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Abstract: The features of oxidation of ultra-high-temperature ceramic material HfB2-30 vol.%SiC
modified with 1 vol.% graphene as a result of supersonic flow of dissociated CO2 (generated with the
use of high-frequency induction plasmatron), as well as under the influence of combined heating by
high-speed CO2 jets and ytterbium laser radiation, were studied for the first time. It was found that
the addition of laser radiation leads to local heating of the central region from ~1750 to ~2000–2200 ◦C;
the observed temperature difference between the central region and the periphery of ~300–550 ◦C did
not lead to cracking and destruction of the sample. Oxidized surfaces and cross sections of HfB2-SiC-
CG ceramics with and without laser heating were investigated using X-ray phase analysis, Raman
spectroscopy and scanning electron microscopy with local elemental analysis. During oxidation by
supersonic flow of dissociated CO2, a multilayer near-surface region similar to that formed under
the influence of high-speed dissociated air flows was formed. An increase in surface temperature
with the addition of laser heating from 1750–1790 to 2000–2200 ◦C (short term, within 2 min) led to a
two to threefold increase in the thickness of the degraded near-surface area of ceramics from 165 to
380 microns. The experimental results indicate promising applications of ceramic materials based on
HfB2-SiC as part of high-speed flying vehicles in planetary atmospheres predominantly composed of
CO2 (e.g., Venus and Mars).

Keywords: UHTC; borides; SiC; supersonic carbon dioxide jet; laser heating; oxidation; induction
HF-plasmatron

1. Introduction

Ultra-high-temperature ceramic materials (UHTC) based on ZrB2-SiC and HfB2-SiC
are currently recognized as very promising for operation under extreme conditions, such
as at temperatures above 2000 ◦C in an oxygen-containing atmosphere with simultaneous
high ablative loading [1–8]. These materials are positioned as interesting from the practical
point of view for manufacture of the most thermally loaded parts (e.g., sharp edges of
wings and nose parts) of high-speed aircraft, which are subjected to aerodynamic heating
up to temperatures of 2000–2500 ◦C; the smaller the radius of curvature, the greater the
thermochemical effect on the material [9–11]. At the same time, ultra-high temperatures
are concentrated in a very small area of the flying vehicle, and the temperature difference
between the leading edge and the side surface can be up to 1000 degrees [2,12–16]. The high
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thermal conductivity of basic components such as zirconium and hafnium diborides (from
58 [17] to 95–145 W·m−1·K−1 [18–20] for ZrB2 and from 51 [17] to 103 [21] W·m−1·K−1 for
HfB2) and the material as a whole (from 44 to 141 W·m−1·K−1 [1,19,22–24] depending on
the composition of ZrB2(HfB2)-SiC) help to avoid material destruction. Relatively high
oxidation resistance in an atmosphere containing oxygen for units of tens of minutes is
one of the basic properties of ultra-high-temperature materials for aerospace applications.
Ongoing studies have confirmed that the introduction of silicon carbide or refractory metal
silicide into the composition of UHTCs based on ZrB2(HfB2) supports a significant in-
crease in their resistance to oxidation at temperatures >1800–2000 ◦C, including under the
influence of high-speed gas flows containing atomic oxygen (which is characteristic of
aerodynamic heating by supersonic/hypersonic air flows) while maintaining increased
thermal conductivity [16,25–33]. Modification of these ceramic materials with carbon
materials (graphite, carbon fibers or carbon nanotubes), as shown in [34–41], makes it
possible to slightly improve crack resistance and thermal shock resistance. In our pre-
vious studies, it was established [42–44] that due to the introduction of a small amount
(1–2 vol.%) of graphene into the composition of HfB2-30 vol.%SiC material, there is an
opportunity to reduce the degree of its degradation (thickness of the oxidized layer and
rate of entrainment) by reducing the temperature that is reached at the surface under the
same thermochemical effect of supersonic dissociated air flow, which is probably due to
the increase in thermal conductivity.

