Metabolomic Approach Based on Analytical Techniques for the Detection of Secondary Metabolites from Humulus lupulus L. Dried Leaves
Abstract
:1. Introduction
2. Results
2.1. SPME/GC–MS Chemical Composition
2.2. PTR-ToF-MS: Determination of Volatile Compounds from Hop Dried Leaves
2.3. Fatty Acids Content
2.4. Chemical Composition of Methanolic Extract after Derivatization
2.5. NMR Analysis of Dried-Hop Leaves
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. SPME Sampling
4.3. GC–MS Analysis of the Dried Hop Leaves
4.4. Extraction and Transesterification Processes
4.5. GC–MS Determination of Fatty Acids (FAs) Content
4.6. GC–MS Analysis of Methanolic Extract (after Derivatization)
4.7. PTR-ToF-MS Analysis of Dried Leaves
4.8. NMR Analysis
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Astray, G.; Gullón, P.; Gullón, B.; Munekata, P.E.; Lorenzo, J.M. Humulus lupulus L. as a natural source of functional biomolecules. Appl. Sci. 2020, 10, 5074. [Google Scholar] [CrossRef]
- De Keukeleire, J.; Janssens, I.; Heyerick, A.; Ghekiere, G.; Cambie, J.; Roldàn-Ruiz, I.; Van Bockstaele, A.; De Keukeleire, D. Revelance of organic farming effect of climatological conditions on the formation of α-acids, β-acids, desmethylxanthohumol, and xanthohumol in hop (Humulus lupulus L.). J. Agric. Food Chem. 2007, 55, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, T.; Kobayashi, M.; Yako, N.; Iida, A.; Wanikawa, A. Comparison of 4-mercapto-4-methylpentan-2-one contents in hop cultivars from different growing regions. J. Agric. Food Chem. 2008, 56, 1051–1057. [Google Scholar] [CrossRef]
- Kowalska, G.; Bouchentouf, S.; Kowalski, R.; Wyrostek, J.; Pankiewicz, U.; Mazurek, A.; Sujka, M.; Włodarczyk-Stasiak, M. The hop cones (Humulus lupulus L.): Chemical composition, antioxidant properties and molecular docking simulations. J. Herb Med. 2022, 33, 100566. [Google Scholar] [CrossRef]
- Rutto, L.K.; Temu, V.W.; Ferreira, G.; Kering, M.K. Nutritive value and in vitro digestibility of non-cone hop (Humulus lupulus L.) biomass. J. Anim. Plant Sci. 2020, 30, 794–802. [Google Scholar]
- Iglesias, A.; Martinez, P.G.; Ramirez, C.; Mitton, G.; Arcerito, F.M.; Fangio, M.F.; Churio, M.S.; Fuselli, S.; Fanovich, A.; Eguaras, M.; et al. Valorization of hop leaves for development of eco-friendly bee pesticides. Apidologie 2021, 52, 186–198. [Google Scholar] [CrossRef]
- Karabín, M.; Hudcová, T.; Jelínek, L.; Dostálek, P. Biologically active compounds from hops and prospects for their use. Compr. Rev. Food Sci. Food Saf. 2016, 15, 542–567. [Google Scholar] [CrossRef]
- Dostálek, P.; Karabín, M.; Jelínek, L. Hop phytochemicals and their potential role in metabolic syndrome prevention and therapy. Molecules 2017, 22, 1761. [Google Scholar] [CrossRef]
