of side chains of both the modifications per se and its neighbors (repacking)
were carried out.

Table 2. Frequent post-translational modifications (PTMs).

Precursor PTM

AA Structure PTM Code Name Structure Total PDB Entry

SER
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4.2. Side-Chain Modeling and Repacking

In single-site mutants and closely related proteins, the backbone usually changes little,
and a prediction of the target structure can be made by accurately predicting the position
of side chains. When modeling mutations, it is important to model not only changes at
the mutation point per se but also changes in conformations of neighboring side chains
(perform local “repacking” of neighboring side chains). In this article, we describe and
compare three modeling and repacking algorithms.

4.3. Markov Chain Monte Carlo (MCMC) Sampling from the Rotamer Library

This classic method uses Markov Chain Monte Carlo (MCMC) sampling to repackage
all amino acid residues within a user-specified radius using a rotamer library. The algorithm
is the most common variant for solving problems of this kind; it has been described quite
well in [20] and used in many libraries and software products, such as Rosetta. Markov
Chain Monte Carlo sampling can be described as follows:

1. The user defines the number of selection steps and the neighborhood radius from
the mutation point (by default, R = 10.0 A).

2. At each sampling step, a site is randomly selected from a user-defined radius. For a
given site, dihedral angles of the side chain of the site and the average deviation of this
angle are randomly selected from the rotamer library.

3. The step is accepted or rejected using the Metropolis–Hastings criterion [21] based
on the energy function. The clash evaluation function based on flat-top Lennard–Jones



Int. J. Mol. Sci. 2023, 24, 13431 10 of 15

potential energy is used as an evaluation function in our algorithms. The interaction energy
in this function consists of repulsive and attractive van der Waals terms and is defined as:

E_vdw (d) =



10, d
σij

≤ 0.8254

57.273
(

1 − d
σij

)
, 0.8254 ≤ d

σij
≤ 1

Eij

(
10 − 9 d

σij

) 57.273
9 Eij − Eij, 1 ≤ d

σij
≤ 10

9
Eij
4

(
9 d

σij
− 10

)2
− Eij, 10

9 ≤ d
σij

≤ 4
3

0, d
σij

≥ 4
3

(1)

where Ei are the values from the CHARMM param19 potential [22] and d is the distance
between the two atoms. This scoring function is used in the popular SCWRL4 side-chain
conformation modeling software package [23].

4.4. Markov Chain Monte Carlo Sampling outside the Rotamer Library

This method implements an algorithm for selecting side-chain conformations with
deviations from canonical dihedral angles from fixed rotamer libraries. The sampling
algorithm is described as follows:

1. The user defines the number of sampling steps and the radius (by default, R = 10.0 A).
2. At each sampling step, a site is randomly selected from a user-defined radius. For a

given site, dihedral angles of the side chain of the site and the average deviation of
this angle are randomly selected from the rotamer library.

The new dihedral angle values of side chains are defined using a random sample from
the von Mises distribution [24], with the center equal to the dihedral angle in the rotamer
library and dispersion reciprocally proportional to squared deviation. This can be formally
described as follows:

p(x) =
ek cos (x−µ)

2π I0(k)
(2)

where µ is the mode and k the dispersion (k = 1/σ2, σ2—std from the rotamer library), and
I0 is the modified Bessel function of order 0. The von Mises distribution (also known as the
circular normal distribution) is a continuous probability distribution on a circle. By applying
additional sampling from the von Mises distribution, we can expand the search space for
rotamers, which is especially true for rotamers with low statistical potential, such as PTMs.
Like in the first algorithm, the step is accepted or rejected using the Metropolis–Hastings
criterion [21] based on the energy function.

4.5. Modeling Using a Genetic Algorithm

Genetic algorithms are a family of search algorithms whose ideas are based on the
principles of natural evolution. Genetic algorithms implement a simplified version of
Darwinian evolution:

• Variability—the characteristics of individual individuals that are part of the population
may change;

• Heredity—some traits are consistently transmitted from an individual to their descen-
dants;

• Natural selection—better-adapted individuals are more successful in struggling for
survival and leave more offspring in the next generation.