Despite the obvious advantages of ultra-high temperature ceramic ZrB2(HfB2)-SiC,
for some unclear reason, its application is considered almost exclusively under an air
atmosphere, i.e., for high-speed (hypersonic) aircraft in the Earth’s atmosphere. At the
same time, the use of waveriders, the geometry of requires a small edge radius, has long
been proposed as a potential candidate for the exploration of Mars and Venus [45,46].
Studies of the behavior of ultra-high-temperature ceramics in non-air gas atmospheres
are virtually non-existent in the literature. There are only single papers investigating
the behavior of such materials in nitrogen [47–50] and argon–hydrogen plasma [51]. For
ceramics based on the HfB2-SiC system, there are only two studies on the effects of high-
speed flows of dissociated nitrogen [49,50]. At the same time, it will be necessary to provide
even higher oxidation resistance for sharp-edged materials to work in the atmospheres
of the mentioned planets, since it is known that the atmosphere of both Mars and Venus
is dominated by CO2 (95–96% [52–54]), which should exert an even higher thermal load
on parts due to the increased chemical component during high-speed motion [9]. During
the dissociation of a gas stream consisting almost entirely of CO2, the amount of reactive
atomic oxygen formed will be much higher than that formed during the dissociation of
air, in which the oxygen content is 21%. A detailed analysis of the available literature
has shown that there are no publications on the modeling and experimental study of the
interaction of high-speed carbon dioxide gas flows with promising ZrB2(HfB2)-SiC ceramic
materials simulating CO2-based atmospheric entry.

For the most accurate study of the material degradation/oxidation process as a result of
aerodynamic heating, arc-jet and inductively coupled plasma facilities are used, which allow
for convective heating of the sample surface. However, in some cases, it is important to add
a highly radiant heat flux, which is very effectively provided by laser irradiation [55–58].
For example, in [55], a specimen made of the Buran orbital vehicle’s heat-shield tile material
with a black low-catalytic coating was exposed to a subsonic pure nitrogen plasma jet and
laser radiation.

The aim of the present work is to study the oxidation process of ultra-high-temperature
HfB2-30 vol.%SiC ceramics modified with 1 vol.% graphene under the combined effect of
supersonic CO2 plasma jet and radiation heating by ytterbium laser.
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2. Results and Discussion
2.1. Thermochemical Effects of Supersonic Carbon Dioxide Flow and Combined Heating with Laser
Irradiation on the Surface of HfB2-SiC-CG Samples

Samples of ultra-high-temperature ceramics of material composition (HfB2-30%SiC)-
1%CG) fixed in a vertical water-cooled model were immersed in a supersonic CO2 jet after
its specified parameters (anode power, 60 kW; pressure in the test chamber, ~9.0–9.1–102 Pa)
had been established. Sample 1 was kept under these conditions for 14 min, while for
sample 2 the central region was exposed to additional laser radiation for 2 min starting
from the 11th min (the diameter of the laser-heated area was ~7 mm). After switching
off the laser, CO2 plasma heating of sample 2 was continued for a further 2 min; the total
exposure time was also 14 min.

As can be seen in Figure 1a, until the beginning of the 11th minute, the average surface
temperature of the samples was within the margin of error (since the exposure mode was
identical), at 1750–1790 ◦C. After the addition of the laser heating component for sample
2, a sharp rise in the mean temperature to 2000–2200 ◦C was observed, with a tendency
to increase with exposure time. When the laser was switched off, the surface temperature
of sample 2 decreased but did not return to the initial value (that of sample 1 at the 13th
minute of the test was 1745 ◦C) and was set at a higher level of ~1795–1810 ◦C. The surface
temperature also exhibited a slight increase as the CO2 plasma exposure continued up
to the value of 1820–1825 ◦C, which probably indicates the continuation of the process
of formation of the barrier ceramic layer of low thermal conductive HfO2 and removal
of silicate melt from the surface. Increasing the thickness of the hafnium oxide on the
surface and in the near-surface region simultaneously with the removal of the SiO2-based
melt leads to difficulties in dissipating the heat input into the sample volume (with a
corresponding gradual heating of the surface). The complete evaporation of the silicate
melt from the surface and the formation of a kind of “thermal barrier layer” of hafnium
oxide, as shown in experiments on the influence of high-enthalpy air flows on ultra-high-
temperature ceramic ZrB2(HfB2)-SiC, leads to a sharp increase in the surface temperature
from ~1750–1850 ◦C (depending on the influence conditions) to 2300–2800 ◦C—the so-
called “temperature jump” effect [25,28,43,59–61]. Presumably, this effect should also occur
as a result of exposure to CO2 plasma at slightly different temperatures. In the present
experiment, it was not observed, probably due to the relatively short exposure time (only
14 min) and lower heat fluxes.