- Jiang, W.; Zhao, S.; Xu, L.; Lu, Y.; Lu, Z.; Chen, C.; Ni, J.; Wan, R.; Yang, L. The inhibitory effects of xanthohumol, a prenylated chalcone derived from hops, on cell growth and tumorigenesis in human pancreatic cancer. Biomed. Pharmacother. 2015, 73, 40–47. [Google Scholar] [CrossRef]
- Jiang, C.H.; Sun, T.L.; Xiang, D.X.; Wei, S.S.; Li, W.Q. Anti-cancer activity and mechanism of xanthohumol: A prenylated flavonoid from hops (Humulus lupulus L.). Front. Pharmacol. 2018, 9, 530. [Google Scholar] [CrossRef]
- Dziedzinski, M.; Szczepaniak, O.; Telichowska, A.; Kobus-Cisowska, J. Antioxidant capacity and cholinesterase inhibiting properties of dietary infusions with Humulus lupulus. J. Elem. 2020, 25, 1913. [Google Scholar] [CrossRef]
- Morcol, T.B.; Matthews, P.D.; Kennelly, E.J. Differences in Leaf Chemistry and Glandular Trichome Density between Wild Southwestern American Hop (Humulus neomexicanus) and Commercial Hop Cultivars. J. Agric. Food Chem. 2021, 69, 7798–7814. [Google Scholar] [CrossRef] [PubMed]
- Macchioni, V.; Picchi, V.; Carbone, K. Hop Leaves as an Alternative Source of Health-Active Compounds: Effect of Genotype and Drying Conditions. Plants 2022, 11, 99. [Google Scholar] [CrossRef] [PubMed]
- Takoi, K. “Flavor hops” varieties and various flavor compounds contributing to their “varietal aromas”: A review. Tech. Quart. Master Brew. Assoc. Am. 2019, 56, 113–123. [Google Scholar]
- Masi, E.; Caparrotta, S.; Taiti, C.; Ieri, F.; Fiume, P.; Moselhy, N.; Mancuso, S.; Romani, A. Characterization of volatile compounds in Mentha spicata L. dried leaves. Adv. Hortic. Sci. 2017, 31, 89–96. [Google Scholar]
- Stanius, Ž.; Dudenas, M.; Kaškoniene, V.; Stankevicius, M.; Skrzydlewska, E.; Drevinskas, T.; Ragažinskiene, O.; Obelevicius, K.; Maruška, A. Analysis of the Leaves and Cones of Lithuanian Hop (Humulus lupulus L.) Varieties by Chromatographic and Spectrophotometric Methods. Molecules 2022, 27, 2705. [Google Scholar] [CrossRef]
- Vivaldo, G.; Masi, E.; Taiti, C.; Caldarelli, G.; Mancuso, S. The network of plants volatile organic compounds. Sci Rep. 2017, 7, 11050. [Google Scholar] [CrossRef] [PubMed]
- Nesvadba, V.; Olšovská, J.; Straková, L.; Charvátová, J.; Fritschová, G. Evaluation of yield and alpha acid content in selected hop varieties. Kvasny Prumysl 2022, 68, 637–641. [Google Scholar] [CrossRef]
- Farang, M.A.; Porzel, A.; Schmidt, J.; Wessjohann, L.A. Metabolite profiling and fingerprinting of commercial cultivars of Humulus lupulus L. (hop): A comparison of MS and NMR methods in metabolomics. Metabolomics 2012, 8, 492–507. [Google Scholar]
- Protsenko, L.; Ryzhuk, S.; Liashenko, M.; Shevchenko, O.; Litvynchuk, S.; Yanse, L.; Milosta, H. Influence of alpha acids hop homologues of bitter and aromatic varieties on beer quality. Food Technology. Ukr. Food J. 2020, 9, 425–436. [Google Scholar] [CrossRef]