In our work, we considered a variant of solving the problem of finding the optimal side-
chain conformation (“repacking”) for PTM and amino acid substitution and its neighboring
regions within a user-specified radius using a genetic algorithm. We decided to analyze the
possibility of solving the problem using a genetic algorithm for two reasons:

1. Genetic algorithms are rarely used to solve this problem. According to our hypothesis,
they can show good results, especially for amino acid residues with a small statistical
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potential of rotamer libraries due to the greater variability of solutions formed during
mutations and crossing.

2. Genetic algorithms have a number of advantages over traditional search and optimiza-
tion algorithms:

• Ability to perform global optimization;
• Applicability to problems with complex mathematical representation;
• Resistance to noise;
• Support for parallelization and distributed processing.

The proposed genetic algorithm for solving the problem of finding the optimal confor-
mation is described in the following sections.

4.5.1. Creating the Initial Population

The initial population is a set of individuals, each being represented by a set of chro-
mosomes (a sequence of dihedral angles). The dihedral angles to create the population are
either randomly selected from a library of rotamers or selected from a uniform distribution
of the range (−π, π). The method of specifying the initial population is determined by the
user. When evaluating the algorithm efficiency, we consider both options for the formation
of the initial population.

4.5.2. Selection

Individuals are selected from the current population in such a way that preference
is given to the best ones. This is performed at the beginning of each cycle operation, and
individuals are selected from a population that will become parents for the next generation.
Selection is probabilistic in nature, and the probability of choosing an individual depends
on their fitness. In our solution, a selection method called “tournament” is used:

1. k Randomly selected individuals from the population participate in each round of
selection.

2. The individual whose fitness is higher wins and is selected to form the next generation.
3. The process is repeated until the number of “parents” becomes equal to the population size.

The number of individuals participating in each round of the tournament (parameter k)
is called the tournament size. The larger the tournament size, the higher the chances that the
best representatives of the generation will participate in the rounds, and the less likely that
individuals with low fitness will win the tournament and qualify for the next generation.
In our solution, we set the tournament size at 1/20 of the population size.

Furthermore, we use the elitism strategy when selecting and forming the population.
The elitism strategy allows one to transfer a certain percentage of the best individuals to
the next generation. Thus, it guarantees to a certain extent that the best individuals will not
disappear from the solution due to mutations and crossbreeding. In our solution, we carry
over the top 15% individuals to the next generation.

4.5.3. Fitness Function

The clash evaluation function based on the flat-top Lennard–Jones potential energy
(Equation (1)) was also used as the fitness function of an individual in a population.

4.5.4. Crossing and Mutation

In the classic genetic algorithms, chromosomes are usually described by binary or
integer representations and crossing and mutation operators are defined over sets of
integers or binary numbers. In our algorithm, chromosomes represent dihedral angles and
are described by real numbers. Therefore, in our algorithm, we use special crossing and
mutation methods adapted to work with real numbers. It is also important to note that
since the chromosomes are torsion angles in our case, we must ensure that the values of the
angles lie within the region (−π, π).
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Crossover Operators

The crossing or recombination operator corresponds to biological crossing during
sexual reproduction. It is used to combine the genetic information of two individuals acting
as parents in the production of two offspring. Crossing in our algorithm is applied with a
probability of 0.9. In our algorithm, we use two crossing operators: mixing crossing and
imitation binary crossing; these operators are chosen equiprobably.

1. Blend crossover (BLX): In the case of using this operator, each child is randomly
selected from the interval formed by parents parent1 and parent2:

[parent1 − α (parent2 − parent1), parent2 + α (parent2 − parent1)]

where α belongs to the interval [0, 1] and determines the interval width. In our implemen-
tation, α = 0.5 is assumed, which is equivalent to doubling the interval.