Analysis of the temperature distribution over the frontal surface of the samples ob-
tained from thermal imaging data (Figure 1b, top) allows us to state that sample 1, which
was exposed exclusively to the high-speed flow of dissociated CO2 without laser heating,
was maximally uniform over the whole period of the experiment. The temperature differ-
ence between the central region and the periphery did not change and was in the range of
70–110 ◦C. The maximum temperature (in the center of the sample) varied from 1765 to
1785 ◦C, while the minimum temperature (periphery) varied from 1665 to 1720 ◦C.

The temperature distribution on the surface of sample 2, which was subjected to
complex heating, varied significantly depending on the exposure time (Figure 1b, bottom).
During exposure to the supersonic CO2 flow at the beginning of the experiment, a uniform
temperature distribution with a 50 ◦C difference from the center to the periphery was
also observed, as for sample 1. However, within the first second of laser heating, a sharp
difference between the temperatures of the central region, where the additional radiation
heating was concentrated, with a temperature of ~2000 ◦C, and the periphery, with a
temperature of ~1750–1800 ◦C, was observed. For the established mode of combined
heating at 660–690 s of the experiment, the temperature difference was ~300–550 ◦C, with
maximum temperatures in the center of up to ~2200–2300 ◦C and at the edge of the sample
up to ~1750–1800 ◦C. At the same time, the visual and thermal imager showed a constant
temperature change of local surface areas 0.2–0.3 mm in size, which is most likely related to
the formation of bulge bubbles (results of intensive outgassing of SiC and HfB2 oxidation
products, as well as evaporation of components of the protective borosilicate melt), which
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were further destroyed, while the walls of the burst bubbles were pressed by the flow and
melted to the surface oxidized layer. It should be noted that the maximum temperatures
≥2200–2300 ◦C observed in some areas of the surface create the possibility of softening,
melting, amorphization and submelting of refractory hafnium dioxide, especially in the
presence of small admixtures of SiO2 [62].
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After switching off the laser at 720 s of the test, the strong overheating of the central
region of sample 2 disappeared, but the temperature difference in the time interval of
720–840 s was still significantly higher compared to sample 1: 150–200 ◦C compared
to 75–110 ◦C, respectively. This is probably related to the increased roughness formed
during overheating as a result of the formation of convexities due to intensive evaporation
processes at sample surface temperatures of 2200–2300 ◦C.

After the heating was stopped, the surface temperature of both samples decreased to
a value <1000 ◦C within 10–15 s (due to the atmospheric flow into the test chamber). The
mass loss for the samples within the error limits is practically equal to 0.39% (sample 1)
and 0.32% (sample 2).

2.2. Characteristics of Oxidation of HfB2-SiC-CG Samples by Supersonic Flow of Carbon Dioxide
and Additional Exposure to Laser Radiation

Figure 2a shows the appearance of samples 1 and 2 after completion of the thermo-
chemical attack and cooling. Even at the macro level, the appearance of the oxidized
surface of the samples differs significantly. For example, in sample 1, which was subjected
to a more moderate load (the temperature did not exceed 1800 ◦C), the overall tone of the
surface is grayer, which may indicate a shallower oxidation depth or a higher content of
silicate glass in the oxidation products. In this case, the central area of sample 1 is whiter.
At the same time, in sample 2, the central region appears lighter, also because it is smoother
compared to the peripheral areas. Thus, the oxidized surface of sample 1 is rougher in the
central region and a darker color compared to sample 2.
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images before (green) and after thermochemical treatment (b): sample 1 (purple) and sample 2 in the
central (red) and peripheral (orange) regions.

X-ray phase analysis (Figure 2b) shows that there are no reflections on the surface
of the phases that make up the original ceramic samples (HfB2 [63] and SiC [64], as the
graphene content is too low to show up in the X-ray diffraction patterns. The only crystalline
oxidation product of both samples is monoclinic hafnium dioxide [65,66] in both the center
and edge of the samples, irrespective of the steady-state temperatures at the surface during
exposure. As the X-ray radiograms are displayed without intensity normalization, we can
judge from their appearance that the central region of sample 2 is characterized by reduced
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intensities of all HfO2 reflections, i.e., we can note its lower crystallinity, probably due
to the effect of high temperatures of up to 2200–2300 ◦C. For sample 1, the X-rays were
recorded from the entire oxidized surface.