- Leker, J.; Maye, J.P. Discovery of Acetohumulone and Acetolupulone a New Hop Alpha Acid and Beta Acid. J Am Soc Brew Chem 2023, 81, 276–281. [Google Scholar] [CrossRef]
- Rutnik, K.; Ocvirk, M.; Košir, I.J. The Stability of Hop (Humulus lupulus L.) Resins during Long-Period Storage. Plants 2023, 12, 936. [Google Scholar] [CrossRef] [PubMed]
- Lela, L.; Ponticelli, M.; Caddeo, C.; Vassallo, A.; Ostuni, A.; Sinisgalli, C.; Faraone, I.; Santoro, V.; De Tommasi, N.; Milella, L. Nanotechnological exploitation of the antioxidant potential of Humulus lupulus L. extract. Food Chem. 2022, 393, 133401. [Google Scholar] [CrossRef] [PubMed]
- Vitalini, S.; Di Martile, M.; Cicaloni, V.; Iannone, M.; Salvini, L.; Del Bufalo, D.; Iriti, M.; Garzoli, S. Volatile and Non-Volatile Content Determination and Biological Activity Evaluation of Fresh Humulus lupulus L. (cv. Chinook) Leaves and Inflorescences. Separations 2023, 10, 91. [Google Scholar] [CrossRef]
- Morcol, T.B.; Negrin, A.; Matthews, P.D.; Kennelly, E.J. Hop (Humulus lupulus L.) terroir has large effect on a glycosylated green leaf volatile but not on other aroma glycosides. Food Chem. 2020, 321, 126644. [Google Scholar] [CrossRef]
- Li, J.; Li, N.; Li, X.; Chen, G.; Wang, C.; Lin, B.; Hou, Y. Characteristic α-Acid Derivatives from Humulus lupulus with Antineuroinflammatory Activities. J. Nat. Prod. 2017, 80, 3081–3092. [Google Scholar] [CrossRef]
- Killeen, D.P.; Watkins, O.C.; Sansom, C.E.; Andersen, D.H.; Gordon, K.C.; Perry, N.B. Fast Sampling, Analyses and Chemometrics for Plant Breeding: Bitter Acids, Xanthohumol and Terpenes in Lupulin Glands of Hops (Humulus lupulus). Phytochem. Anal. 2017, 28, 50–57. [Google Scholar] [CrossRef]
- Höltzel, G.A.; Schlotterbeck, K.; Bayer, A.E. Separation and characterisation of hop bitter acids by HPLC-1H NMR coupling. Chromatographia 1996, 42, 499–505. [Google Scholar] [CrossRef]
- Carbone, K.; Macchioni, V.; Petrella, G.; Daniel Oscar Cicero, D.O. Exploring the potential of microwaves and ultrasounds in the green extraction of bioactive compounds from Humulus lupulus for the food and pharmaceutical industry. Ind. Crops Prod. 2020, 156, 112888. [Google Scholar] [CrossRef]
- Jacquin, J.; Moureu, S.; Deweer, C.; Hakem, A.; Paguet, A.-S.; Bonneau, N.; Bordage, S.; Dermont, C.; Sahpaz, S.; Muchembled, J.; et al. Hop (Humulus lupulus L.) Specialized Metabolites: Extraction, Purification, Characterization in Different Plant Parts and In Vitro Evaluation of Anti-Oomycete Activities against Phytophthora infestans. Agronomy 2022, 12, 2826. [Google Scholar] [CrossRef]