2. Simulated binary crossover (SBX): The main idea behind this method is to simulate
the properties of a single-point crossing, often used for binary representation of chromo-
somes, one of its properties being that the average value of the parents is equal to the
average value of the offspring. In the case of SBX, two children are created from parents in
the following way:

(a) offspring1 = 1/2 [(1 + β) parent1 + (1 − β) parent2];
(b) offspring2 = 1/2 [(1 − β) parent1 + (1 + β) parent2],

where β is a random number called the distribution coefficient.
This scheme has the following properties:

• The average of descendants is equal to the average of parents.
• When β = 1, the descendants are exact copies of the parents.
• When β < 1, the offspring are located closer to each other than the parents.
• When β > 1, the offspring are further apart than the parents.

In order to preserve the similarity between descendants and parents, the parameter β must
be chosen and distributed with a high probability density in the vicinity of 1. In our implemen-
tation, the value of the parameter β is calculated using another random variable µ, which is
uniformly distributed in the interval [0, 1]:

β = (2µ)
1

η+1 , µ ≤ 0.5

β =

(
1
2
(1 − µ)

) 1
η+1

, µ > 0.5 (3)

The parameter η is a constant called the distribution index or the crowding factor.
The larger the value of this parameter, the more similar the descendants to their parents.
In our implementation, the value of this parameter is set to η = 12 by default and can be
configured by the user.

The control over the boundaries of values by chromosomes in the solution is im-
plemented as follows: if the value of the descendant lies outside the boundaries of
the interval (−π, π), then its value is set equal to the nearest boundary of the interval
(−π or π, respectively).

Mutation Operators

The mutation in our decision scheme is the last genetic operator applied to create a new
generation. It applies to the offspring produced as a result of selection and crossing. The
mutation operation is probabilistic and is typically used quite rarely, since it can degrade
the quality of an individual and lead to degeneration of the genetic algorithm into a random
search. In our algorithm, the default mutation rate is set to 0.15 and is user-configurable.
As a mutation operator in genetic algorithms with real coding, a sample is used from a
distribution, ensuring that the offspring is in relative proximity to the parents.



Int. J. Mol. Sci. 2023, 24, 13431 13 of 15

Our solution implements two types of mutations applied with equal probability:
1. Mutation by a sample from the von Mises distribution, with a center equal to the

value of the angle in the chromosome and a variance inversely proportional to squared
deviation (σ). The squared deviation is either selected from the rotamer library if the initial
population was formed from the rotamer library, or the value is randomly selected from the
uniform distribution (0, k), and then crossing and mutation operations are also performed
for the value of σ.

2. Mutation using an operator in which the distribution density is given by a polyno-
mial function [25]. The range of values of the polynomial density function is confined to
the interval (−π, π).

The generalized scheme of the described algorithms is shown in Figure 5.
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Figure 5. (A). Markov Chain Monte Carlo (MCMC) sampling from a rotamer library. (B). Off-rotamer
MCMC sampling. (C). The process of genetic algorithms. The generation convergence plot shows a
real example corresponding to PDB ID 3bwj (A-139 SER phosphorylation).

5. Conclusions

Amino acid substitutions and post-translational modifications (PTMs) are essential to
the function of many proteins in organisms. One of the challenges in modeling 3D protein
structures for amino acid substitutions and PTMs is predicting the correct conformations
of amino acid side chains in proteins. In order to help research in this area, we developed
a modular modeling library that allows one to build one’s own libraries of rotamers for
standard and non-standard amino acid residues, as well as model side-chain conformations
using various methods.
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The library is open and available to a wide range of researchers for use, development,
and elaboration of hypotheses. The library is used by researchers to predict side-chain
conformations in projects or as a good starting point for molecular or quantum mechanical
modeling of side-chain atoms for both standard and non-standard amino acid residues.
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