Figure 3 shows the Raman spectra of the starting material, HfB2-SiC-CG, and the
oxidized surface of the samples at points 1 and 2 (see Figure 2a). The starting material
is characterized by five modes: ωB1, ωSi1, ωSi2, ωB2 and 7ωB1 at 334, 808, 981, 1561 and
2335 cm−1, respectively. The ωB1 and ωB2 bands correlate well with the characteristic
modes of boron carbide [67,68], which could have formed as an impurity phase at the
intergranular interface, while the 7ωB1 band is the seventh-order overtone of the ωB1 band.
TheωSi1 andωSi2 bands are characteristic modes of the silicon carbide phase (most likely
polytype 3C) [69,70]. Raman spectra of HfB2-SiC-CG samples show modes of silicon carbide
and impurity B4C (the content of which is probably low, since its reflections are not found
in X-ray diffraction patterns), whereas zirconium and hafnium diborides Raman modes are
inactive [71,72].
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Figure 2a).

After oxidation as a result of exposure to high-enthalpy CO2 jets, the surface spectra
of the samples differ significantly from the initial spectra (Figure 3). The spectra obtained
for all samples show a characteristic set ofω1–ω8 bands of the monoclinic phase of HfO2 at
256, 340, 401, 504, 557, 585, 645 and 681 cm−1, respectively, which correlates well with the
Ag and Bg modes described in the literature [73–75], as well as weakly intenseωH1–ωH5
modes at 215, 357, 451, 990 and 1029 cm−1, respectively, belonging to the hafnon (HfSiO4)
phase [76,77]. The spectra of the samples recorded at the periphery of the surface (at point 2)
additionally showωD andωG at 1380 and 1635 cm−1, respectively, which are characteristic
bands of different forms of carbon.

A detailed study of the microstructure of the oxidized surface of sample 1 was carried
out using SEM; the corresponding micrographs are shown in Figure 4 (center) and Figure 5
(periphery). It was found that the microstructure differed significantly in different areas.
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Thus, in the center (Figure 4), a very rough ceramic layer was formed on the basis of
vertically oriented HfO2 particles of 2–3 µm in size, among which there are flat craters
of 20–50 µm in diameter (example highlighted in the yellow oval in Figure 4a), probably
traces of bubble fractures formed during the evaporation of SiO2 and B2O3. Figure 4d
shows a micrograph of the surface area shown in Figure 4c taken with the ESB detector.
There are significant foreign phase inclusions for vertically oriented HfO2 particles. X-ray
microanalysis indicates the presence of only hafnium and oxygen and insignificant amounts
of carbon in this area.
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In the peripheral areas of sample 1, the oxidized ceramic layer is denser (Figure 5),
comprising a cluster of flat particles 1–3 µm in size with pores of ~0.2–0.5 µm between them,
among which there are spherical bulges up to 20 µm in diameter (examples are indicated
by arrows in Figure 5a,b), representing traces of gas formation processes on the surface
under the influence of the CO2 plasma. The denser structure of the oxidized layer can be
explained by the fact that the predominant HfO2 particles are fused together by the residual
silicate glass formed during the oxidation of the SiC, which did not have time to evaporate
completely from the surface under the influence of temperatures of ~1700–1740 ◦C. This
is confirmed by EDX data; in addition to Hf, O and C impurities, Si is also present in the
peripheral areas, and as the mapping of Hf and Si distribution shows (Figure 5e), silicon is
predominantly contained on the flat surface between the bubble protrusions. The atomic
ratio of n(Hf):n(Si) at a distance of less than 1 mm from the edge of sample 1 is ~5.5:1.
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For sample 2, the difference in roughness of the oxidized surface in the central and
peripheral regions is less pronounced, but it can be said that the surface layer is more friable
compared to sample 1. The peculiarity of the microstructure of sample 2 (Figure 6, central
region), in addition to the presence of significant porosity with a diameter of 1–10 µm
(irregularly shaped pores up to 50–70 µm in size), is the presence of cracks between particles
(yellow arrows in Figure 6), as well as the presence of small bulges (50–150 nm in diameter,
green arrows in Figure 6c,d) on the surface of the HfO2 particles, which stand out when
scanning in contrast mode by the average atomic number (Figure 6d). This is probably
due to the presence of impurities of lighter atoms in these formations, such as silicon in
the hafnon or silicate glass residues, as well as the non-stoichiometry in the composition of
HfO2 or carbon impurity in its crystal lattice. However, elemental analysis by EDX does
not allow the presence of silicon to be detected (probably less than 0.1%).