- De Keukeleire, J.; Ooms, G.; Heyerick, A.; Roldan-Ruiz, I.; Van Bockstaele, E.; De Keukeleire, D. Formation and Accumulation of α-Acids, β-Acids, Desmethylxanthohumol, and Xanthohumol during Flowering of Hops (Humulus lupulus L.). J. Agric. Food Chem. 2003, 51, 4436–4441. [Google Scholar]
- Francomano, F.; Caruso, A.; Barbarossa, A.; Fazio, A.; La Torre, C.; Ceramella, J.; Mallamaci, R.; Saturnino, C.; Iacopetta, D.; Sinicropi, M.S. β-Caryophyllene: A Sesquiterpene with Countless Biological Properties. Appl. Sci. 2019, 9, 5420. [Google Scholar] [CrossRef]
- de Lacerda Leite, G.M.; de Oliveira Barbosa, M.; Pereira Lopes, M.J.; de Araújo Delmondes, G.; Bezerra, D.S.; Moura Araújo, I.; de Alencar, C.D.C.; Douglas Melo Coutinho, H. Pharmacological and toxicological activities of α-humulene and its isomers: A systematic review. Trends Food Sci. Technol. 2021, 115, 255–274. [Google Scholar]
- Calder, P.C. Functional Roles of Fatty Acids and Their Effects on Human Health. JPEN J. Parenter. Enter. Nutr. 2015, 39, 18S–32S. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Xie, F.; Huang, W.; Hu, M.; Yan, O.; Chen, Z.; Zheng, Y.; Liu, L. The review of alpha-linolenic acid: Sources, metabolism, and pharmacology. Phytother Res. 2022, 36, 164–188. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.B.; Altimova, Y.; Myers, T.M.; Ebersole, J.L. Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Arch. Oral Biol. 2011, 56, 650–654. [Google Scholar]
- Carta, G.; Murru, E.; Banni, S.; Manca, C. Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Front. Physiol. 2017, 8, 902. [Google Scholar] [CrossRef]
- Nowak, M.G.; Skwarecki, A.S.; Milewska, M.J. Amino Acid Based Antimicrobial Agents–Synthesis and Properties. ChemMedChem 2021, 16, 3513–3544. [Google Scholar]
- Smeekens, S.; Hellmann, H.A. Sugar sensing and signaling in plants. Front. Plant Sci. 2014, 5, 113. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Hidalgo, M.; León-González, A.J.; Gálvez-Peralta, M.; González-Mauraza, N.H.; Martin-Cordero, C. D-Pinitol: A cyclitol with versatile biological and pharmacological activities. Phytochem. Rev. 2021, 20, 211–224. [Google Scholar]
- Liu, M.; Hansen, P.E.; Wang, G.; Qiu, L.; Dong, J.; Yin, H.; Qian, Z.; Yang, M.; Miao, J. Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus). Molecules 2015, 20, 754–779. [Google Scholar] [CrossRef] [PubMed]
- Nezi, P.; Cicaloni, V.; Tinti, L.; Salvini, L.; Iannone, M.; Vitalini, S.; Garzoli, S. Metabolomic and Proteomic Profile of Dried Hop Inflorescences (Humulus lupulus L. cv. Chinook and cv. Cascade) by SPME-GC-MS and UPLC-MS-MS. Separations 2022, 9, 204. [Google Scholar] [CrossRef]
- Iannone, M.; Ovidi, E.; Vitalini, S.; Laghezza Masci, V.; Marianelli, A.; Iriti, M.; Tiezzi, A.; Garzoli, S. From Hops to Craft Beers: Production Process, VOCs Profile Characterization, Total Polyphenol and Flavonoid Content Determination and Antioxidant Activity Evaluation. Processes 2022, 10, 517. [Google Scholar] [CrossRef]
- Christie, W.; Han, X. Lipid Analysis-Isolation, Separation, Identification and Lipidomic Analysis; Woodhead Publishing: Bridgwater, UK, 2010; pp. 146–147. [Google Scholar]
- Garzoli, S.; Maggio, F.; Vinciguerra, V.; Rossi, C.; Donadu, M.G.; Serio, A. Chemical Characterization and Antimicrobial Properties of the Hydroalcoholic Solution of Echinacea purpurea (L.) Moench. and Propolis from Northern Italy. Molecules 2023, 28, 1380. [Google Scholar] [CrossRef] [PubMed]
- Blake, R.S.; Monks, P.S.; Ellis, A.M. Proton-transfer reaction mass spectrometry. Chem. Rev. 2009, 109, 861–896. [Google Scholar] [PubMed]
- Taiti, C.; Masi, E.; Cicaloni, V.; Vinciguerra, V.; Salvini, L.; Garzoli, S. SPME-GC-MS and PTR-ToF-MS Techniques for the Profiling of the Metabolomic Pattern of VOCs and GC-MS for the Determination of the Cannabinoid Content of Three Cultivars of Cannabis sativa L. Pollen. Molecules 2022, 27, 8739. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction And Purification. Can. J. Biochem. Physiol. 1959, 911–917. [Google Scholar] [CrossRef]
- Di Matteo, G.; Di Matteo, P.; Sambucci, M.; Tirillò, J.; Giusti, A.M.; Vinci, G.; Gobbi, L.; Prencipe, S.A.; Salvo, A.; Ingallina, C.; et al. Commercial Bio-Packaging to Preserve the Quality and Extend the Shelf-Life of Vegetables: The Case-Study of Pumpkin Samples Studied by a Multimethodological Approach. Foods 2021, 10, 2440. [Google Scholar] [CrossRef]
- Fanelli, R.M. Changes in the Food-Related Behaviour of Italian Consumers during the COVID-19 Pandemic. Foods 2021, 10, 169. [Google Scholar] [CrossRef]
- Spano, M.; Di Matteo, G.; Fernandez Retamozo, C.A.; Lasalvia, A.; Ruggeri, M.; Sandri, G.; Cordeiro, C.; Sousa Silva, M.; Totaro Fila, C.; Garzoli, S.; et al. A Multimethodological Approach for the Chemical Characterization of Edible Insects: The Case Study of Acheta domesticus. Foods 2023, 12, 2331. [Google Scholar] [CrossRef]
- Spano, M.; Di Matteo, G.; Ingallina, C.; Botta, B.; Quaglio, D.; Ghirga, F.; Balducci, S.; Cammarone, S.; Campiglia, E.; Giusti, A.M.; et al. A Multimethodological Characterization of Cannabis sativa L. Inflorescences from Seven Dioecious Cultivars Grown in Italy: The Effect of Different Harvesting Stages. Molecules 2021, 26, 2912. [Google Scholar] [CrossRef] [PubMed]
- Sobolev, A.P.; Brosio, E.; Gianferri, R.; Segre, A.L. Metabolic profile of lettuce leaves by high-field NMR Spectra. Magn. Reson. Chem. 2005, 43, 625–638. [Google Scholar] [CrossRef] [PubMed]
N° | COMPONENT 1 | LRI 2 | LRI 3 | Chinook (%) |
---|---|---|---|---|
1 | isobutyric acid | 762 | 765 | 1.4 ± 0.04 |