The peripheral regions of sample 2 have a very similar oxidized surface microstructure
(Figure 7) but differ from the central region, with a less smoothed shape of vertically
protruding HfO2 particles (marked with arrows in Figure 7c,d; Figure 7d represents the
section of Figure 7c studied with the ESB detector). In contrast to the periphery of sample 1,
elemental EDX analysis of sample 2 in these areas shows the presence of only hafnium and
oxygen, with a small admixture of carbon.
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It is very important to analyze the structure and elemental composition of the samples
after exposure, which allows us to show the influence of the temperature set on the surface
under the influence of a high-speed CO2 plasma flow or combined heating with the
application of additional laser heating on the structure of the oxidized layer and the
oxidation depth.

For sample 1, which was subjected to milder exposure to a supersonic flow of dis-
sociated CO2 only with a maximum surface temperature of 1785 ◦C, Figure 8 shows the
microstructure of the spall in the central region. As can be seen, under the influence of
the CO2 flow, a multilayer oxidized structure is formed, which is also typical for HfB2-
SiC materials after exposure to a high-enthalpy dissociated air flow at a temperature
>1750–1800 ◦C [25,60,78,79]. A relatively thin (~40 µm, Table 1) layer of hafnium oxide
with a small admixture of SiO2, which remains after evaporation of the protective layer of
silicate melt, is formed on the surface (Figure 8d,f). In addition, the thickness of the oxide
layer increases to 105–110 µm in some areas.
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Table 1. Thickness of oxidized layers—top oxide (lox), SiC-depleted layer (lSiC-depl) and total (lΣ)—in
the central and peripheral regions of samples 1 and 2 as a function of maximum surface temperature
during thermochemical treatment.

Sample 1 Sample 2

Central Region Peripheral Region Central Region Peripheral Region

tmax, ◦C 1765–1785 1665–1720 2200–2300 1750–1800
lox, µm 40 ± 20 * 12 ± 4 140 ± 25 20 ± 5
lSiC-depl, µm 120 ± 20 90 ± 10 ** 230 ± 20 70 ± 10 **
lΣ, µm 165 ± 10 100 ± 10 ** 380 ± 2 90 ± 10 **

* Oxide inclusions occur in cavities up to 105–110 µm deep. ** The transition from the SiC-depleted region to the
unoxidized material is diffuse, so the presented data are indicative.



Int. J. Mol. Sci. 2023, 24, 13634 11 of 20

Below this is a SiC-depleted region approximately 120 µm thick (Figure 8g–i, Table 1)
formed by oxidation of silicon carbide at reduced oxygen levels by an active mechanism,
which, in deeper layers, transitions rather abruptly to the unoxidized base material.

A similar structure is observed for the surface and near-surface regions at the periphery
of sample 1 (Figure 9). A dense surface oxide layer transitions to a porous SiC-depleted
layer. Among the differences, it is worth noting the reduced thickness of all layers and the
fact that the transition from the SiC-depleted layer to the unoxidized HfB2-SiC-CG material
is diffuse, so its thickness presented in Table 1 is indicative.
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voltage 1 kV (b–f), 20 kV (a).

The described distribution of oxide layers in the near-surface region of sample 1 is
confirmed by the data mapping of the distribution of Hf, Si, O and C elements (the latter
are provided as a reference due to the high error of their determination by the EDX method;
Figure 10a). The figure for the peripheral region of sample 1 confirms a certain localization
of silicon in the oxide region close to the surface, which is also found in the elemental
analysis of the surface of this sample. In addition, despite the low reliability of the data
on the distribution of carbon, we can speak with some approximation of its tendency to
localize in the near-surface region. This is probably carbon sorbed from dissociated CO2
under the influence of CO radicals.