2 | propionic acid | 968 | 972 | 0.7 ± 0.02 |
3 | 5-hepten-2-one, 6-methyl- | 981 | 986 | 1.9 ± 0.03 |
4 | 2-methylbutyl isobutyrate | 986 | 989 | 8.6 ± 0.03 |
5 | β-myrcene | 988 | 991 | 0.4 ± 0.02 |
6 | amyl isovalerate | 1090 | 1093 | 0.8 ± 0.02 |
7 | β-cyclocitral | 1192 | 1197 | 0.4 ± 0.01 |
8 | ylangene | 1368 | 1376 | 3.4 ± 0.02 |
9 | α-copaene | 1385 | 1392 | 12.9 ± 0.05 |
10 | β-bourbonene | 1392 | 1390 | 0.5 ± 0.01 |
11 | β-caryophyllene | 1438 | 1440 | 19.2 ± 0.09 |
12 | α-humulene | 1475 | 1473 | 27.8 ± 0.11 |
14 | γ-muurolene | 1480 | 1486 | 7.6 ± 0.02 |
13 | β-eudesmene | 1490 | 1488 | 4.3 ± 0.03 |
15 | α-selinene | 1495 | 1493 | 1.8 ± 0.02 |
16 | γ-cadinene | 1510 | 1509 | 2.2 ± 0.02 |
17 | δ-cadinene | 1513 | 1505 § | 5.7 ± 0.03 |
18 | selina-3,7(11)-diene | 1535 | 1530 | 0.4 ± 0.01 |
SUM | 100.0 | |||
Monoterpenes | 0.4 | |||
Diterpenes | 0.4 | |||
Sesquiterpenes | 85.8 | |||
Others | 13.4 |
N° of Compounds | m/z | Chemical Formula | Tentative Identification | Average Samples Emission | Standard Deviation (SD) | Emission (%) |
---|---|---|---|---|---|---|
1 | 27.022 | C2H3+ | Acetylene | 21.82 | 2.60 | 3.03 |
2 | 31.018 | CH3O+ | Formaldehyde | 50.21 | 4.64 | 6.96 |
3 | 33.033 | CH5O+ | Methanol | 22.79 | 3.95 | 3.16 |
4 | 41.038 | C3H5+ | Alkylic fragment | 11.69 | 2.16 | 1.62 |
5 | 43.018 | C2H3O+ | Aldehyde fragment | 31.53 | 10.18 | 4.37 |
6 | 43.054 | C3H7+ | General alkane/VOC fragment | 26.83 | 4.17 | 3.72 |
7 | 45.033 | C2H5O+ | Acetaldehyde | 229.17 | 61.98 | 31.79 |
8 | 47.013 | CH3O2+ | Formic acid/formates | 9.19 | 1.34 | 1.27 |
9 | 49.011 | CH5S+ | S Compound (methanethiol) | 1.45 | 0.21 | 0.20 |
10 | 55.054 | C4H7+ | Fragment | 7.12 | 1.44 | 0.99 |
11 | 57.069 | C4H9+ | Alcohol fragment | 3.58 | 0.78 | 0.50 |
12 | 59.049 | C3H7O+ | Propanal, Acetone | 236.97 | 52.32 | 32.87 |
13 | 61.028 | C2H5O2+ | Acetates | 21.72 | 3.61 | 3.01 |
14 | 69.069 | C5H9+ | Isoprene/Cycloalkane fragment | 5.87 | 1.39 | 0.81 |
15 | 71.049 | C4H7O+ | Butenal | 1.7 | 0.41 | 0.24 |
16 | 73.065 | C4H9O+ | Isobutanal/butanone/methylpropanal | 13.76 | 4.23 | 1.91 |
17 | 83.086 | C6H11+ | C6 compounds (hexenal, hexenols) | 1.16 | 0.57 | 0.16 |
18 | 85.065 | C5H9O+ | Methyl butenal | 2.27 | 0.53 | 0.31 |
19 | 87.044 | C4H7O2+ | 2,3-Butanedione; Butyrolactone | 1.06 | 0.31 | 0.15 |
20 | 87.080 | C5H11O+ | Pentanal/3-methylbutanal | 11.87 | 3.28 | 1.65 |
21 | 93.069 | C7H9+ | Terpene fragment | 2.28 | 0.37 | 0.32 |
22 | 107.086 | C8H11+ | Terpene fragment | 1.69 | 1.06 | 0.23 |
23 | 109.101 | C8H13+ | Terpene fragment | 2.10 | 0.55 | 0.29 |
24 | 133.101 | C10H13+ | Terpene fragment | 1.5 | 0.34 | 0.21 |
25 | 205.195 | C15H25+ | Sesquiterpenes like compounds | 1.58 | 0.40 | 0.22 |
Total Terpene Emission (ppbv) | 9.14 | 2.19 | 1.26 | |||
Total VOCs Emission (ppbv) | 720.90 | 152.55 | 100.00 |
N° | COMPONENT 1 | LRI 2 | LRI 3 | (%) |
---|---|---|---|---|
1 | palmitoleic acid, C16:1n7 | 1930 | 2.9 ± 0.02 | |
2 | palmitic acid, C16:0 | 1973 | 38.7 ± 0.03 | |
3 | linoleic acid, C18:2n6 | 2130 | 5.9 ± 0.03 | |
4 | linolenic acid, C18:3n3 | 2143 | 48.2 ± 0.12 | |
5 | stearic acid, C18:0 | 2178 | 4.3 ± 0.03 | |
SUM | 100.0 | |||
Saturated FAs | 43.0 | |||
Unsaturated FAs | 57.0 |
N° | COMPONENTS | (%) |
---|---|---|
Sugars | ||
1 | lyxose | tr |
2 | galactofuranose | tr |
3 | xylose | 0.3 ± 0.02 |
4 | sorbofuranose | 0.6 ± 0.02 |
5 | tagatofuranose | 2.6 ± 0.04 |
6 | glucose | 1.0 ± 0.03 |
7 | fructose | 0.2 ± 0.01 |
8 | glucopyranose | 1.9 ± 0.02 |
9 | allofuranose | 1.7 ± 0.02 |
10 | talofuranose | 1.8 ± 0.02 |
11 | turanose | 9.3 ± 0.08 |
12 | trehalose | 12.8 ± 0.15 |
13 | sucrose | 62.3 ± 1.25 |
Organic acids | ||
14 | lactic acid | tr |
15 | oxalic acid | tr |
16 | succinic acid | tr |
17 | pyruvic acid | 0.1 ± 0.00 |
18 | malonic acid | tr |
Alcohols | ||
19 | D-pinitol | 2.8 ± 0.04 |
20 | gycerol | 1.1 ± 0.03 |
21 | ribitol | tr |
22 | phytol | 0.1 ± 0.00 |
23 | myo-inositol | 0.3 ± 0.02 |
Fatty acids | ||
24 | palmitic acid | 0.5 ± 0.02 |
25 | linolenic acid | 0.5 ± 0.02 |
Compound | Assignment | 1H (ppm) | Multiplicity [J(Hz)] | 13C (ppm) |
---|---|---|---|---|
Sugars | ||||
β-D-Fructofuranose | CH-3 | 4.12 * | ||
CH-4 | 4.12 * | |||
CH-5 | 3.82 | |||
β-D-Fructopyranose | CH-3 | 3.81 | ||
CH-5 | 4.00 | |||
CH2-6,6′ | 3.70 | |||
α-Glucose | CH-1 | 5.24 * | ||
CH-2 | 3.52 | |||
CH-3 | 3.73 | |||
CH-4 | 3.40 | |||
CH-5 | 3.84 | |||
β-Glucose | CH-1 | 4.65 * | ||
CH-2 | 3.26 | |||
CH-3 | 3.49 | |||
CH-4 | 3.40 | |||
Sucrose | CH-1 (glucose) | 5.42 * | ||
CH-2 | 3.55 | |||
CH-3 | 3.76 | 73.5 | ||
CH-4 | 3.48 | |||
CH-5 | 3.84 | |||
CH-1 (fructose) | 62.3 | |||
C-2 | 104.6 | |||
CH-3 | 4.22 | d (8.8) | ||
CH-4 | 4.05 | 75.0 | ||
CH-5 | 3.90 | 82.4 | ||
CH2-6,6′ | 3.81 | |||
Organic acids | ||||
Citric acid | α,γ-CH | 2.57 * | d (16.7) | 45.1 |
α′,γ′-CH | 2.72 | d (16.8) | 45.1 | |
β-C | 76.7 | |||
COOH-1 | 179.4 | |||
COOH-6 | 182.1 | |||
Formic acid | HCOOH | 8.46 * | s | |
Fumaric acid | α,β-CH=CH | 6.53 * | s | |
Malic acid | α-CH | 4.32 * | dd (9.5; 3.1) | 71.4 |
β-CH | 2.69 | dd (15.5; 3.1) | 43.7 | |
β′-CH | 2.41 | dd (15.7; 9.6) | 43.7 | |
COOH-1 | 181.2 | |||
COOH-4 | 180.6 | |||
Succinic acid | α, β-CH2 | 2.41 * | s | 35.2 |
COOH-1,4 | 183.3 | |||
Acetic acid | α-CH3 | 1.92 * | s | |
COOH | 182.5 | |||
Amino acids | ||||
Alanine | α-CH | 3.78 | 51.5 | |
β-CH3 | 1.49 *,f | d (7.2) | ||
COOH | 176.7 | |||
GABA | α-CH2 | 2.30 * | t (7.4) | 35.4 |
β-CH2 | 1.91 | q | 24.6 | |
γ-CH2 | 3.02 | t (7.6) | 40.3 | |
COOH | 182.5 | |||