Figure 10b shows the Raman spectra of the spall from the central part of sample 1 at
points 1–3 marked in Figure 10a. As can be seen, the region closest to the surface (point 1) is
a set of bands corresponding to the surface. The spectra show characteristic Raman modes
(ω1–ω8) of the monoclinic phase (HfO2) and even less intense modes (ωH2–ωH5) of the
hafnon phase (HfSiO4). At point 2, corresponding to the SiC-depleted layer, the spectrum
is significantly different; it lacks the modes of silicon carbide (confirming the EDX analysis
data) and hafnium oxide, which could indicate that in this layer, the unoxidized HfB2
predominates, but only weakly intense bands (ωB1, ωB2 and 7ωB1) are present, belonging
to the impurity phase of boron carbide, probably on the surface of HfB2 grains. At point 3,
in deeper layers (at 270–290 µm), a Raman spectrum is observed that completely repeats
the original HfB2-SiC-CG ceramic: five characteristic modes of theωB1,ωSi1,ωSi2, ωB2 and
7ωB1 phases of silicon carbide and boron carbide impurity are observed.
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oxidation product of HfB2, there is also a rather large amount of SiO2. 

Figure 10. Mapping of Hf, Si, O and C distribution in the cross section of sample 1 in the central (top)
and peripheral regions (bottom) (a), as well as Raman spectra in the indicated local regions (points
1–5) of chipped samples from the central (b) and peripheral parts of the sample (c).

Raman spectra of the removed peripheral part of sample 1 subjected to thermochemical
attack at temperature ≤1720 ◦C are shown in Figure 10c. In this zone, the oxide outer layer
has a limited thickness (~12 µm, Table 1), which did not allow the Raman spectra to be
correctly recorded on the instrument used. Therefore, the spectra only show points 4 and 5,
corresponding to the SiC-depleted porous layer and deeper ceramic layers (≥135–140 µm).
The data almost completely repeat the spectra obtained for the central part. In fact, only
weak bands (ωB1, ωB2 and 7ωB1) are present at point 4, which belong to the impurity phase
of boron carbide. This means that a composition based mainly on Raman-inactive HfB2 can
be assumed. The spectrum corresponding to point 5 shows characteristic modes of SiC and
weak modes of the impurity, B4C.

For sample 2, which was subjected to combined heating to much higher temperatures
in the central region according to the SEM data, the distribution of the near-surface layers
in the slip was similar (Figures 11–13), but the thickness of both the HfO2-based oxide layer
and the SiC-depleted layer was two to three times greater than for sample 1 (Table 1). For
example, the thickness of the top oxide layer reached 140 µm (Figure 11b,c), and that of the
SiC-depleted layer reached 230–250 µm. Note the much lower density of the oxide layer
in the center of sample 2; in addition to rounded pores of 1–5 µm, there are bulk pores
of up to 50–100 µm in the lower part oriented along the sample surface, indicating rapid
and non-equilibrium gas release under thermochemical action. The ratio n(Hf):n(Si) in the
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volume of the oxide layer is 1.5, i.e., with the dominance of HfO2 as an oxidation product
of HfB2, there is also a rather large amount of SiO2.
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A very dense oxide layer with a thickness of ~20 µm was formed at the edge of sample
2 (Figure 12), in which large horizontally oriented pores were formed at the boundary
with the porous SiC-depleted region, as also noted for the central region of the specimen
but more evenly distributed across the surface of the specimen. The total thickness of the
near-surface degradation region of the material was ~90 µm (Table 1), which is practically
identical to that of sample 1.
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1–5) of the chipped samples from the central (b) and peripheral parts of the sample (c).

Mapping of the distribution of the Hf, Si, O and C elements (Figure 13a) also confirms
the formation of a multilayer near-surface region both in the center of sample 2, which
was heated to ~2300 ◦C, and at the edge of the sample, whose temperature did not exceed
1800 ◦C. The Raman spectra (Figure 13b,c) for the labelled chipping points are also fully
consistent with those for sample 1 (Figure 10b,c). Thus, the principal structure of the
multilayer degraded near-surface region is essentially independent of the temperature
formed at the surface as a result of the thermochemical effect of the supersonic flow of
dissociated CO2 (including additional laser heating):

(1) External oxide layer based on HfO2 with admixture of HfSiO4 and, probably, silicate melt;
(2) SiC-depleted layer based on HfB2 with B4C admixture, which transitions to the

unoxidized HfB2-SiC-CG material.

However, the thickness of all components of the oxidized near-surface region and
the porosity and defects of the outer oxide region are significantly dependent on the
surface temperature.