Glutamine | α-CH | 3.75 | ||
β,β′-CH2 | 2.15 | m | ||
γ-CH2 | 2.46 | m | ||
Isoleucine | α-CH | 60.7 | ||
β-CH | 1.99 | 36.9 | ||
γ,γ′-CH2 | 1.26, 1.47 | 25.5 | ||
γ-CH3 | 1.02 | d (7.1) | ||
δ-CH3 | 0.95 * | t (7.4) | ||
Leucine | β-CH2 | 40.8 | ||
γ-CH | 1.71 | 25.2 | ||
δ-CH3 | 0.97 * | d (6.4) | 22.9 | |
δ′-CH3 | 0.96 * | d (6.0) | 22.5 | |
Valine | α-CH | 3.61 | 61.3 | |
β-CH | 2.28 | 30.1 | ||
γ-CH3 | 1.00 * | d (7.1) | 17.7 | |
γ′-CH3 | 1.05 | d (6.9) | 19.0 | |
Threonine | α-CH | 3.59 | 61.4 | |
β-CH | 4.25 | 66.9 | ||
γ-CH3 | 1.34 * | d (6.5) | ||
Asparagine | α-CH | 4.02 | 52.3 | |
β,β′-CH2 | 2.87 *; 2.96 | dd (7.8; 17.0); dd (4.3; 17.0) | ||
COOH | 175.2 | |||
Aspartate | β,β′-CH2 | 2.68; 2.82 * | dd (8.8; 17.6); dd (3.8; 17.6) | |
Glutamate | α-CH | 3.75 | ||
β,β′-CH2 | 2.06; 2.14 * | m | ||
γ-CH2 | 2.36 | m | ||
Proline | α-CH | 4.17 | ||
β,β′-CH2 | 2.08; 2.35 | m, m | ||
γ-CH2 | 2.02 * | m | ||
δ,δ′-CH2 | 3.43; 3.34 | |||
Miscellaneous | ||||
Choline | +N(CH3)3 | 3.21 * | s | 54.9 |
α-CH2 | 68.4 | |||
Trigonelline | CH-1 | 9.13 * | s | |
CH3 | 4.44 | s |
Compound | Assignment | 1H (ppm) | Multiplicity [J(Hz)] | 13C (ppm) |
---|---|---|---|---|
Polyphenols | ||||
Xanthohumol | CH2-1″ | 3.21 | ||
OCH3 | 3.90 | s | 56.0 | |
CH-5′ | 6.02 | s | ||
CH-3,5 | 6.84 | (d, 8.6 Hz) | ||
CH-2,6 | 7.49 * | (d, 8.6 Hz) | 130.6 | |
CH-α | 7.79 | (d, 15.5 Hz) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taiti, C.; Di Matteo, G.; Spano, M.; Vinciguerra, V.; Masi, E.; Mannina, L.; Garzoli, S. Metabolomic Approach Based on Analytical Techniques for the Detection of Secondary Metabolites from Humulus lupulus L. Dried Leaves. Int. J. Mol. Sci. 2023, 24, 13732. https://doi.org/10.3390/ijms241813732
Taiti C, Di Matteo G, Spano M, Vinciguerra V, Masi E, Mannina L, Garzoli S. Metabolomic Approach Based on Analytical Techniques for the Detection of Secondary Metabolites from Humulus lupulus L. Dried Leaves. International Journal of Molecular Sciences. 2023; 24(18):13732. https://doi.org/10.3390/ijms241813732
Chicago/Turabian StyleTaiti, Cosimo, Giacomo Di Matteo, Mattia Spano, Vittorio Vinciguerra, Elisa Masi, Luisa Mannina, and Stefania Garzoli. 2023. "Metabolomic Approach Based on Analytical Techniques for the Detection of Secondary Metabolites from Humulus lupulus L. Dried Leaves" International Journal of Molecular Sciences 24, no. 18: 13732. https://doi.org/10.3390/ijms241813732
APA StyleTaiti, C., Di Matteo, G., Spano, M., Vinciguerra, V., Masi, E., Mannina, L., & Garzoli, S. (2023). Metabolomic Approach Based on Analytical Techniques for the Detection of Secondary Metabolites from Humulus lupulus L. Dried Leaves. International Journal of Molecular Sciences, 24(18), 13732. https://doi.org/10.3390/ijms241813732