3. Materials and Methods
3.1. Synthesis and Sample Preparation

Reagents: tetraethoxysilane (TEOS) Si(OC2H5)4 (>99.99%, EKOS-1 JSC, Moscow, Russia),
LBS-1 Bakelite varnish (Karbolit OJSC, Moscow, Russia), formic acid CH2O2 (>99%, Spektr-
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Chem LLC, Moscow, Russia), hafnium diboride (>98%, particle size, 2–3 microns; aggregate
size, ~20–60 microns; Tugoplavkie Materialy LLC, Taganrog, Russia) and graphene oxide
powder (size of graphene flakes, ≤3 µm; thickness ≤ 2 graphene layers; “AkKo Lab” LLC,
Moscow, Russia).

The preparation of the ceramic materials (HfB2-30%SiC)-1%CG) was carried out ac-
cording to a previously described method [42–44] using the reactive hot pressing method,
since reactive high-temperature consolidation allows us to significantly reduce the tem-
perature required to obtain dense samples [80–85]. Briefly, using sol–gel technology, a
composite powder, HfB2-SiO2-C, containing, in addition to carbon black, the required
amount of graphene, was synthesized and used for hot pressing of ceramics in graphite
molds using a Thermal Technology Inc. hot press (model HP20-3560-20) at a temperature
of 1800 ◦C (heating rate, 10 ◦C/min; dwell time, 15 min) and a pressure of 30 MPa. As a
result, cylindrical ceramic samples with a diameter of 15 mm, a thickness of ~3.9 mm and
a relative density of 98% were produced. XRD data confirm the formation of cubic SiC,
with the major phase being hexagonal HfB2. The particle size of the HfB2 is predominantly
2–5 µm, with inclusions of synthesized SiC no larger than 1–1.5 µm between them, as
previously noted in [43,44].

3.2. Instrumentation

The oxidation resistance of the obtained material, (HfB2-30 vol.%SiC)-1 vol.%CG,
under the influence of a supersonic flow of dissociated carbon dioxide was studied using a
100 kW high-frequency induction plasmatron VGU-4 [86,87] with a sonic nozzle with an
outlet diameter of 30 mm. The distance from the nozzle to the sample was 30 mm, the CO2
flow rate was 2.4 g/s (controlled by a Bronkhorst MV-306 electronic flow meter, Bronkhorst
High-Tech BV, Ruurlo, The Netherlands) and the chamber pressure was 9.1 ± 0.2 × 102 Pa.
The sample, in the form of a cylinder with a diameter of 15 mm and a thickness of ~3.9 mm,
was immersed in the high-enthalpy jet at a plasmatron anode power (N) of 60 kW. Under
these conditions, the sample was held until the end of the experiment; the total exposure
time was 14 min (840 s).

Ceramic sample 2 was additionally exposed to laser radiation for 2 min starting
from the 11th min of the experiment using an IPG Photonics YLPN-1-100-200-R pulsed
fiber ytterbium laser (IRE-Polus, Fryazino, Moscow region, Russia) with a wavelength of
1.064 microns, with high directivity and stability of radiation, laser output power of 196 W,
incident power of 168 W and a beam diameter of 7.1 mm. After switching off the laser,
heating of the sample continued only due to the influence of the CO2 plasma jet of the
plasmatron. The configuration of the test facility (HF plasmatron and ytterbium laser) is
described in detail in [55]. The difference was that no lens was installed on the optical axis,
which allowed us to achieve the maximum irradiation intensity.

The geometry of the water-cooled model in which the samples were mounted is
described in detail in [49,88,89]. The samples were friction-mounted in the water-cooled
calorimeter socket, with the gap filled with flexible SiC and carbon fiber insulation to
minimize heat losses.

The measurement of the average temperature of the heated sample surface without
laser radiation was carried out using a Mikron M770S infrared pyrometer in spectral ratio
pyrometer mode (temperature range, 1000–3000 ◦C; diameter of the viewing area, ~5 mm in
the central part of the sample, Mikron Infrared Inc., Oakland, CA, USA). The temperature
distribution on the sample surface was studied using a Tandem VS-415U thermal imager
(OOO «PK ELGORA», Korolev, Moscow region, Russia). Thermal images were recorded
with the spectral emissivity vale (ελ) set at a wavelength of 0.65 µm equal to 0.3, which was
established as a result of preliminary experiments for fully oxidized HfB2-SiC samples in
the CO2 flow. Furthermore, during the analysis of the thermal imaging data, the surface
temperatures were corrected to the real ελ values if necessary. A correction factor of
0.93 for the transmittance of the quartz window of the test chamber was used to obtain
the thermal images. Laser radiation at a wavelength of 1.064 µm affected the spectral ratio
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pyrometer data, so the only available tool to measure temperature during laser exposure
was the thermal imager, with an operating wavelength of 0.65 µm. The temperature was
determined from the thermal images as an average over an area equal to the pyrometer
viewing area.

X-ray patterns of the obtained ceramic materials before and after exposure to super-
sonic carbon dioxide flow and after combined exposure to CO2 plasma and laser radiation,
were recorded on a Bruker D8 Advance X-ray diffractometer (CuKα radiation, and 0.02◦

resolution with signal accumulation in the point for 0.3 s, Bruker, Billerica, MA, USA).
X-ray phase analysis was performed using MATCH!—Phase Identification from Powder
Diffraction, Version 3.8.0.137 (Crystal Impact, Bonn, Germany), Crystallography Open
Database (COD).

Raman spectra were recorded on a Confotec NR500 Raman spectrometer (20×/0.75 ob-
jective; 532 nm laser; grating: 600, SOL Instruments, Augsburg, Germany). The signal
accumulation time was 60 s.

A study of the surface microstructure features of the obtained materials before and
after exposure to a supersonic flow of CO2 dissociated was carried out by scanning electron
microscopy (SEM) on a three-beam NVision 40 (Carl Zeiss, Oberkochen, Germany) work
station with accelerating voltages of 1, 2 and 20 kV using secondary electron (SE2), energy-
selective backscattered (ESB) and in-lens detectors, respectively. The elemental composition
of the regions was determined using an Oxford Instruments energy-dispersive analysis
device (EDX, Oxford, UK; accelerating voltage, 20 kV).

4. Conclusions

The features of oxidation of ultra-high-temperature ceramic material HfB2-30 vol.%SiC
modified with a low (1 vol.%) amount of graphene under the influence of supersonic flow of
dissociated CO2 and as a result of combined radiative and convective heating provided by
additional application of ytterbium laser were studied. For sample 1, in which the influence
of supersonic CO2 jets was investigated, with the chosen parameters of the experiment
(CO2 flow rate, 2.4 g/s; chamber pressure, 9.1 ± 0.2 × 102 Pa; plasmatron anode power,
60 kW; duration of influence, 14 min), a stabilization of the surface temperature at values of
1720–1785 ◦C was observed. There was no tendency of noticeable temperature increase,
which could lead to a sharp temperature rise up to ~2200–2700 ◦C, known as temperature-
jump phenomenon, as previously observed in similar samples under the influence of
high-enthalpy air flows [12,25,28,43]. The total thickness of the near-surface degradation
region (oxide layer plus SiC-depleted layer) varied from ~100 to ~165 µm for the peripheral
and central regions, respectively.

It was found that the addition of laser irradiation leads to local heating of the central
region of the sample from a temperature of ~1750 to ~2000–2200 ◦C (maximum temperature
~2300 ◦C). The resulting temperature difference from the central region to the edge, which
is ~300–550 ◦C, did not lead to cracking or destruction of the sample. After switching off
the laser, the surface temperature decreases to 1800–1825 ◦C, that is, there is no return to
the temperature of the sample before the laser irradiation, probably due to changes in the
microstructure, elemental composition and degree of crystallinity of the oxidized surface.

It was found that a change in the average surface temperature during thermochemical
action from 1750–1790 to 2000–2200 ◦C (even briefly, within 2 min out of 14 min of total
duration) leads to a sharp, two- to threefold increase in the thickness of the oxidized near-
surface region. The formation of a multilayer degradation region typical of the oxidation of
HfB2-SiC ceramics in air at temperatures >1750–1800 ◦C is observed. The upper layer of
HfO2 with residual content of silicate melt passes into a porous SiC-depleted region (based
on weakly oxidized HfB2), below which there is a zone of unoxidized material.

In conclusion, the studies carried out in the present research demonstrate the promis-
ing application of HfB2-SiC-based ceramics in the composition of high-speed flight vehicles
in an atmosphere composed mainly of CO2. The continuation and development of ex-
periments to study the behavior of high-temperature ceramics based on ZrB2(HfB2)-SiC
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systems in complex gaseous environments based on CO2, N2 and their mixtures with air
is an important and urgent task contributing to the creation of structural materials for
space exploration.
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